

Speed of Sound - Experimental Discussion

CESAR A. BERNARDES

IF-UFRGS, SPRACE-UNESP

The 4th International Workshop on QCD Collectivity at the Small Scales Qingdao, China, June 24-28, 2024

Speed of Sound ($c_{\rm s}$)

Access the Equation of State (EoS) of the medium

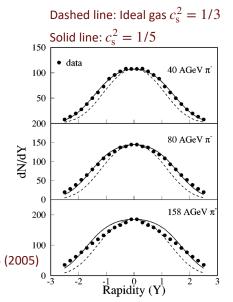
■ Relativistic hydrodynamics

$$c_{\rm S}^2 = \left(\frac{\partial P}{\partial \varepsilon}\right)_{\rm isentropic} \qquad P:= {\rm pressure,} \ \ \varepsilon:= {\rm energy\ density}$$

Speed of Sound Extraction: SPS

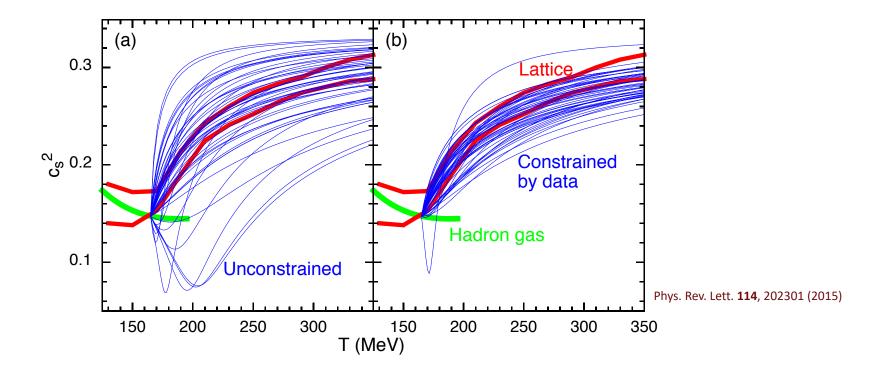
Access the Equation of State (EoS) of the medium

■ Relativistic hydrodynamics


$$c_{\rm S}^2 = \left(\frac{\partial P}{\partial \varepsilon}\right)_{\rm isentropic} \qquad P:= {\rm pressure,} \quad \varepsilon:= {\rm energy \ density} \quad {\rm Dashed \ lines} \quad {\rm Dashed \ lines} \quad {\rm Solid \$$

Studies using PbPb collisions at SPS energies

- Landau hydrodynamics model
 - \blacksquare Rapidity distribution of hadrons related to c_s


Izv. Akad. Nauk. SSSR 17 51 (1953) Usp. Fiz. Nauk. 56 309 (1955) Nuovo Cimento (Suppl.) 3 15 (1956)

Phys. Rev. C 68, 064903 (2003) J. Phys. G: Nucl. Part. Phys. 31, 1345 (2005)

Speed of Sound Extraction: RHIC & LHC

Constraints on $c_{\rm s}^2$ from data (Bayesian analysis)

Speed of Sound Extraction: New Ideas

Speed of sound: directly related to the compressibility

- ☐ General procedure: maintain "volume≈constante" while varying number of produced particles
 - Two proposed procedures:
 - $_{\odot}$ 1) For the same centrality category, measure $\langle p_{\rm T} \rangle$ at different collision energies Nat. Phys. 16, 615 (2020)
 - $_{\odot}$ 2) In ultracentral collisions (UCC), measure $\langle p_{\rm T} \rangle$ as a function of particle multiplicity Phys. Lett. B **809**, 135749 (2020)

Speed of Sound Extraction: New Ideas

Speed of sound: directly related to the compressibility

- ☐ General procedure: maintain "volume≈constante" while varying number of produced particles
 - Two proposed procedures:
 - $_{\odot}$ 1) For the same centrality category, measure $\langle p_{\rm T} \rangle$ at different collision energies Nat. Phys. 16, 615 (2020)
 - $_{\odot}$ 2) In ultracentral collisions (UCC), measure $\langle p_{\rm T} \rangle$ as a function of particle multiplicity Phys. Lett. B **809**, 135749 (2020)

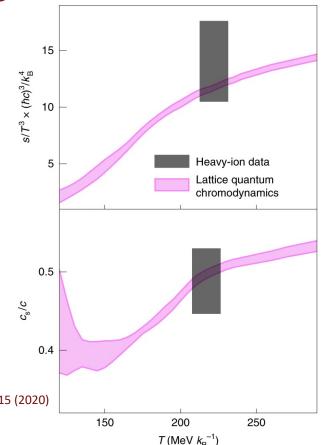
From thermodynamics relations and hydrodynamics simulations

$$c_{\rm s}^2(T_{\rm eff}) = \frac{dP}{d\varepsilon} = \frac{sdT}{Tds}\bigg|_{T_{\rm eff}} = \frac{d\ln\langle p_T\rangle}{d\ln N_{ch}} \quad \text{Nat. Phys. 16, 615 (2020)}$$
 Phys. Lett. B 118, 138 (1982)

