Inclusive and differential cross section measurements of $t\bar{t}Z$ production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, including **EFT** and spin correlations interpretations

Lucia Keszeghová (Comenius University)

on behalf of the ATLAS collaboration

Refined $t\bar{t}Z$ analysis - ATLAS-CONF-2023-065 [2] **based** on the full Run II dataset (140 fb^{-1}) improves the previous ATLAS analysis [3]

	Previous	Refined
Inclusive decay channels	3ℓ , 4ℓ	2ℓ , 3ℓ , 4ℓ
Neural network (NN)	×	\checkmark
Unfolding method	iterative Bayesian	profile-likelihood
EFT interpretation	×	\checkmark
Spin correlations	×	\checkmark
	. /	

3 differential $t\bar{t}Z$ measurements \rightarrow Monte Carlo (MC) tuning

annihilation

Differential cross section measurement

Unfolding procedure

- **performed in** 3ℓ & 4ℓ channels
- **profile-likelihood unfolding** \rightarrow the same setup as in the inclusive measurement ($3\ell + 4\ell$) regions, free-floating backgrounds, treatment of systematics, fake control regions)
- **Tikhonov regularisation** (discretized second derivative) is used for variables which require reconstruction of hadronic top

Parton-level

Channel	Variables
3ℓ	$N_{ m jets}$, H_T^ℓ , $ \Delta \phi(Z,t_{ m lep}) $, $ \Delta y(Z,t_{ m lep}) $, $p_T^{\ell,{ m non}-Z}$
4ℓ	$N_{ m jets}$, H_T^ℓ , $ \Delta \phi(\ell_t^+,\ell_{ar t}^-) $
$3\ell + 4\ell$ unregularised	p_T^Z , $ y^Z $, $\cos heta_Z^*$
$3\ell + 4\ell$ regularised	$ \Delta \Phi(tar{t},Z) $, $m^{tar{t}}$, $m^{tar{t}Z}$, p_T^t , $p_T^{tar{t}}$, $ y^{tar{t}Z} $

- unfolded to particle & parton level (except for N_{jets})
- both absolute & normalised measurements
- all measurements statistically dominated

Particle-level

Inclusive cross section measurement

Analysis strategy

- **2** ℓ , 3 ℓ and 4 ℓ decay channels
- **signal-background separation**: $NN \rightarrow looser$ selection criteria
- signal strength extracted with profile-likelihood fit
- **NN** output:
- **1** is used for definition of regions (SRs)
- **2** distributions are fitted in signal regions
- treatment of main backgrounds:
- **1** 2ℓ : $\mathcal{N}_{Z+c/b}$ fitted from 2ℓ SRs, data-driven $t\overline{t}$
- **2** 3ℓ & 4ℓ : dedicated WZ & ZZ regions
- **3** fakes: **Fake Factor method** & fake control regions

	Results	
	$\sigma_{t \bar{t} Z} [{ m pb}]$	Relative uncertainty
Theory	$0.86^{+0.07}_{-0.08}$ (scale) ± 0.03 (PDF + α_S) [1]	pprox 10%
Previous analysis	$0.99 \pm 0.05 (\text{stat.}) \pm 0.08 (\text{syst.})$ [3]	pprox 10%
Combination $(2\ell + 3\ell + 4\ell)$	$0.86 \pm 0.05 \mathrm{pb} = 0.86 \pm 0.04 (\text{stat.}) \pm 0.04 (\text{syst.})$	pprox 6.5%
$\hookrightarrow Dilepton$	$0.84 \pm 0.11 \mathrm{pb} = 0.84 \pm 0.06 (\text{stat.}) \pm 0.09 (\text{syst.})$	pprox 13%
\hookrightarrow Trilepton	$0.84 \pm 0.07 \mathrm{pb} = 0.84 \pm 0.05 (\text{stat.}) \pm 0.05 (\text{syst.})$	pprox 8.4%
\hookrightarrow Tetralepton	$0.97^{+0.13}_{-0.12} \mathrm{pb} = 0.97 \pm 0.11 (\text{stat.}) \pm 0.05 (\text{syst.})$	pprox 18%

 \Rightarrow 35% improvement, systematics reduced by 50%

Uncertainty Category	$\Delta \sigma_{t\bar{t}Z}/\sigma_{t\bar{t}Z}$ [%]
Background normalisations	2.0
Jets and $E_T^{ m miss}$	1.9
b-tagging	1.7
$tar{t}Z\;\mu_F$ and μ_R scales	1.6
Leptons	1.6
Z+jets modelling	1.5
tWZ modelling	1.1
$t \overline{t} Z$ showering	1.0
$t\overline{t}Z$ A14	1.0
Luminosity	1.0

Spin correlation interpretation

 \bullet $t\bar{t}$ spin correlations extracted from angular distributions - 1st time from $t\bar{t}Z$ events • observables based on the angle between the charged lepton or down-type quark from t/\bar{t} decay • angular distributions \rightarrow coefficients \mathcal{O} of the spin density matrix

template fit at detector level:

$$\mathcal{O} = f_{\rm SM} \cdot \mathcal{O}_{\rm spin-on} + (1 - f_{\rm SM}) \cdot \mathcal{O}_{\rm spin-off}$$

$$\stackrel{\rm POI}{= 1 \text{ for SM-like correlations}} \text{ SM-like template } \nexists \text{ spin correlations}$$

Coefficient Expression

 $-9\langle\cos\theta_r^+\cdot\cos\theta_r^-\rangle$ c_{rr}

 \Rightarrow no-spin hypothesis rejected with significance 1.8σ

Results for individual angular distributions

SMEFT interpretation

 $\Re[C_{tW}]$

20 dimension-6 SMEFT operators considered: top-boson operators & four-quark operators **EFT** fits performed on **normalised**

