Collectivity in Jets: Experiment

Austin Baty University of Illinois Chicago

June 25, 2024 4th International Workshop on QCD **Collectivity at the Smallest Scales** Qingdao, China UIC

UNIVERSITY OF

Notivation

- - Perhaps a small drop of QGP is formed!
 - **One of the major discoveries at the LHC**
- **Alternative interpretations**
 - Parton rescattering, initial-state effects, 'escape mechanism'

Phys. Lett. B 724 (2013) 213

Phys. Lett. B 718 (2013) 795

• 'Fluid-like' signal observed in both pPb and high-multiplicity pp collisions, not e+e-

High-multiplicity

Phys. Lett. B 765 (2017) 193

High-multiplicity

Badea, A., <u>AB</u>, et. al. PRL 123, 212002 (2019)

Notivation

- 'Fluid-like' signal observed in both pPb and high-multiplicity pp collisions, not e+e-
 - Perhaps a small drop of QGP is formed!

Phys. Lett. B 724 (2013) 213

Phys. Lett. B 718 (2013) 795

Phys. Lett. B 765 (2017) 193

Badea, A., <u>AB</u>, et. al. PRL 123, 212002 (2019)

Even smaller systems

- Many measurements trying to push boundaries to smaller systems
 - No unambiguous observation of collectivity yet
- Generally limited in multiplicity reach from limited luminosities/energies
- Not clear if no effect or systems are just too dilute

- Do parton rescatterings in a *localized* high-density region cause any effect?
- e+e-produces very clean jets, but limited in statistics
- Huge number of jets at LHC!

Postulated mechanism for collectivity

- Single parton propagating *along jet axis* generates dense parton collection
- Interactions/rescattering between resulting partons could generate collectivity
 - Analysis must be with respect to jet axis need to align jets

Redefinition of coordinates

Start with standard lab coordinates

Rotation of reference frame

Consider a simplified jet with 2 constituents

Rotation of reference frame

Rotate reference frame so jet axis lies along z axis

Rotation of reference frame

Rotate reference frame so jet axis lies along z axis

Define new 'transverse momentum' j_T

Define new 'pseudorapidity' η^*

Define new 'azimuth' ϕ^*

Properties of η^*

- Wide angle radiation \rightarrow smaller η^*
 - $\eta^* > 0.86$ for an R=0.8 jet

Properties of η^*

- Wide angle radiation \rightarrow smaller η^*
 - $\eta^* > 0.86$ for an R=0.8 jet

• $\eta^* > 5$ excluded from analysis - sensitive to jet axis resolution

Properties of η^*

- Wide angle radiation \rightarrow smaller η^*
 - $\eta^* > 0.86$ for an R=0.8 jet
- $\eta^* > 5$ excluded from analysis sensitive to jet axis resolution
- $dN/d\eta^*$ up to 80 in jet frame similar particle density to peripheral heavy ion collision! $_{17}$

- CMS 13 TeV high-pileup data enable this analysis
 - Large sampled luminosity (138 fb⁻¹)
 - Good jet acceptance •
 - **High quality tracking**

Pileup distribution

õ

<u>(</u>

- Use 2016-2018 Run 2 data
- **Only interested in jet events**
 - Must deal with pileup!

78 vertices: ~2x more than the average for this analysis

Pieup Mitigation

- **Pileup Per Particle Identification (PUPPI) subtraction**
 - Use track/vertex info to remove obvious pileup tracks
 - Ambiguous tracks weighted by probability of being signal
 - Included in analysis (negligible effect)
 - Similar weighting for neutral particles

CMS Experiment at the LHC, CERN Data recorded: 2018-Aug-03 17:13:35.770304 GMT Run / Event / LS: 320809 / 369847775 / 233

$p_T^{jet} > 550 \ GeV$ $|\eta_{jet}| < 1.6$ R=0.8 anti-k_T

Analyze >10⁸ jets

Only tracks with $p_T > 1.5$ GeV shown for clarity.

Full p_T range used in analysis!

CMS Experiment at the LHC, CERN Data recorded: 2018-Aug-03 17:13:35.770304 GMT Run / Event / LS: 320809 / 369847775 / 233

$p_T^{jet} > 550 \ GeV$ $|\eta_{jet}| < 1.6$ **R=0.8 anti-k**

Analyze >10⁸ jets

High-Multiplicity 2D correlation

High-Multiplicity 1D correlation

CMS

0.3

0.2

1.8

1.6

LT

- Project into $\Delta \phi^*$ for $|\Delta \eta^*| > 2$
- Similar shape between data/MC
- Clear minimum at $\Delta \phi^* = 0$ at low multiplicity dΔ dΔ dΔ dA *
- Perform Fourier fit to get V_ns
- **Bump seen in fit for higher N_{ch} values**

Fourier Harmonics vs N_{ch}

- Magnitude of $V_{n\Delta}$ decreases with $N_{ch} < 80$
 - Agrees with MC predictions

• Deviation of $V_{2\Delta}$ for N_{ch} > 80

Single particle v₂

- Quantify size of bump with $v_2 = \sqrt{V_{2\Delta}}$
- N_{ch}<80 trend captured by MC
- Rising trend for last few points

ξ * 0.2 * 0.1

Significance of trend

- Quantify size of bump with $v_2 = \sqrt{V_{2\Delta}}$
- N_{ch}<80 trend captured by MC
- Rising trend for last few points

- Data deviates from MC by >5 σ
- Observation of QGP-like effects above some critical density?
- What can explain such effect?