- $lacktriangleq T_{
 m eff}$ (effective temperature): averaged over the spacetime evolution of the medium
 - Reduced by longitudinal cooling (system expansion)
 - $_{\odot}$ Hydrodynamics simulations: $T_{\rm eff} pprox \langle p_T
 angle/3 \,$ Nat. Phys. **16**, 615 (2020)

Procedure 1: Different Energies

PbPb ALICE data at 2.76 TeV and 5.02 TeV

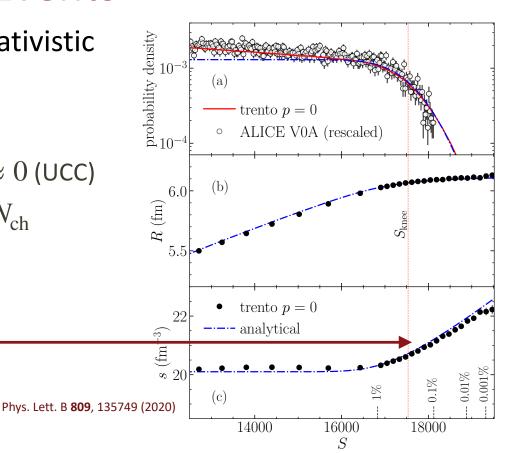

■ 0-5% centrality

Speed of sound squared directly from

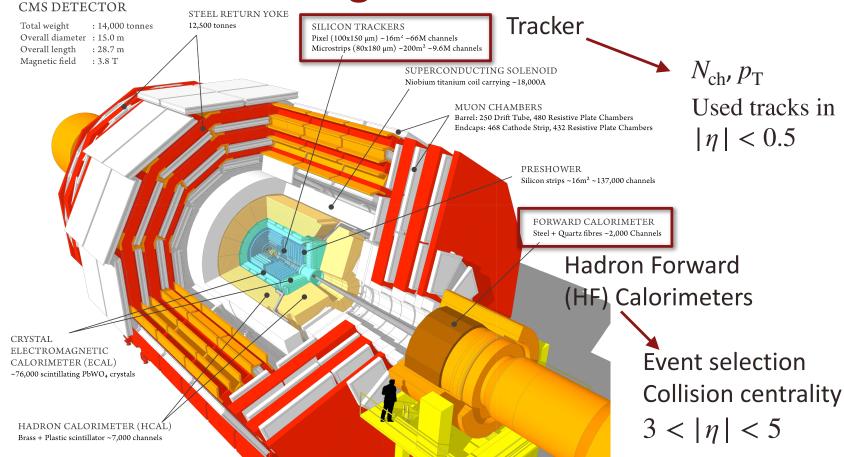
$$c_{\rm s}^2(T_{\rm eff}) = \frac{d \ln \langle p_T \rangle}{d \ln N_{ch}}$$

 $lue{}$ Using values of $\langle p_{\rm T} \rangle$ and $N_{\rm ch}$ for the two energies

$$T_{\text{eff}} = 222 \pm 9 \ MeV, \ c_s^2/c^2 = 0.24 \pm 0.04$$


Procedure 2: UCC Events

Non-trivial prediction by relativistic hydrodynamics


- \blacksquare When impact parameter $b \approx 0$ (UCC)
 - $_{\odot}$ Increasing entropy $S \sim N_{\rm ch}$
 - $\circ \uparrow s \Rightarrow \uparrow T \Rightarrow \uparrow \langle p_{\mathrm{T}} \rangle$

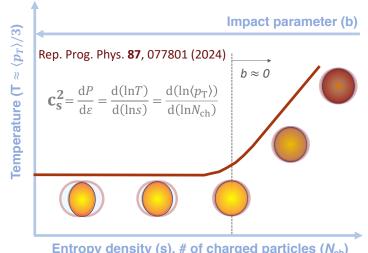
Slope associated with

$$c_{\rm s}^2 = d \ln \langle p_T \rangle / d \ln N_{ch}$$

Measurement Using the CMS detector

Analysis method - observables

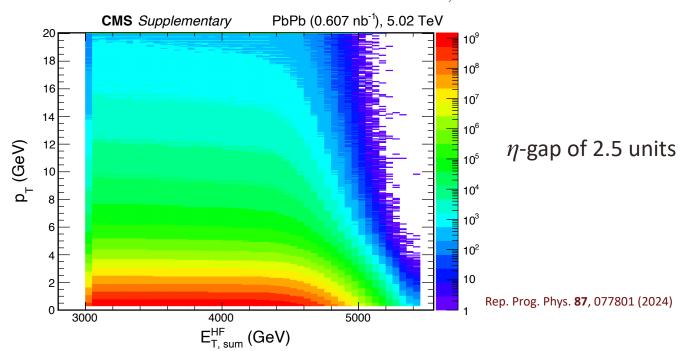
The $c_{\rm s}^2$ depends on the relative variation of $\langle p_T \rangle$ vs $N_{\rm ch}$


