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• ‘Fluid-like’ signal observed in both pPb and high-multiplicity pp collisions, not e+e- 

• Perhaps a small drop of QGP is formed! 

• One of the major discoveries at the LHC 

• Alternative interpretations 

• Parton rescattering, initial-state effects, ‘escape mechanism’ 
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Are correlations in dense systems a general consequence of QCD? 

From how small of a system can collectivity emerge? 

Can hydrodynamics be applied on other non-perturbative processes?



arxiv: 2204.13486
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Even smaller systems
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e+e- 

Nch~30
ep 

Nch~30
p 

Nch~20
γ Pb 

Nch~40
γ

• Many measurements trying to push boundaries to smaller systems 

• No unambiguous observation of collectivity yet 

• Generally limited in multiplicity reach from limited luminosities/energies 

• Not clear if no effect or systems are just too dilute 

arXiv:2204.13486

https://arxiv.org/abs/2204.13486


High multiplicity jets?
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• Do parton rescatterings in a localized high-density region cause any effect? 
• e+e- produces very clean jets, but limited in statistics 
• Huge number of jets at LHC!

ppe+e-

Badea A., AB, et al.. PRL 123, 212002 (2019) AB, Gardner P., Li W. PRC 107, 064908 (2023)

Yen-Jie Lee’s  
Talk today



Postulated mechanism for collectivity
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• Single parton propagating along jet axis generates dense parton collection 

• Interactions/rescattering between resulting partons could generate collectivity 

• Analysis must be with respect to jet axis - need to align jets
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Redefinition of coordinates

7

ϕ

η = − ln[tan(θ/2)]

pT

Start with standard lab coordinates



Rotation of reference frame
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Jet axis

Consider a simplified jet with 2 constituents



Rotation of reference frame

9Rotate reference frame so jet axis lies along z axis



Rotation of reference frame

10Rotate reference frame so jet axis lies along z axis



Coordinates in the jet frame

11Define new ‘transverse momentum’ jT

jT
Jet axis



Coordinates in the jet frame

12Define new ‘pseudorapidity’ η*

η* = − ln[tan(θ/2)]

Jet axis



Coordinates in the jet frame

13Define new ‘azimuth’ ϕ*

ϕ*
Jet axis



Coordinates in the jet frame
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Rotation is done for every jet individually. 
Every constituent has  calculated.p* = ( jT, η*, ϕ*)

ϕ*
Jet axis



Properties of η*
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Properties of η*
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• CMS 13 TeV high-pileup data enable this analysis 

• Large sampled luminosity (138 fb-1) 

• Good jet acceptance  

• High quality tracking

High-multiplicity 
 jets are rare!

AB, Gardner P., Li W. PRC 107, 064908 (2023)



Pileup distribution
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• Use 2016-2018 Run 2 data 

• Only interested in jet events 

• Must deal with pileup!

78 vertices: ~2x more than the average for this analysis

https://arxiv.org/abs/2104.11735


Pileup Mitigation

20

 

• Pileup Per Particle Identification (PUPPI) subtraction 

• Use track/vertex info to remove obvious pileup tracks 

• Ambiguous tracks weighted by probability of being signal 

• Included in analysis (negligible effect) 

• Similar weighting for neutral particles

Signal vertex

78 vertices: ~2x more than the average for this analysis

https://arxiv.org/abs/2104.11735


 
 

R=0.8 anti-kT 

Analyze >108 jets

pjet
T > 550 GeV
|ηjet | < 1.6

21

Only tracks with pT > 1.5 GeV shown for clarity. 

Full pT range used in analysis!



22

Select top ~2,500  
jets in Nch

 
 

R=0.8 anti-kT 

Analyze >108 jets

pjet
T > 550 GeV
|ηjet | < 1.6



High-Multiplicity 2D correlation
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Potential ‘ridge’ in high-multiplicity jets?

