

Describing the thermal radiation

with a new analytic formula

GÁBOR KASZA 9TH DAY OF FEMTOSCOPY GYÖNGYÖS, 30/10/2023

Importance of direct photon spectrum

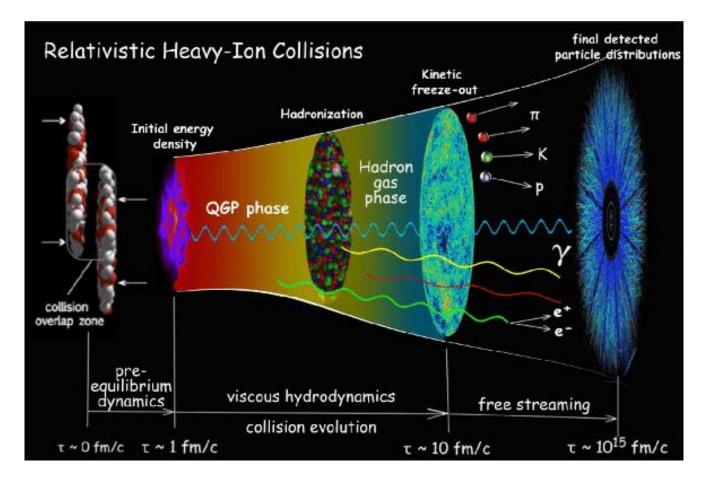
Direct photons (DP): those photons that not coming from hadron decays

Probe towards our understanding of the evolution of relativistic heavy ion collisions

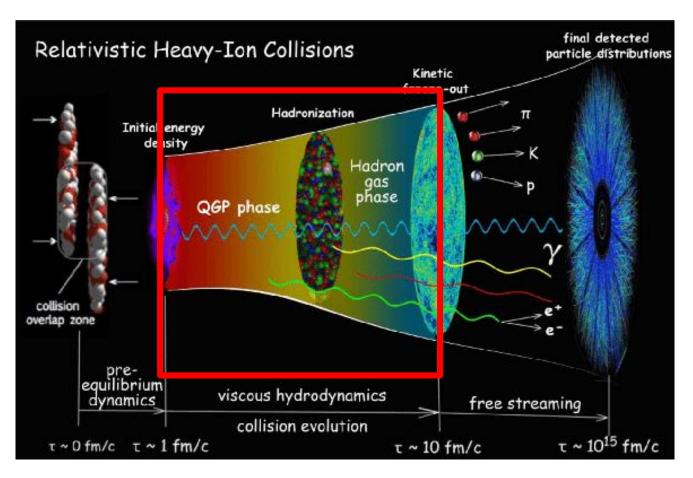
Small cross section of electromagnetic interaction \rightarrow *DP traverse the medium unmodified*

Penetrating photons \rightarrow *encode information of the environment* (temperature, collective motion)

Low p_{τ} regime: mostly the **thermal component of the spectrum** \rightarrow **can be evaluated by hydro**

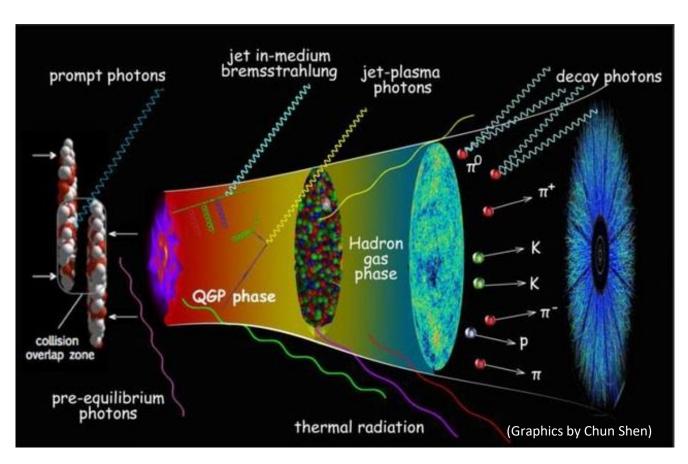

High p_T regime: photons from high scattering processes

Today's presentation:


- A new analytic formula has been found based on the Csörgő-Kasza-Csanád-Jiang solution
 Universe 4 (2018) 6, 69
- This formula is compared to PHENIX Au+Au@200 GeV 0-20% dataset arXiv:2203.17187

