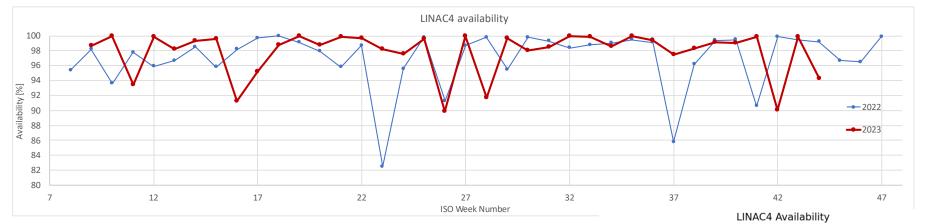

# LINAC4 Availability Statistics 2023

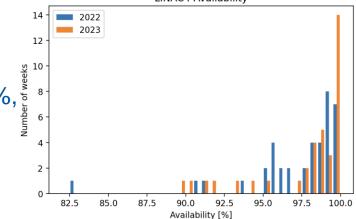
Lukas Felsberger Piotr Skowronski



#### 2023 in Context




Try to put the year in context of other years. Is it matching your expectations?


- > Yes.
  - We continue solving issues which repeatedly cause downtime.
  - Machine is still relatively new: we don't see many aging effects.
  - There was smaller number of major faults, i.e., longer than 2h.
  - Increasing experience also plays a role



#### Weekly Availability by Destination

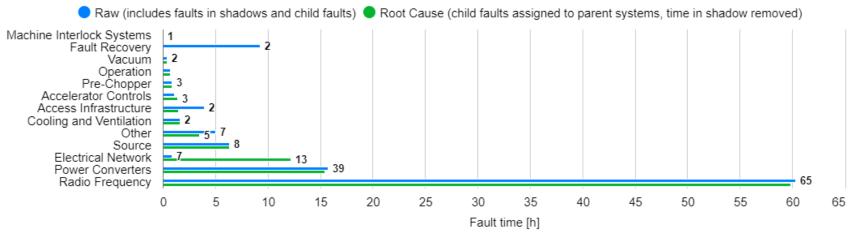


- Continued solving issues that repeatedly cause downtime.
  - In 2023 14 weeks with availability above 99.5%, 5 weeks with 100%
- > 7 major faults





#### Major faults


- > 2x burned connector on focus circuit
  - Other connectors were verified during ITS
  - Consolidation during YETS
- Hydrogen valve in the source
- Aftermath of LEIR circuit breaker fault
- Card measuring filament current (interlock)
- Water pressure sensor (interlock)
- Card measuring focus current (interlock)
  - + difficulties in the system restart
- Sensor checking socket connection (interlock)

| date   | element     | downtime   |
|--------|-------------|------------|
| Mar 15 | PIMS1112    | 9 hours    |
| Apr 15 | PIMS0102    | 8 hours    |
| Apr 28 | source      | 5 hours    |
| Jun 27 | multiple    | 7 hours    |
| Jun 1  | CCDTL1      | 4.5 hours  |
| Jun 12 | CCDTL1      | 13.5 hours |
| Oct 17 | CCDTL7      | 10.5 hours |
| Nov    | pre-chopper | 4.5 hours  |



4 out of 7 are related to faulty sensors interlocking the machine

## System Downtime Faults by Root Cause



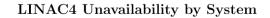
- ➤ In linacs RF is the main, and by far the most challenging system: it must be the main downtime contributor
- Modulators are power supplies that deliver above 100 kV voltage for klystrons. De facto, they are integral part of RF powering system:
  - They interlock with fast abort if RF lines stops.
  - ➤ They suffer from any RF sparking (breakdown) or malfunctionning Therefore, it is not a surprise that they are the 2<sup>nd</sup> contributor to the downtime

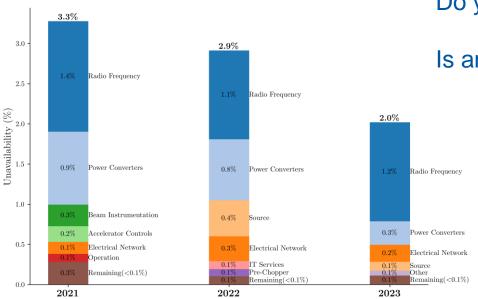


#### Implemented improvements

- Contained sparking in modulator-klystron interface
  - Minimized modulator voltages
  - Modified layout implemented on the most affected system brought the expected result, we could come back to the nominal voltage
- Exchanged DTL1 klystron
- Understood and fixed the long-standing klystron control issue
- > Chopper:
  - Upgrade of amplifier and control electronics
  - Updated PLC firmware implementing protection and interlock logic
  - Chopper dump alignment line and better steering in MEBT:
- > Cavity break down protection implemented on all single cavity lines
  - Dual cavity lines will be equipped during this year




Modified timing layout reduced BCT watchdog interlocks


#### Chopper upgrades

- TTL logic ICs matching: to have internal synchronization between the boards and similar time responses between the modules.
- Implementation of the "fail-safe Logic" for the modules (in cooperation with the modification on the PLC): Now, if something goes wrong, the module switches OFF. Before, it was kept ON and potentially pulsing.
- EMI upgrade. For each module, a few boards and the cabling between them have been modified to reduce crosstalk and unwanted, random activation spikes.
- Better filtering of the Mosfet boards.
- Relay circuit modification, to avoid random activation of the IGBT boards for capacitance discharge.



#### Unavailability by System





Do these trends match your impression?

Yes

Do you want to point out a positive trend?

Yes

Is any trend worrying you?

No



### Summary & Conclusion Slides

Improvements brought the desired effect in reduced downtime

Hopefully, we can keep the trend of increasing availability, however, it depends on number and severity of major faults.



### "Information" ½

These slides are a template to summarize the availability of your machine in 2023. Please correct and complement the slides considering following questions:

- What are the main events & reasons impacting availability?
  - Does the data show them and is it matching your expectations?
  - Is any crucial aspect not visible in the data that we should have a closer look at?
- What is the outlook for next year?
  - Are you expecting some interventions over the YETS that might improve availability next year?
  - Could certain circumstances lead to an availability degradation?



#### "Information" 2/2

- There will be additional questions on each slide.
- All charts can be regenerated from AFT Dashboard (cern.ch)
- For further inspiration what to put in the slides, please have a look at https://indico.cern.ch/event/1104980/



#### **Considered Times**

- Availability counting starts once beam has to be delivered for downstream machine
  - → 03-03-2023 09:00:00 13-11-2023 06:00:00
- Excluded time periods
  - MD
    - 10-05-2023 08:00 18:00
    - 30-10-2023 07:30 31-10-2023 18:00
- (Should these times be wrong, please correct the times above or add additional excluded time periods and let us know – we can update your template)