Inclusive jets



High-Multiplicity 1D correlation
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• Project into for  

• Similar shape between data/MC 

• Clear minimum at  at low 

multiplicity 

• Perform Fourier fit to get Vns 

• Bump seen in fit for higher Nch values 

• Only discuss  for the rest of talk

Δϕ * |Δη* | > 2

Δϕ* = 0

V2Δ



Fourier Harmonics vs Nch
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Single particle v2

26

• Quantify size of bump with   

• Nch<80 trend captured by MC 

• Rising trend for last few points 

v2 = V2Δ
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• Quantify size of bump with   

• Nch<80 trend captured by MC 

• Rising trend for last few points 

v2 = V2Δ

Significance of trend
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• Data deviates from MC by >5  

• Observation of QGP-like effects 

above some critical density? 

• What can explain such effect?

σ



Collectivity explanation
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arxiv:2401.13137

See 
Wenbin’s 

Talk 
(next!)

• Test ‘collectivity’ interpretation by adding 

final-state interactions to parton shower 

• Does not seem to affect lower Nch region 

significantly - consistent with no effect seen 

in HEP studies 

• High-multiplicity trend - see next talk! 



Underlying Event Explanation?
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ϕlab

UE

In-phase 
Jet

2R = 1.6

Jet axis

Lab frame!
• Can underlying event generate a signal? 

• Inject signal into UE and study effect on signal 



Underlying Event Explanation?
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ϕlab

UE

In-phase 
Jet

Out-of-phase 
Jet

2R = 1.6

Jet axis

Lab frame!
• Regardless of phase between jet and UE, no significant signal in jet frame seen 

• Different UE tunes also have no effect  



Underlying Event Explanation?
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ϕlab

UE

In-phase 
Jet

Out-of-phase 
Jet

2R = 1.6

Jet axis

Lab frame!
• Regardless of phase between jet and UE, no significant signal in jet frame seen 

• Different UE tunes also have no effect  

Injecting signal in lab frame coordinates does not seem to translate to 
a signal in jet coordinates 

My opinion: not a promising path to try to explain this signal



Preferred plane of production
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Scattered parton

• Initially scattered parton has no preferred direction - azimuthal symmetry 

• How is some ‘preferred direction’ generated (the “reaction plane”) 

• First parton splitting in jet shower creates a preferred plane 

• From formation time arguments, this splitting will be harder/wider 

• First and subsequent splittings result in final particle distribution - governed by pQCD 



Preferred plane of production
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Plane of first parton splitting

Scattered parton

• Initially scattered parton has no preferred direction - azimuthal symmetry 

• How is some ‘preferred direction’ generated (the “reaction plane”) 

• First parton splitting in jet shower creates a preferred plane 

• From formation time arguments, this splitting will be harder/wider 

• First and subsequent splittings result in final particle distribution - governed by pQCD 



Nonflow contributions
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Plane of first parton splitting

• Initially scattered parton has no preferred direction - azimuthal symmetry 

• How is some ‘preferred direction’ generated (the “reaction plane”) 

• First parton splitting in jet shower creates a preferred plane 

• From formation time arguments, this splitting will be harder/wider 

• First and subsequent splittings result in final particle distribution - governed by pQCD 

Scattered parton



Nonflow contributions
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Plane of first parton splitting

• Initially scattered parton has no preferred direction - azimuthal symmetry 

• How is some ‘preferred direction’ generated (the “reaction plane”) 

• First parton splitting in jet shower creates a preferred plane 

• From formation time arguments, this splitting will be harder/wider 

• First and subsequent splittings result in final particle distribution - governed by pQCD 

Scattered parton

“Nonflow” in jet coordinate frame has huge component from well-
understood pQCD jet evolution. 

Direct connection with existing HEP studies, with the caveat that 
extremely high-multiplicity jets are understudied



Nonflow contributions
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Plane of first parton splitting

Scattered parton

• Another way of looking at this picture - studying substructure of jets 



Relation to jet substructure
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PRL 128, 102001 (2022)

PRL 120, 142302 (2018)

pT1

pT2

zg =
min(pT1, pT2)

pT1 + pT2

• 2-pronged structure of jets well-studied with groomed substructure observables now 

• Grooming removes soft emissions 

• What happens to high-multiplicity jets with different grooming settings? 

• Is v2 related to multiple hard cores within a jet, or more uniform particle production?



Boosted Topologies
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Boosted Top  
Topology

• Hadronic decays from boosted W/Z could give 2-prong structure 

• Very rare, but so are high-multiplicity jets! 