Extracted using

 $\frac{\langle p_T \rangle}{\langle p_T \rangle^0} \sim \left(\frac{N_{\rm ch}}{N_{\rm ch}^0}\right)^{c_{\rm s}^2} \quad \text{Ratios to cancel some systematic uncertainties} \\ \bullet \quad \frac{\langle p_T \rangle}{\langle p_T \rangle^0} \sim \left(\frac{N_{\rm ch}}{N_{\rm ch}^0}\right)^{c_{\rm s}^2} \quad \text{where } \langle p_T \rangle^0 \text{ and } N_{\rm ch}^0 \text{ are obtained in 0-5\%}$

Analysis observables

$$\langle p_T \rangle^{\rm norm} = \frac{\langle p_T \rangle}{\langle p_T \rangle^0} \ {\rm vs} \ N_{\rm ch}^{\rm norm} = \frac{N_{\rm ch}}{N_{\rm ch}^0}$$

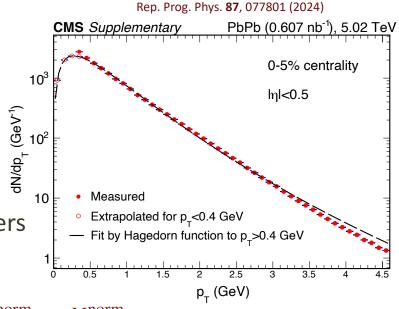

 $\langle p_T \rangle^0$ (used to estimate T_{eff})

Analysis method - $\langle p_T \rangle$ and N_{ch}

To avoid other sources of correlations between $\langle p_T \rangle$ and $N_{\rm ch}$

 \blacksquare Measured in bins of transverse energy sum in HF $E_{\mathrm{T,sum}}^{\mathrm{HF}}$ (bin width 50 GeV)

Analysis method - $p_{\rm T}$ extrapolation to zero

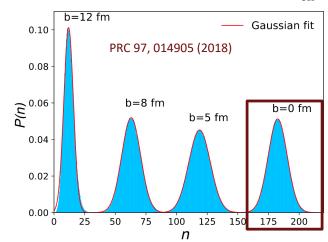

 $\langle p_{\rm T} \rangle$ and $N_{\rm ch}$: corrected for tracking efficiency

Extrapolation to $p_{\rm T}=0$ by fitting the spectrum in $p_{\rm T}>0.4GeV$

■ Hagedorn function

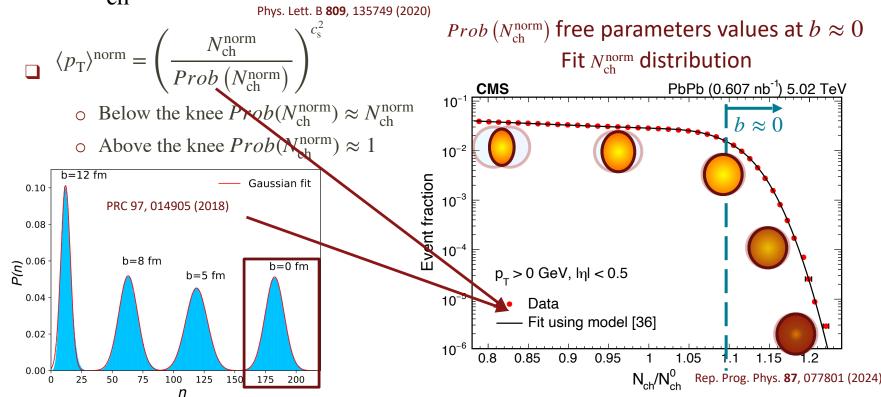
$$\frac{dN_{\rm ch}}{dp_{\rm T}} = p_{\rm T} \left(1 + \frac{1}{\sqrt{1 - \left\langle \beta_{\rm T} \right\rangle^2}} \frac{\left(\sqrt{p_T^2 + m^2} - \left\langle \beta_{\rm T} \right\rangle p_{\rm T} \right)}{nT} \right)^{-n}$$

 \square m:= pion mass & $\langle \beta_{\rm T} \rangle$, n, T free parameters


After corrections, for each bin of $E_{T,\text{sum}}^{HF} \rightarrow \langle p_T \rangle^{\text{norm}}$ vs $N_{\text{ch}}^{\text{norm}}$

Extracting the speed of sound - multiplicity fluctuations

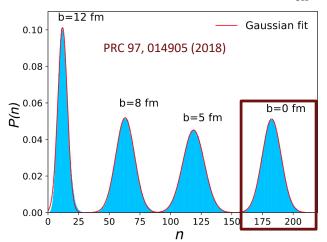
 $Prob(N_{\rm ch}^{\rm norm})$: analytical model to capture the trends from hydro.