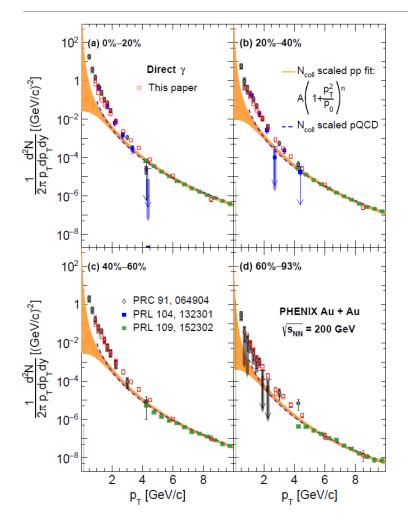
Similar efforts was done by Csanád and Májer in 2012: Central Eur.J.Phys. 10 (2012)

The evolution of relativistic heavy-ion collisions:

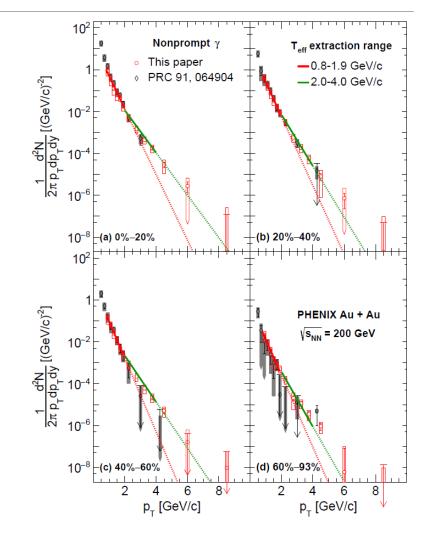


The evolution of relativistic heavy-ion collisions:

Period of our interest


Focusing on photons:

Direct photons =
Inclusive photons - Decay photons


Nonprompt photons ≈ Thermal photons = Direct photons – Prompt photons

Initial temperature can be extracted from thermal component!

 N_{coll} scaled p+p fit is substracted from the Au+Au data

Csörgő-Kasza-Csanád-Jiang (CKCJ) hydro solution

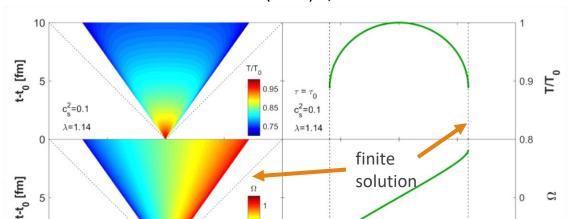
Rindler coordinates, velocity field:

$$(\tau, \eta_x) = \left(\sqrt{t^2 - r_z^2}, \frac{1}{2} \ln \left[\frac{t + r_z}{t - r_z}\right]\right)$$

$$u^{\mu} = (\cosh(\Omega), \sinh(\Omega))$$

1+1 dimensional perfect fluid solution:

$$\eta_{x}(H) = \Omega(H) - H,$$


$$\Omega(H) = \frac{\lambda}{\sqrt{\lambda - 1}\sqrt{\kappa - \lambda}} \arctan\left(\sqrt{\frac{\kappa - \lambda}{\lambda - 1}} \tanh(H)\right)$$

$$\sigma(\tau, H) = \sigma_{0} \left(\frac{\tau_{0}}{\tau}\right)^{\lambda} \mathcal{V}_{\sigma}(s) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^{2}(H)\right]^{-\frac{\lambda}{2}},$$

$$T(\tau, H) = T_{0} \left(\frac{\tau_{0}}{\tau}\right)^{\frac{\lambda}{\kappa}} \mathcal{T}(s) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^{2}(H)\right]^{-\frac{\lambda}{2\kappa}},$$

$$\mathcal{T}(s) = \frac{1}{\mathcal{V}_{\sigma}(s)},$$

$$s(\tau, H) = \left(\frac{\tau_{0}}{\tau}\right)^{\lambda - 1} \sinh(H) \left[1 + \frac{\kappa - 1}{\lambda - 1} \sinh^{2}(H)\right]^{-\lambda/2}$$

-1.5

-0.75

0

Universe 4 (2018) 6, 69

Equation of State:

r_ [fm]