- Test 'collectivity' interpretation by adding final-state interactions to parton shower
- **Does not seem to affect lower N_{ch} region** significantly - consistent with no effect seen in **HEP** studies
- High-multiplicity trend see next talk!

Collectivity explanation

Underlying Event Explanation?

- **Can underlying event generate a signal?**
- Inject signal into UE and study effect on signal

Underlying Event Explanation?

- **Different UE tunes also have no effect**

Underlying Event Explanation?

Jet axis

My opinion: not a promising path to try to explain this signal

Lab frame!

- **Different UE tunes also have no effect**

Injecting signal in lab frame coordinates does not seem to translate to a signal in jet coordinates

Preferred plane of production

Scattered parton

- Initially scattered parton has no preferred direction azimuthal symmetry
- How is some 'preferred direction' generated (the "reaction plane")

Preferred plane of production

- Initially scattered parton has no preferred direction azimuthal symmetry
- How is some 'preferred direction' generated (the "reaction plane")
- First parton splitting in jet shower creates a preferred plane
 - From formation time arguments, this splitting will be harder/wider

Nonflow contributions

- Initially scattered parton has no preferred direction azimuthal symmetry
- How is some 'preferred direction' generated (the "reaction plane")
- First parton splitting in jet shower creates a preferred plane
 - From formation time arguments, this splitting will be harder/wider
- First and subsequent splittings result in final particle distribution governed by pQCD

Nonflow contributions

Scattered parton

- First parton splitting in jet shower creates a preferred plane
 - From formation time arguments, this splitting will be harder/wider

"Nonflow" in jet coordinate frame has huge component from wellunderstood pQCD jet evolution.

Direct connection with existing HEP studies, with the caveat that extremely high-multiplicity jets are understudied

• First and subsequent splittings result in final particle distribution - governed by pQCD

Nonflow contributions

Another way of looking at this picture - studying substructure of jets

Relation to jet substructure

- Grooming removes soft emissions
 - What happens to high-multiplicity jets with different grooming settings?

2-pronged structure of jets well-studied with groomed substructure observables now

Is v₂ related to multiple hard cores within a jet, or more uniform particle production? 37

- **Boosted top also possible contribution**
 - Top known to produce higher constituent multiplicities (large mass)
- What fraction of high-multiplicity jets are W/top tagged?

Boosted Topologies

 EECs are n-particle correlators that factorize from the whole event in the collinear limit

- Calculated to very good precision
- Clear connection to various stages of jet evolution
- Inputs are p_T and angular separations of particles in jets
 - 2-point EEC contains very similar input info as as 2 particle correlation analysis

Energy-energy correlators

Phys. Rev. D 102, 054012 (2020)

2-point pp Energy-energy correlators

 $x_L = \Delta r_{i,j} = \sqrt{\Delta \phi_{lab}^2 + \Delta \eta_{lab}^2}$

Mapping between coordinates

• Particles close to each other in lab frame are also close to each other in jet coordinates

Mapping between coordinates

- - These contribute to central peak around (0,0) -> excluded with $\Delta \eta^*$ cut

'Long-range' correlation corresponds to perturbative/confinement component of E2C

Mapping between coordinates

- - These contribute to central peak around (0,0) -> excluded with $\Delta \eta^*$ cut

'Long-range' correlation corresponds to perturbative/confinement component of E2C

Run 3 status

- Leveraging Run 3 data
- **Increasing multiplicity reach**
 - Lower-pt high-multiplicity jets?
- Characterization of high-multiplicity jets using substructure
 - W/top tagging
 - **Grooming observables**
 - **Relation to EECs**
- More input from theory also welcome!

Future Directions

Summary

- Interesting upward trend for in-jet v₂ for N_{ch}>80
 - Clear connections to substructure observables to understand pQCD 'non flow' contributions
- More studies of high-multiplicity jets needed!

Backup

Closer inspection of 1D correlations

Closer inspection of 1D correlations

0.8

0.9

- Bump around $\Delta \phi^* = 0$ emerges around N_{ch} > 90
- Hallmark behavior of 'near side ridge' in previous analyses

Particle pair correlations

Built from all pairs of jet constituents. Particles not clustered into the jet ignored.