• Boosted top also possible contribution  

• Top known to produce higher constituent multiplicities (large mass) 

• What fraction of high-multiplicity jets are W/top tagged?



Energy-energy correlators
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Phys. Rev. D 102, 054012 (2020)• EECs are n-particle correlators that 

factorize from the whole event in 

the collinear limit  

• Calculated to very good precision 

• Clear connection to various stages 

of jet evolution 

• Inputs are pT and angular 

separations of particles in jets 

• 2-point EEC contains very similar 

input info as as 2 particle 

correlation analysis



2-point pp Energy-energy correlators
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arXiv:2402.13864

xL = Δri,j = Δϕ2
lab + Δη2

lab



Mapping between coordinates
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xL < 0.001

η*

ϕ *

(Δη*, Δϕ*) ≈ (0,0)

• Particles close to each other in lab frame are also close to each other in jet coordinates 

• These contribute to central peak around (0,0) -> excluded with  cut 

• ‘Long-range’ correlation corresponds to perturbative/confinement component of EEC

Δη*



arXiv:2402.13864

Mapping between coordinates
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xL < 0.001

η*

ϕ *

(Δη*, Δϕ*) ≈ (0,0)

• Particles close to each other in lab frame are also close to each other in jet coordinates 

• These contribute to central peak around (0,0) -> excluded with  cut 

• ‘Long-range’ correlation corresponds to perturbative/confinement component of E2C

Δη*



arXiv:2402.13864

Mapping between coordinates
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xL < 0.001

η*

ϕ *

(Δη*, Δϕ*) ≈ (0,0)

• Particles close to each other in lab frame are also close to each other in jet coordinates 

• These contribute to central peak around (0,0) -> excluded with  cut 

• ‘Long-range’ correlation corresponds to perturbative/confinement component of E2C

Δη*

There are clear connections between various jet substructure 
observables and the 2-particle correlation 

Characterization of high-multiplicity jets using these tools would be of 
great value
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Run 3 status
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• Run 3 lumi quickly increasing 

• Will be challenging to have >2x Run 2 lumi 

Run 2

Run 3

Run 3



Future Directions
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AB, Gardner P., Li W. PRC 107, 064908 (2023)

• Leveraging Run 3 data 

• Increasing multiplicity reach 

• Lower-pt high-multiplicity jets? 

• Characterization of high-multiplicity 

jets using substructure 

• W/top tagging 

• Grooming observables 

• Relation to EECs 

• More input from theory also welcome! 
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Summary

46arXiv:2312.17103

• Interesting upward trend for in-jet v2 for Nch>80 

• Clear connections to substructure observables to 

understand pQCD ‘non flow’ contributions 

• More studies of high-multiplicity jets needed! 

•



Backup



Closer inspection of 1D correlations
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• Smoothly varying 1D correlation 

up to Nch ~ 85



Closer inspection of 1D correlations
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• Bump around  

emerges around Nch > 90 

• Hallmark behavior of ‘near side 

ridge’ in previous analyses

Δϕ * = 0



Particle pair correlations

50

Signal Correlation

Built from all pairs of jet constituents. 
Particles not clustered into the jet ignored.



Particle pair correlations
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Signal Correlation ‘Background Correlation’ 
(Pair acceptance  

correction)

Built from all pairs of jet constituents. 
Particles not clustered into the jet ignored.

Built from random sampling  
of 1-D distributions 

(no physics correlations by construction)



Particle pair correlations
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Signal Correlation ‘Background Correlation’ 
(Pair acceptance  

correction)



2 Particle Correlation Function
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Inclusive jets

• Similar features as lab-frame analysis! 

• Peak at (0,0) 

• Hadron decays, collinear fragmentation 

• No near-side ridge for inclusive sample



2 Particle Correlation Function
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Inclusive jets

• Similar features as lab-frame analysis! 

• Peak at (0,0) 

• Away-side enhancement at  

• Momentum conservation (back-to-back decay)

Δϕ * = π



2 Particle Correlation Function
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Inclusive jets

• Similar features as lab-frame analysis! 

