

# UNIVERSITY OF Using Hadronic Interactions to Assess the LHCb RF Box Deformation

<u>Marcus Madurai</u>, marcus.madurai@cern.ch University of Birmingham

# 1. LHCb Vertex Locator (VELO)

- LHCb VELO is a pixelated hybrid silicon detector that surrounds the proton-proton interaction region.
- Enables LHCb to reconstruct primary and displaced vertices [1].
- Two retractable halves, each housing 26 L-shaped detector modules.
- Stable beams: Inner-most tip 5.1mm from beam axis.
- Injection/ramping beams: Halves retracted by 29mm.





# 2. Radio Frequency (RF) Shielding

- RF boxes are thin-walled corrugated enclosures.
- Provide a barrier between the primary (beam) and secondary (detector) vacuum and protect the VELO modules from strong wakefields produced by the LHC beams.
- Milled from a single solid 300kg block of AlMg<sub>3</sub> and thinned to  $\sim$ 250 $\mu$ m.





 $\frac{x-y}{\sqrt{2}}$  [mm]

60

40



Scan here to see me being milled out!

25

-25

Secondary Vertices from Modules over

#### 4. VELO Tomography

## 3. Vacuum Incident

- During a VELO warm up, there was a loss of control of the protection system.
- 10 mbar pressure differential switch was activated, but its corresponding relay failed and shorted the power supply multiple equipment failures and a pumping action on the primary volume.
- **Pressure differential of 200 mbar** built up between the two volumes, whereas the RF boxes are designed to withstand 10 mbar.
- Caused both sides of the box to **deform outwards** towards each other.



# 5. Interpolating B-Splines

- Due to the complex nature of the RF box shape and areas of low statistics, two approaches are taken to map its material.
- Interpolating B-splines with knots placed at and around the nominal module positions are fit in the transverse plane to the data in 1mm wide bins.

Secondary Vertices Integrated Within (10 < y < 11)mm in the Transverse Plane - A Side

- To assess the deformation of the RF box, secondary hadronic vertices from material nuclear interactions are used to locate detector material.
- LHCb detector includes a System for Measuring beam Overlap with Gas (SMOG) that allows gas to be injected into the beam pipe.
- SMOG typically used for luminosity measurements and fixed target physics. Here it is used to enhance the production of particles outside the typical interaction





#### 6. Mapping Method

1D least squares fit is performed to the RF box in 1mm bins to a geometric representation defined by three linear sections and two circular segments.
Away from VELO modules, the central linear section is excluded from the fit.



- Fit is stepped through the RF box, using a given bin's results as the starting parameters for the next.
- Fit floats **11 free parameters**, which define the boundaries between the linear and circular segments and the angle subtended by the circular segments,  $\alpha$ .
- Parameter variation through the RF box is also fitted to interpolating B-splines, allowing a full **material map** of the RF box to be created.

 $y_1$  Variation Through the RF Foil

<u>∎</u>\_20

---· Interpolating B-spline

- The **maximum deflection** of the deformed RF box from nominal is found to be 32-34 mm between the two halves.
- Assign a p-value to the hypothesis that a secondary vertex originates from a material interaction – a material veto tool is essential in reducing the background in searches for long-lived exotic particles (see [2]).
- The RF box is being replaced in this YETS, with another VELO tomography campaign expected in early 2024, where the material map could feed into LHCb Run 3 simulation.



### 9. References

[1]. The LHCb Upgrade I, LHCb Collaboration, arXiv:2305.10515
[2]. Search for Dark Photons Produced in 13 TeV pp Collisions, LHCb Collaboration, arXiv:1710.02867