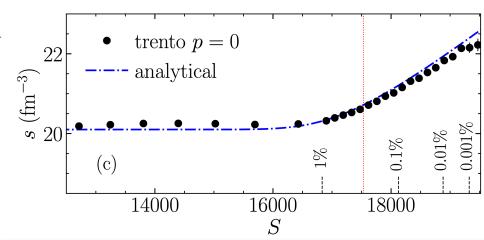

Phys. Lett. B 809, 135749 (2020)

- o Below the knee $Prob(N_{\rm ch}^{\rm norm}) \approx N_{\rm ch}^{\rm norm}$
- Above the knee $Prob(N_{\rm ch}^{\rm norm}) \approx 1$

Extracting the speed of sound - multiplicity fluctuations

 $Prob(N_{\rm ch}^{\rm norm})$: analytical model to capture the trends from hydro.


Extracting the speed of sound - multiplicity fluctuations

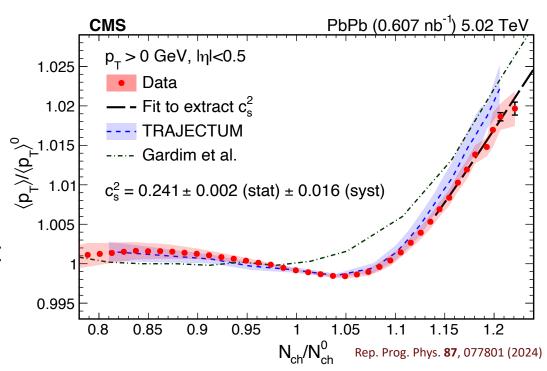

 $Prob(N_{\rm ch}^{\rm norm})$: analytical model to capture the trends from hydro.

Phys. Lett. B 809, 135749 (2020)

$$\langle p_{\rm T} \rangle^{\rm norm} = \left(\frac{N_{\rm ch}^{\rm norm}}{\sqrt{N_{\rm ch}^{\rm norm}}} \right)^{c_{\rm s}^2}$$

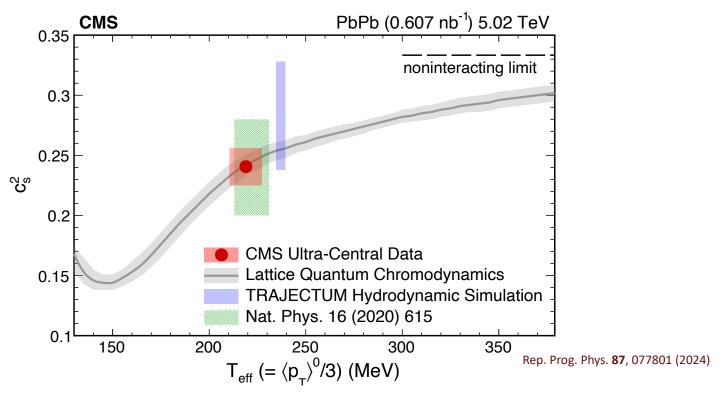
- o Below the knee $Prob(N_{\rm ch}^{\rm norm}) \approx N_{\rm ch}^{\rm nor}$
- o Above the knee $Prob(N_{\rm ch}^{\rm norm}) \approx 1$

Extracting the speed of sound: CMS data


Fit $\langle p_{\rm T} \rangle^{\rm norm}$ vs $N_{\rm ch}^{\rm norm}$ using

$$\langle p_{\rm T} \rangle^{\rm norm} = \left(\frac{N_{\rm ch}^{\rm norm}}{Prob \left(N_{\rm ch}^{\rm norm} \right)} \right)^{c_{\rm s}}$$