• Peak at (0,0) 

• Away-side enhancement at  

• No near-side ridge for inclusive sample

Δϕ * = π



2 Particle Correlation Function
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Inclusive jets

• Similar features as lab-frame analysis! 

• Peak at (0,0) 

• Away-side enhancement at  

• No near-side ridge for inclusive sample 

• Project long-range portion into 1D correlation

Δϕ * = π



1D Correlation Function
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• Data from [0, ] range symmetrize 

• Look for a bump around  

• Fourier fit to 1D correlation function 

• Coefficients  are free parameters 

• Can be nonzero even with no bump 

• Will come back at the end of talk!

π

Δϕ * = 0

VnΔ

No bump



• Data from [0, ] range symmetrize 

• Look for a bump around  

• Fourier fit to 1D correlation function 

• Coefficients  are free parameters 

• Can be nonzero even with no bump 

• Will come back at the end of talk!

π

Δϕ * = 0

VnΔ

1D Correlation Function

58
Example of a ‘ridge’ bump in high-multiplicity pp events (not jets) No bump

PLB 765 (2017) 193



Fourier Fits
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• Fourier fit to 1D correlation function 

• Coefficients  are free parameters 

• Can be nonzero even with no bump 

• Will come back at the end of talk!

VnΔ



Pythia 8 Correlation

60Overall features of low-multiplicity correlation captured by MC models

• String hadronization model



Sherpa Correlation

61Overall features of low-multiplicity correlation captured by MC models

• Cluster hadronization model



Comparison to MC

62Data PYTHIA SHERPA

Nch ~ 26

Nch ~ 100

No near-side  
feature in MC



Comparison to MC

63Data PYTHIA SHERPA

Nch ~ 26

Nch ~ 100

No near-side  
feature in MC



1D Correlations with MC
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Pileup Uncertainty
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• Effect of pileup studied by splitting 

data sample into subsamples 

• By year 

• By  

• Leading systematic in high-Nch region 

• Variation of allowed PUPPI weight for 

‘ambiguous’ tracks 

• Negligible effect

μ



Jet axis resolution uncertainty
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η* = − ln[tan(θ/2)]

Reconstructed axis

True axis

• Resolution effects in the jet axis 

reconstruction affect  

• Tracks close to jet axis are more sensitive 

• Evaluated systematic by smearing jet axis 

• Large uncertainty for low Nch jets 

• High Nch are wider  less sensitive

p* = ( jT, η*, ϕ*)

→



• Signal found to be robust to: 

• Correlating same-sign tracks (suppresses particle decay contributions) 

• Correlating tracks w/ neutral deposits (from  decays) 

• Signal is weaker, potentially from less effective of pileup mitigation 

• Variations in track quality selections 

• Details of jet energy reconstruction and trigger efficiency 

• Selection of only leading (subleading) jets 

• Slight changes in jet area to change UE contributions 

• Repeating analysis using different azimuthal quadrants of CMS 

• No obvious preferred fragmentation patterns or substructure in highest Nch jets

π0

Other cross checks

67

h+

h−
h±

π0V0



Other cross checks
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• Signal found to be robust to: 

• Correlating same-sign tracks (suppresses particle decay contributions) 

• Correlating tracks w/ neutral deposits (from  decays) 

• Signal is weaker, potentially from less effective of pileup mitigation 

• Variations in track quality selections 

• Details of jet energy reconstruction and trigger efficiency 

• Selection of only leading (subleading) jets 

• Changes in jet area to alter UE contributions 

• Repeating analysis using different azimuthal quadrants of CMS 

• No obvious preferred fragmentation patterns or substructure in highest Nch jets

π0



Other cross checks
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• Signal found to be robust to: 

• Correlating same-sign tracks (suppresses particle decay contributions) 

• Correlating tracks w/ neutral deposits (from  decays) 

• Signal is weaker, potentially from less effective of pileup mitigation 

• Variations in track quality selections 

• Details of jet energy reconstruction and trigger efficiency 

• Selection of only leading (subleading) jets 

• Changes in jet area to alter UE contributions 

• Repeating analysis using different azimuthal quadrants of CMS 

• No obvious preferred N-pronged substructure in highest Nch jets

π0


