Fast inference on FPGA for the ATLAS Muon Trigger

156t LHCC meeting — CERN — 27th November 2023

YATLAS

EXPERIMENT M. Carnesale, F. A. Di Bello, F. Giuli, S. Rosati, S. Veneziano

From Simulation to FPGA Implementation

Toy model: detector with 3 stations immersed in a 1 T magnetic field \
Single muon events: 2, 5, 10 and 15 kHz/cm? hits rate expected in the inner station of ATLAS Muon Spectrometer end-cap (New
Small Wheel) at HL-LHC [1]
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Model inferred in FPGA using Vitis-Al Flow (Xilinx)
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Advantages of FPGA : very fast - low energy . ]
consumption Xilinx Vitis-Al [3]: platform provides development

Using Xilinx [2] FPGA architectures: U50/U250/Versal environment for deploying deep learning models on FPGAs
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Deployment on Xilinx U50, U250 and Versal VCK5000
(DNN for cluster reconstruction [~ CNN/RNN for pattern recognition performance )

Dense neural network trained to
reconstruct the hit position of the track
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CNN not ideal for existing trigger algorithms working directly on sparse data (RNN)
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[1] CERN-LHCC-2013-006, [2] https://www.xilinx.com, [3] https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html, [4] https://onnx.ai, [5] https://developer.nvidia.com/tensorrt