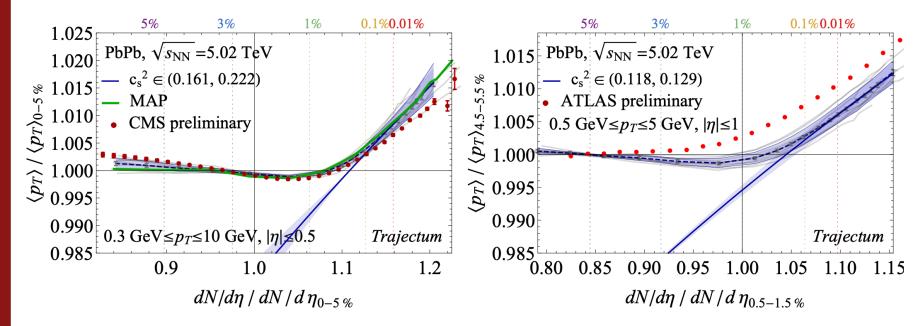
Do not model the dip


Fit starts from better χ^2 at

$$N_{\rm ch}^{\rm norm} > 1.12$$

$$T_{\rm eff} \approx \langle p_{\rm T} \rangle^0 / 3 = 219 \pm 8 (syst) MeV$$

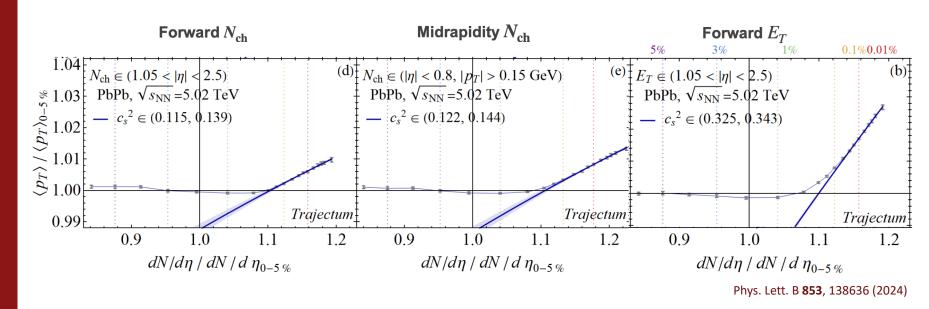
Comparison with Lattice QCD & Hydrodynamics Models



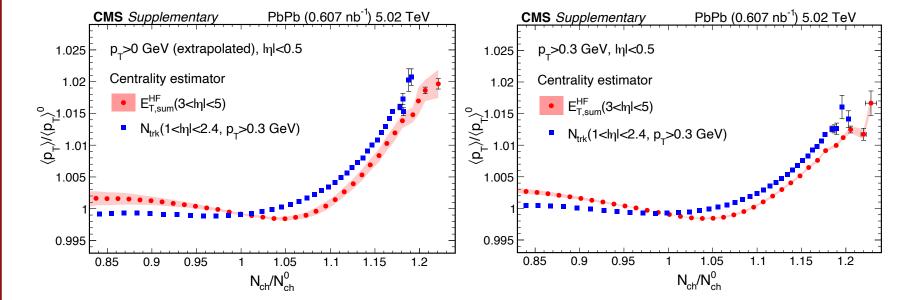
Lattice QCD ($\mu_{\rm B} \approx 0$ and 2+1 flavors)

No extrapolation to $p_{\rm T}=0$

CMS (left) & ATLAS (right) comparison with Trajectum model


Phys. Lett. B 853, 138636 (2024)

The slope has a clear dependence on the $p_{\rm T}$ cut


Trajectum: possible bias from centrality estimator?

Tested with different η ranges for centrality estimator

 $E_{\rm T}$ based seems to bias toward higher values of $\langle p_{\rm T} \rangle$ with small (or no) η -gap

Initial studies from CMS: no considerable bias in the slope Probably due to large η gap used in $E_{\rm T}$ based measurements??? Will perform more studies about the η -gap

Tested several η ranges for centrality estimator and $\langle p_{\rm T} \rangle$ & $N_{\rm ch}$

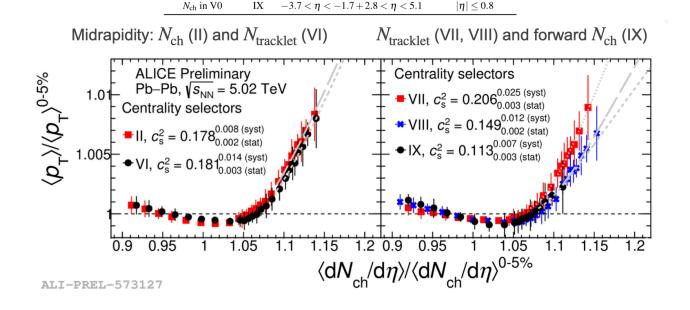
Adapted from	ALICE Collab	SOM2024
Adapted Holli	ALICE COMAD.	, JQIVIZUZ T

Observable	Label	Centrality estimation	$\langle p_{ m T} angle$ and $\langle { m d} N_{ m ch}/{ m d} \eta$
N _{ch} in TPC	I	$ oldsymbol{\eta} \leq 0.8$	$ \eta \leq 0.8$
	II	$0.5 \leq oldsymbol{\eta} \leq 0.8$	$ \eta \leq 0.3$
F- in TDC	III	$ \eta \leq 0.8$	$ \eta \leq 0.8$
$E_{\rm T}$ in TPC	IV	$0.5 \leq oldsymbol{\eta} \leq 0.8$	$ \eta \leq 0.3$
	V	$ oldsymbol{\eta} \leq 0.8$	$ \eta \leq 0.8$
$N_{\text{tracklets}}$ in SPD	VI	$0.5 \leq oldsymbol{\eta} \leq 0.8$	$ \eta \leq 0.3$
	VII	$0.3 < \eta \le 0.6$	$ \eta \leq 0.3$
	VIII	$0.7 \leq oldsymbol{\eta} \leq 1$	$ \eta \leq 0.3$
N _{ch} in V0	IX	$-3.7 < \eta < -1.7 + 2.8 < \eta < 5.1$	$ oldsymbol{\eta} \leq 0.8$

