

Search for the decay $B^+_{(c)} ightarrow \mu^+ u_\mu \gamma$

Fabian Glaser^{1,2}, Martino Borsato³, Marie-Hélène Schune²

¹ Universität Heidelberg, Physikalisches Institut, Germany,

- ² Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France,
 - ³ Milano-Bicocca University, INFN Sezione di Milano, Italy

Why $B^+ o \mu^+ u_\mu \gamma$?

- Decay has **never been observed**
- **Golden mode** to probe B^+ meson substructure
- Emission of γ probes first inverse moment λ_B of the B meson Light Cone Distribution Amplitude
- Value of λ_B not well known
- Vital theory input for QCD factorization

Current experimental limit

Belle searched for $B^+ \to \ell^+ \nu_\ell \gamma$ using $\ell = e, \mu$ to find an upper limit of

$${\cal B}(B^+ o \ell^+
u_\ell \gamma) < 3.0 imes 10^{-6} \ @90\% {
m CL}$$

schemes and non-perturbative calculation of B meson decays

On the decay $B_c^+
ightarrow \mu^+
u_\mu \gamma$

- CKM favoured by $|V_{cb}|^2/|V_{ub}|^2$ but production cross section much smaller
- Effects cancel to yield approximately the same rate as for $B^+ \to \mu^+ \nu_\mu \gamma$

Reconstruction at LHCb

- Extremely difficult to reconstruct at hadron colliders, deemed impossible
- Challenging yet possible at LHCb

Photon Reconstruction

- Select signal candidates from **displaced** *B* **vertices**
- Crucial to require $\gamma \to e^+e^-$ conversion for vertex reconstruction

Background modelling

Analysis Strategy

- Use data recorded with LHCb from 2016-2018 corresponding to $\mathcal{L}_{int} = 5.4 \,\mathrm{fb}^{-1}$
- Search for signal by binned template fit in m_{corr}
- Generate data-driven background templates

Background from $\pi^0/\eta \rightarrow \gamma_{ee}\gamma$

• By far the **dominant** source of background

• Conversion in LHCb's Vertex Locator provides **ex**cellent vertex resolution

Neutrino Recovery

- At LHCb cannot constrain neutrino momentum from initial kinematics
- Correct for momentum imbalance p_{\perp} perpendicular to *B* flight direction

- Select $\pi^0/\eta \rightarrow \gamma_{ee}\gamma_{calo}$ in data using additional calorimeter photon γ_{calo}
- Correct efficiency of finding additional photon
- Representative of all $\pi^0/\eta \rightarrow \gamma_{ee}\gamma$ backgrounds including **physics and combinatorial** components

Background from $h^+ \rightarrow \mu^+$ mis-identification

• Control sample without PID requirement on the muon track

• Generate template for $\pi^+ \rightarrow \mu^+$ and $K^+ \rightarrow \mu^+$

Optimising signal selection

Outlook

- Maximise sensitivity to $\mathcal{B}(B^+ \to \mu^+ \nu_\mu \gamma)$
- Optimisation performed on pseudoexperiments
- Generate background only pseudo-data from derived templates
- Fitting with signal shapes for $B^+_{(c)} \to \mu^+ \nu_\mu \gamma$
- Signal selection **not yet finalised**

Background-only pseudo-data and signal shapes with arbitrary normalisation.

Search for
$$B^+_{(c)} \to \mu^+ \nu_\mu \gamma$$
 can be done at LHCb

- Pushing the limits of the LHCb experiment
- Analysis strategy and background modelling in place
- Selection of signal candidates still ongoing
- Expected sensitivity towards $\mathcal{B}(B^+ \to \mu^+ \nu_\mu \gamma)$ soon to be evaluated

13th LHC students poster session, Nov. 27th 2023 fabian.christoph.glaser@cern.ch