Why \(B^+ \to \mu^+ \nu_\mu \gamma \)?

- Decays have never been observed
- Golden mode to probe \(B^+ \) meson substructure
- Emission of \(\gamma \) probes first inverse moment \(\lambda_B \) of the \(B \) meson Light Cone Distribution Amplitude
- Value of \(\lambda_B \) not well known
- Vital theory input for QCD factorization schemes and non-perturbative calculation of \(B \) meson decays

On the decay \(B^+_s \to \mu^+ \nu_\mu \gamma \)

- CKM favoured by \(|V_{ub}|^2/|V_{ub}|^2\) but production cross section much smaller
- Effects cancel to yield approximately the same rate as for \(B^+ \to \mu^+ \nu_\mu \gamma \)

Reconstruction at LHCb

- Extremely difficult to reconstruct at hadron colliders, deemed impossible
- Challenging yet possible at LHCb

Photon Reconstruction

- Select signal candidates from displaced \(B \) vertices
- Crucial to require \(\gamma \to e^+e^- \) conversion for vertex reconstruction
- Conversion in LHCb’s Vertex Locator provides excellent vertex resolution

Neutrino Recovery

- At LHCb cannot constrain neutrino momentum from initial kinematics
- Correct for momentum imbalance \(p_\perp \) perpendicular to \(B \) flight direction

\[
m_{corr} = \sqrt{m_{vis}^2 (\mu^+\nu_\mu) + p_\perp^2 + p_\perp}
\]

Background modelling

Analysis Strategy

- Use data recorded with LHCb from 2016-2018 corresponding to \(L \text{int} = 5.4 \text{ fb}^{-1} \)
- Search for signal by binned template fit in \(m_{corr} \)
- Generate data-driven background templates

Background from \(\pi^0/\eta \to \gamma e\gamma \)

- By far the dominant source of background
- Select \(\pi^0/\eta \to \gamma ee/\eta \) in data using additional calorimeter photon \(\gamma_{\text{calo}} \)
- Correct efficiency of finding additional photon
- Representative of all \(\pi^0/\eta \to \gamma ee \gamma \) backgrounds including physics and combinatorial components

Background from \(h^+ \to \mu^+ \) mis-identification

- Control sample without PID requirement on the muon track
- Generate template for \(\pi^+ \to \mu^+ \) and \(K^+ \to \mu^+ \)

Optimising signal selection

- Maximise sensitivity to \(B(\bar{B}^+ \to \mu^+ \nu_\mu \gamma) \)
- Optimisation performed on pseudo-experiments
- Generate background only pseudo-data from derived templates
- Fitting with signal shapes for \(B^+_s \to \mu^+ \nu_\mu \gamma \)
- Signal selection not yet finalised

Outlook

- Search for \(B^+_s \to \mu^+ \nu_\mu \gamma \) can be done at LHCb
- Pushing the limits of the LHCb experiment
- Analysis strategy and background modelling in place
- Selection of signal candidates still ongoing
- Expected sensitivity towards \(B(\bar{B}^+ \to \mu^+ \nu_\mu \gamma) \) soon to be evaluated

Current experimental limit

Belle searched for \(B^+ \to \ell^+ \nu_\ell \gamma \) using \(\ell = e, \mu \) to find an upper limit of

\[
B(\bar{B}^+ \to \ell^+ \nu_\ell \gamma) < 3.0 \times 10^{-6} \text{ @90\%CL}
\]

Branching ratio prediction for \(\bar{B}^+ \to \mu^+ \nu_\mu \gamma \) superimposed with the experimental limit from Belle. The colored bands correspond to different theory models.

Search for the decay \(B^+_c \to \mu^+ \nu_\mu \gamma \)

Fabian Glaser\(^1,2\), Martino Borsato\(^3\), Marie-Hélène Schune\(^2\)

\(^1\) Universität Heidelberg, Physikalisches Institut, Germany,
\(^2\) Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France,
\(^3\) Milano-Bicocca University, INFN Sezione di Milano, Italy

13th LHC students poster session, Nov. 27th 2023

fabian.christoph.glaser@cern.ch