Ref. arXiv:2403.06052: for centrality estimation region overlapping with the region used for $\langle p_{\rm T} \rangle$ & $N_{\rm ch}$ => apply correction for self-correlation

Observable

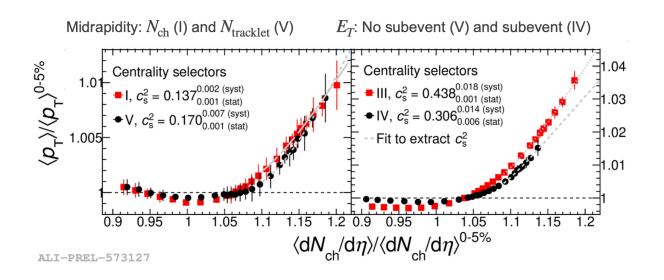
Label

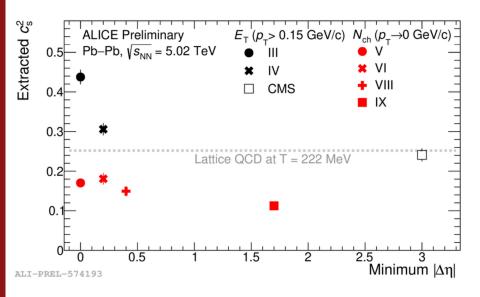

Adapted from ALICE Collab., SQM2024

 $\langle p_{\rm T} \rangle$ and $\langle dN_{\rm ch}/d\eta \rangle$

Non E_{T} -based
Lower values compared
to CMS

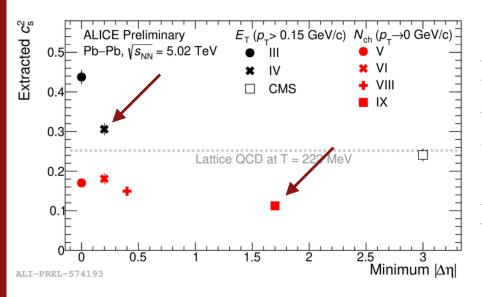
		•	
N _{ch} in TPC	II	$0.5 \leq \eta \leq 0.8$	$ \eta \leq 0.3$
N _{tracklets} in SPD	VI	$0.5 \le \eta \le 0.8$	$ \eta \leq 0.3$
- Hacklets	VII VIII	$0.3 < \eta \le 0.6$ $0.7 \le \eta \le 1$	$ \eta \le 0.3$ $ \eta \le 0.3$


Centrality estimation


Adapted from ALICE Collab., SQM2024

 $E_{\mathrm{T}}\text{-}\mathrm{based}$ Higher values compared to CMS

Observable	Label	Centrality estimation	$\langle p_{ m T} angle$ and $\langle { m d}N_{ m ch}/{ m d}\eta angle$
N _{ch} in TPC	I	$ \eta \leq 0.8$	$ \eta \leq 0.8$
$E_{\rm T}$ in TPC	III IV	$ert \eta ert \leq 0.8 \ 0.5 \leq ert \eta ert \leq 0.8$	$ oldsymbol{\eta} \leq 0.8 \ oldsymbol{\eta} \leq 0.3$
N _{tracklets} in SPD	V	$ \eta \leq 0.8$	$ \eta \leq 0.8$


Summary of extracted values of $c_{ m s}^2$

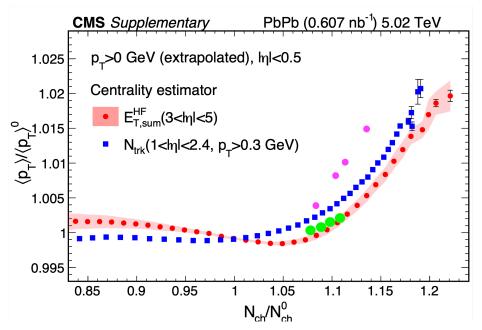
Adapted from ALICE Collab., SQM2024

Observable	Label	Centrality estimation	$\langle p_{ m T} angle$ and $\langle { m d}N_{ m ch}/{ m d}\eta angle$
N _{ch} in TPC	I	$ oldsymbol{\eta} \leq 0.8$	$ \eta \leq 0.8$
	II	$0.5 \leq \eta \leq 0.8$	$ \eta \leq 0.3$
E_ in TDC	III	$ oldsymbol{\eta} \leq 0.8$	$ \eta \leq 0.8$
$E_{\rm T}$ in TPC	IV	$0.5 \leq \eta \leq 0.8$	$ \eta \leq 0.3$
	V	$ \eta \leq 0.8$	$ \eta \leq 0.8$
N _{tracklets} in SPD	VI	$0.5 \leq oldsymbol{\eta} \leq 0.8$	$ \eta \leq 0.3$
	VII	$0.3 < \eta \le 0.6$	$ \eta \leq 0.3$
	VIII	$0.7 \le \eta \le 1$	$ \eta \leq 0.3$
N _{ch} in V0	IX	$-3.7 < \eta < -1.7 + 2.8 < \eta < 5.1$	$ \eta \leq 0.8$