Particle pair correlations

Particle pair correlations

$$\frac{1}{N_{\rm ch}^{\rm trg}} \frac{\mathrm{d}^2 N^{\rm pair}}{\mathrm{d}\Delta\eta^* \mathrm{d}\Delta\phi^*} = B(0,0) \frac{S(\Delta\eta^*, \Delta\phi^*)}{B(\Delta\eta^*, \Delta\phi^*)}$$

- Similar features as lab-frame analysis!
- **Peak at (0,0)**
 - Hadron decays, collinear fragmentation

$$\frac{1}{N_{\rm ch}^{\rm trg}} \frac{\mathrm{d}^2 N^{\rm pair}}{\mathrm{d}\Delta\eta^* \mathrm{d}\Delta\phi^*} = B(0,0) \frac{S(\Delta\eta^*, \Delta\phi^*)}{B(\Delta\eta^*, \Delta\phi^*)}$$

- Similar features as lab-frame analysis!
- Peak at (0,0)
- Away-side enhancement at $\Delta \phi^* = \pi$

$$\frac{1}{N_{\rm ch}^{\rm trg}} \frac{\mathrm{d}^2 N^{\rm pair}}{\mathrm{d}\Delta\eta^* \mathrm{d}\Delta\phi^*} = B(0,0) \frac{S(\Delta\eta^*, \Delta\phi^*)}{B(\Delta\eta^*, \Delta\phi^*)}$$

- Similar features as lab-frame analysis!
- Peak at (0,0)
- Away-side enhancement at $\Delta \phi^* = \pi$
- No near-side ridge for inclusive sample

$$\frac{1}{N_{\rm ch}^{\rm trg}} \frac{\mathrm{d}^2 N^{\rm pair}}{\mathrm{d}\Delta\eta^* \mathrm{d}\Delta\phi^*} = B(0,0) \frac{S(\Delta\eta^*, \Delta\phi^*)}{B(\Delta\eta^*, \Delta\phi^*)}$$

- Similar features as lab-frame analysis!
- Peak at (0,0)
- Away-side enhancement at $\Delta \phi^* = \pi$
- No near-side ridge for inclusive sample
- **Project long-range portion into 1D correlation**

1D Correlation Function

- Data from [0, π] range symmetrize
- Look for a bump around $\Delta \phi^* = 0$

1D Correlation Function

- Data from [0, π] range symmetrize
- Look for a bump around $\Delta \phi^* = 0$

Example of a 'ridge' bump in high-multiplicity pp events (not jets)

- Fourier fit to 1D correlation function
- Coefficients $V_{n\Delta}$ are free parameters
- Can be nonzero even with no bump
 - Will come back at the end of talk!

$$\frac{1}{N_{\rm ch}^{j}} \frac{\mathrm{d}N^{\rm pair}}{\mathrm{d}\Delta\phi^{*}} \propto \sum_{n=1}^{\infty} V_{n\Delta} \cos(\mathrm{n}\Delta\phi^{*})$$

Fourier Fits

String hadronization model

Pythia 8 Correlation

Overall features of low-multiplicity correlation captured by MC models

Cluster hadronization model

Sherpa Correlation

Overall features of low-multiplicity correlation captured by MC models

Comparison to MC

Comparison to MC

1D Correlations with MC

- Effect of pileup studied by splitting data sample into subsamples
 - By year
 - By μ
- Leading systematic in high-N_{ch} region
- Variation of allowed PUPPI weight for 'ambiguous' tracks
 - **Negligible effect**

Pleup Uncertainty

Jet axis resolution uncertainty

- Resolution effects in the jet axis reconstruction affect $p^* = (j_T, \eta^*, \phi^*)$
- Tracks close to jet axis are more sensitive
- Evaluated systematic by smearing jet axis
- Large uncertainty for low N_{ch} jets
- High N_{ch} are wider \rightarrow less sensitive

Other cross checks

- Signal found to be robust to:
 - Correlating same-sign tracks (suppresses particle decay contributions)
 - Correlating tracks w/ neutral deposits (from π^0 decays)
 - Signal is weaker, potentially from less effective of pileup mitigation

Other cross checks

- Signal found to be robust to:
 - Correlating same-sign tracks (suppresses particle decay contributions)
 - Correlating tracks w/ neutral deposits (from π^0 decays)
 - Signal is weaker, potentially from less effective of pileup mitigation
 - Variations in track quality selections
 - Details of jet energy reconstruction and trigger efficiency
 - Selection of only leading (subleading) jets
 - Changes in jet area to alter UE contributions
 - Repeating analysis using different azimuthal quadrants of CMS

Other cross checks

- Signal found to be robust to:
 - Correlating same-sign tracks (suppresses particle decay contributions)
 - Correlating tracks w/ neutral deposits (from π^0 decays)
 - Signal is weaker, potentially from less effective of pileup mitigation
 - Variations in track quality selections
 - Details of jet energy reconstruction and trigger efficiency
 - Selection of only leading (subleading) jets
 - Changes in jet area to alter UE contributions
 - Repeating analysis using different azimuthal quadrants of CMS
- No obvious preferred N-pronged substructure in highest N_{ch} jets