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ SMEFT $\Lambda = 1 \text{ TeV}$	 Quadratic (marg.) Linear (marg.) Quadratic (indp.) 	 Global mode 68% Cl 95% Cl 						
Top-boson operators								

c_k	$-9\langle\cos\theta_k^+\cdot\cos\theta_k^-\rangle$	Distribution	Channel	Expected values	Observed values
c_n	$-9\langle\cos\theta_n^+\cdot\cos\theta_n^-\rangle$	$\cos arphi$	$3\ell + 4\ell$	$1^{+1.39}_{-1.38}$	$-0.09^{+1.34}_{-1.28}$
c_r	$-9\langle\cos\theta_r^+\cdot\cos\theta_k^-+\cos\theta_r^-\cdot\cos\theta_k^+\rangle$	$\cos heta_r^+ \cdot \cos heta_r^-$	$3\ell + 4\ell$	$1^{+1.83}_{-1.82}$	$1.17^{+1.80}_{-1.76}$
c_k c_r	$-9\langle\cos\theta_{k}^{+}\cdot\cos\theta_{n}^{-}+\cos\theta_{k}^{-}\cdot\cos\theta_{n}^{-}\rangle \\ -9\langle\cos\theta_{r}^{+}\cdot\cos\theta_{n}^{-}+\cos\theta_{r}^{-}\cdot\cos\theta_{n}^{+}\rangle$	$\cos heta_k^+ \cdot \cos heta_k^-$	$3\ell + 4\ell$	$1^{+1.78}_{-1.78}$	$1.39^{+1.72}_{-1.73}$
c_r	$-9\langle\cos\theta_k^+\cdot\cos\theta_n^\cos\theta_k^-\cdot\cos\theta_n^+\rangle$	$\cos heta_n^+ \cdot \cos heta_n^-$	$3\ell + 4\ell$	$1^{+1.87}_{-1.86}$	$-1.05^{+2.06}_{-1.96}$
$c_k \ c_n$	$-9\langle\cos\theta_n^+\cdot\cos\theta_r^\cos\theta_n^+\cdot\cos\theta_r^+\rangle \\ -9\langle\cos\theta_r^+\cdot\cos\theta_k^\cos\theta_r^-\cdot\cos\theta_k^+\rangle$	$\cos\theta_r^+ \cdot \cos\theta_k^- + \cos\theta_r^- \cdot \cos\theta_k^+$	$3\ell + 4\ell$	$1^{+1.93}_{-1.93}$	$0.36^{+1.99}_{-1.93}$
b_r^+	$3\langle\cos\theta_r^+\rangle$	$\cos heta_r^+$	$3\ell + 4\ell$	$1^{+1.81}_{-1.80}$	$1.56^{+1.86}_{-1.98}$
b_r^-	$3\langle\cos\theta_r^-\rangle$	$\cos heta_r^-$	$3\ell + 4\ell$	$1^{+1.82}_{-1.78}$	$1.81^{+1.63}_{-1.68}$
b_k^-	$3\langle \cos \theta_k^- \rangle$ $3\langle \cos \theta_k^- \rangle$	$\cos heta_k^+$	$3\ell + 4\ell$	$1^{+1.69}_{-1.67}$	$2.00^{+1.65}_{-1.70}$
b_n^+	$3\langle\cos\theta_n^+\rangle$	$\cos heta_k^-$	$3\ell + 4\ell$	$1^{+1.68}_{-1.68}$	$2.31^{+1.68}_{-1.68}$
b_n^-	$3\langle\cos\theta_n^-\rangle$				

References

- A. Kulesza et al. "Associated production of a top quark pair with a heavy electroweak gauge boson at NLO+NNLL accuracy". In: European Physical Journal C 79.3 (Mar. 2019). DOI: 10.1140/epjc/s10052-019-6746-z.
- ATLAS Collabotation. "Inclusive and differential cross section measurements of $t\bar{t}Z$ production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, including EFT and spin correlations interpretations". In: https://cds.cern.ch/record/2873519 (2023). All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-065.
- ATLAS Collabotation. "Measurements of the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a Z boson at $\sqrt{s} = 13$ TeV with the ATLAS detector". In: European Physical Journal C 81 (2021). DOI: 10.1140/epjc/s10052-021-09439-4. arXiv: 2103.12603 [hep-ex].

particle-level differential distributions results compatible with the SM

(Fisher information matrix)

#	# λ ATLAS Preliminary $\sqrt{s} = 13$ TeV, 140 fb ⁻¹											. 1					
1	40	0.75			0.23	-0.15	-0.13	-0.10	-0.42	-0.15	0.06	-0.13	-0.05	-0.33	-0.08		1
2	8	-0.41	0.04	-0.02	-0.34	0.27	0.18	-0.12	-0.57	-0.22	-0.05	-0.22	-0.05	-0.39	-0.12		0
3	0.5	-0.07	0.06		0.18	0.04	-0.33	-0.07	0.13	0.04	-0.68	-0.42	-0.11	0.08	-0.41		4
	<u>د</u>			Preli	С ^{ую} mina	مريك در مريك	- C _{4µ}	C ₆₀	C _{OQ}	C.00		Con	C 40	C &	C*V		- I
~		$\sqrt{s} =$ SME	13Τ FT Λ	eV, 1 = 1 T	40 fb⁻ ēV	-1		-	•	Glob	ar (m pal mo	arg.) ode			95%	CI	

Credible intervals for Fisher-rotated fit

LHCC Poster Session - 27 November 2023