Summary of extracted values of $c_{ m s}^2$

Adapted from ALICE Collab., SQM2024

Observable	Label	Centrality estimation	$\langle p_{ m T} angle$ and $\langle { m d}N_{ m ch}/{ m d}\eta angle$
N _{ch} in TPC	I	$ oldsymbol{\eta} \leq 0.8$	$ \eta \leq 0.8$
	II	$0.5 \leq \eta \leq 0.8$	$ \eta \leq 0.3$
F_ in TDC	III	$ oldsymbol{\eta} \leq 0.8$	$ \eta \leq 0.8$
$E_{\rm T}$ in TPC	IV	$0.5 \leq oldsymbol{\eta} \leq 0.8$	$ \eta \leq 0.3$
	V	$ oldsymbol{\eta} \leq 0.8$	$ \eta \leq 0.8$
$N_{\text{tracklets}}$ in SPD	VI	$0.5 \leq oldsymbol{\eta} \leq 0.8$	$ \eta \leq 0.3$
	VII	$0.3 < \eta \le 0.6$	$ \eta \leq 0.3$
	VIII	$0.7 \leq oldsymbol{\eta} \leq 1$	$ \eta \leq 0.3$
N _{ch} in V0	IX	$-3.7 < \eta < -1.7 + 2.8 < \eta < 5.1$	$ \eta \leq 0.8$


Rough comparison using few points

No uncertainties included

(IV)
$$E_{\rm T}$$
 in TPC (0.5 < $|\eta|$ < 0.8)

(IX) $N_{\rm ch}$ in V0 ($-3.7 < \eta < -1.7, +2.8 < \eta < 5.1$)

For this last one added the 4 points used in the fit

The one with larger eta-gap looks not very far from CMS measurement. It seems (to be checked with the authors) that the $c_{\rm s}^2$ was extracted fitting these last four points.

NB.: added few points from ALICE Collaboration by hand.

Any discrepancy from original ALICE values is a fault from the author of this presentation.

Future Studies & Open Questions

Continue investigation on the effects from centrality estimator

- $lue{}$ NB.: For overlapping regions between centrality estimator and $\langle p_{
 m T} \rangle$ & $N_{
 m ch}$
 - Needed a correction due to self-correlations arXiv:2403.06052

Effect of initial density fluctuations profile

- \square How initial fluctuations affect the hypotheses: $\langle p_{\rm T} \rangle / T_{\rm eff}$ and $V_{\rm eff}$ independent of multiplicity ???
- \blacksquare Relation between $\langle p_{
 m T} \rangle$ & $T_{
 m eff}$ seems not to be affected Nucl. Phys. A 1005, 121999 (2021)
- $lue{}$ But effective volume seems not very constant ($\uparrow N_{
 m ch} \Rightarrow \downarrow V_{
 m eff}$) Phys. Lett. B **853**, 138636 (2024)
- Compare increase of $\langle p_{\rm T} \rangle$: as a function of $N_{\rm ch}$ in the same collision energy Vs using different collision energies

This is a new hydrodynamics probe

☐ Study other colliding systems: XeXe, OO, high-multiplicity pPb, etc...

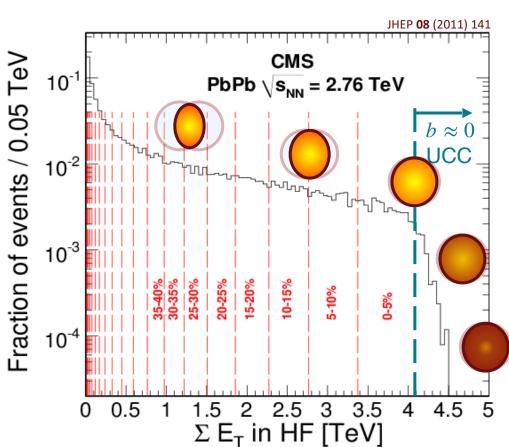
Phys. Lett. B **853**, 138636 (2024) Phys. Rev. C **109**, 014904 (2024)

Thank You!

Thank You!

THIS MATERIAL IS BASED UPON WORK SUPPORTED BY THE SÃO PAULO RESEARCH FOUNDATION (FAPESP) GRANTS NO. 2018/01398-1 AND NO. 2013/01907-0. ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS EXPRESSED IN THIS MATERIAL ARE THOSE OF THE AUTHOR(S) AND DO NOT NECESSARILY REFLECT THE VIEWS OF FAPESP.

