Studies of new Higgs boson interactions through non-resonant HH production in the bbyy final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Event preselection

- 2 isolated tight photons with (sub)leading photon p_T > 35 (25) GeV
- 2 b-jets at 77% b-tagging efficiency
- < 6 central jets
- 0 leptons

Signal selection

Motivation

Since its discovery in 2012, measurements of the properties and couplings of the Higgs boson have been at the forefront of LHC physics.

The Higgs boson's trilinear self-coupling λ can be probed via diHiggs (HH) production.

The value of λ determines the shape of the Higgs potential. Deviations from the SM prediction may point to new phyics.

$$V(h) = V_0 + \lambda v^2 h^2 + \lambda v h^3 + \frac{1}{4} \lambda h^4 + \dots$$

$HH \rightarrow b\bar{b}\gamma\gamma$ analysis $H \rightarrow b\bar{b}$: large branching ratio $H \rightarrow \gamma \gamma$: clean experimental signature

m^{*}_{bbyy} [GeV]

2 BDTs (high and low mass region) were trained on signal samples with different κ_{λ} and κ_{2V} values against single H and continuum background. **Input variables**: kinematic properties of photons, b-jets and VBF jets (tagged with a BDT-based classifier)

Event categories High mass: $m^*_{bbvv} > 350 \text{ GeV} \rightarrow 3 \text{ BDT}$ score categories Low mass: $m^*_{bbvv} \le 350 \text{ GeV} \rightarrow 4 \text{ BDT}$ score categories

Diphoton mass fit

H and HH: double-sided crystal ball (from MC)

HH (signal) Continuum background (YY) Resonant background (H)

unique probe of κ_{2V}

Continuum background: exponential (from fit to data sidebands)

Results

Simultaneous unbinned ML fit over all 7 categories \rightarrow no significant excess above expected background observed

Signal strength: 95% CL_s limit on μ_{HH} : (obs) **4*SM** (exp) **5*SM**

Alexandra Sidley (Nikhef) a.sidley@nikhef.nl

LHCC Poster Session 27 November 2023

Reference: arxiv:2310.12301 Submitted to JHEP