FAPERGS GRANT 22/2551-0000595-0, CNPQ GRANT 407174/2021-4, CNPQ GRANT 309962/2023-4


pPb Analysis

UCC PbPb collisions

Collision centrality

- $lue{}$ Experimentally: sum of transversal energy ($E_{
 m T}$) in HF
- Related to impact parameter, system volume/geometry
- For $b \approx 0$ (~0-1% centrality)
 - Volume almost constant
 - Energy density can fluctuate

Samples and track selections

Minimum bias PbPb collisions at 5.02 TeV

 \blacksquare About 4.27 billion events, $L_{int} = 0.607 \text{ nb}^{-1}$

Monte Carlo (MC) simulations: HYDJET generator

☐ Efficiency corrections, cross-checks, closure tests, etc...

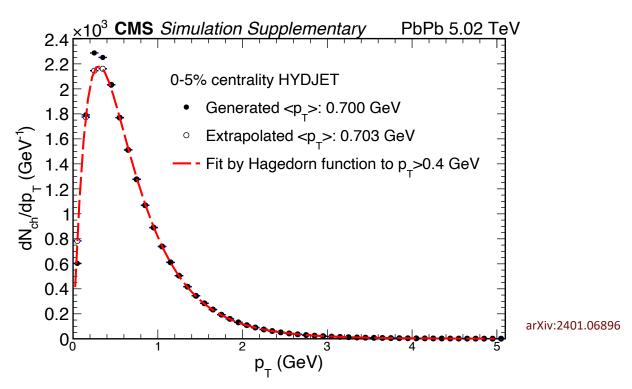
Track selection: $p_{\rm T} > 0.3~{\rm GeV}, ~ \left| \eta \right| < 0.5$

■ Better tracking performance

Systematic uncertainties and cross-checks

Systematics

■ Tracking efficiency corrections


- \blacksquare Extrapolation to $p_{\rm T} \approx 0$
- \square Choice of fit range (only for $c_{\rm s}^2$)

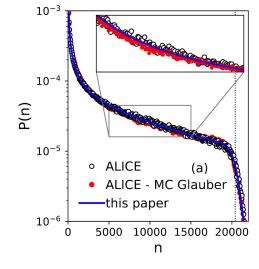
Main cross-checks

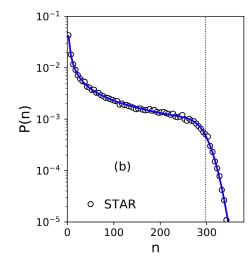
- ☐ HF energy resolution
 - Data HF energy smearing
 - Vary bin width
 - 50GeV → 25GeV and 100GeV
- Efficiency correction
 - Dependence on particle species
- \square Extrapolation to $p_{\rm T} \approx 0$
 - Use of different fit function
 - Closure using simulations

Extrapolation to $p_{\mathrm{T}} \approx 0$ - Monte Carlo

HYDJET generator

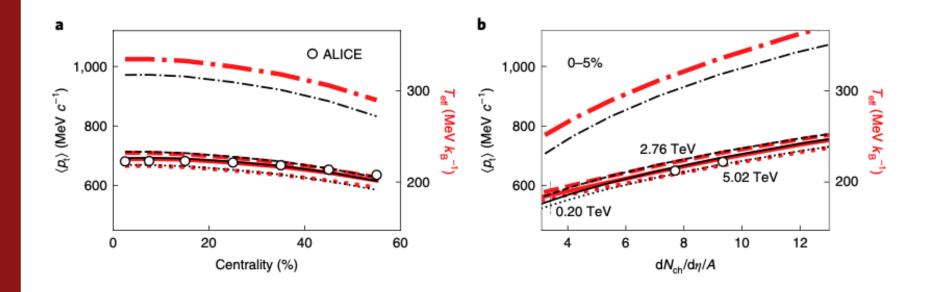
$$P(n) = \int_0^1 P(n|c_b)dc_b.$$


$$P(n|c_b) = \frac{\eta(c_b)}{\sigma(c_b)\sqrt{2\pi}} \exp\left(-\frac{(n-\bar{n}(c_b))^2}{2\sigma(c_b)^2}\right), \quad (3)$$


$$\eta(c_b) = 2 \left[1 + \operatorname{erf}\left(\frac{\bar{n}(c_b)}{\sigma(c_b)\sqrt{2}}\right) \right]^{-1}$$

$$\bar{n}(c_b) = n_{\text{knee}} \exp\left(-a_1 c_b - a_2 c_b^2 - a_3 c_b^3\right)$$

$$\sigma(c_b) = \sigma(0)\sqrt{\bar{n}(c_b)/\bar{n}(0)}$$


¹ The results in this paper use the variable c_b , but one can easily express them in terms of b by using the change of variables $c_b = \pi b^2/\sigma_{\rm inel}$. The value of $\sigma_{\rm inel}$ needs to be taken from either data or some collision model.

$\langle p_T \rangle$ vs T (Hydrodynamic simulation)

Nature Physics 16 (2020) 615