$$\varepsilon = \kappa p$$

-5

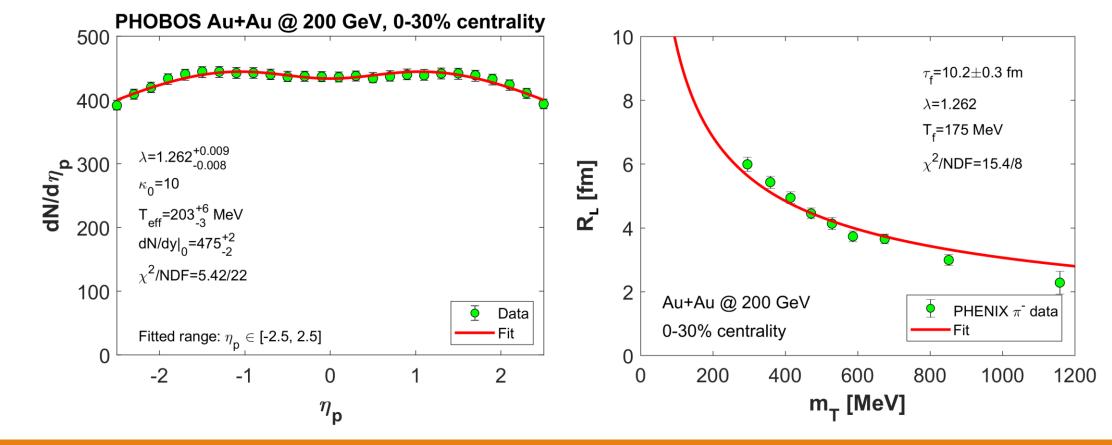
-10

(with μ =0)

λ: acceleration parameter

0.75

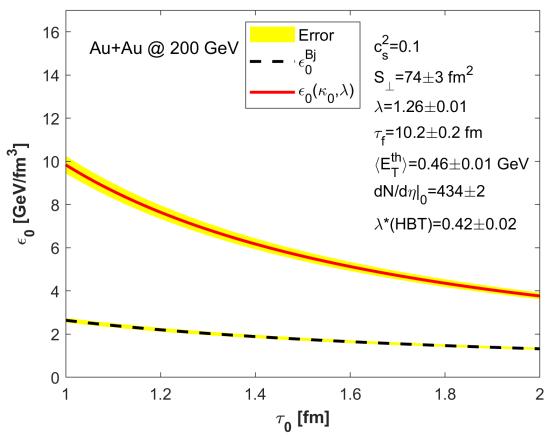
 $\frac{\bullet}{accelerating}$ solution realistic $dN/d\eta_p$


-1.5

1.5

Some earlier success with the CKCJ solution

Quantitatively acceptable description of $dN/d\eta_p$ and R_{long} in Au+Au@200 GeV collisions


Int.J.Mod.Phys.A 34 (2019) 26, 1950147

Some earlier success with the CKCJ solution

Significant correction to Bjorken's initial energy density

Int.J.Mod.Phys.A 34 (2019) 26, 1950147

Derivation of the thermal radiation

Double differential spectrum, based on the following integrals:

$$\frac{d^2N}{2\pi p_T dp_T dy} = \frac{g}{\left(2\pi\hbar\right)^3} \int H(\tau) \frac{d\Sigma^{\mu} p_{\mu}}{\exp\left(\frac{p^{\mu} u_{\mu}}{T}\right) - 1}$$

Using the **1+1 dimensional** CKCJ solution: $d\Sigma^{\mu}=\frac{u^{\mu}\tau d\tau d\eta_z dr_x dr_y}{\cosh{(\Omega-\eta_z)}}$

Assuming homogeneous transverse distribution of temperature

Using Boltzmann approximation of the integrand

Motivated by earlier results: λ was assumed to be close to 1

The integral was perfromed by saddle point approximation

The result is evaluated at **midrapidity** $(y \approx 0)$

Analytic formula for the thermal radiation

The new analytic formula, derived from the CKCJ solution:

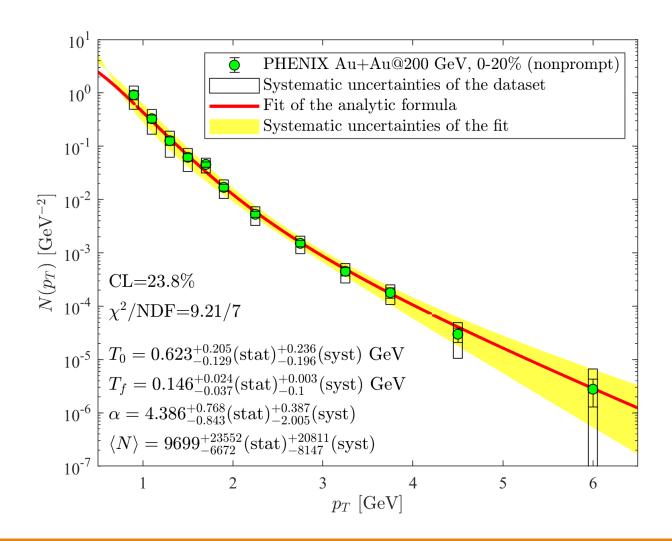
$$\frac{d^2N}{2\pi p_T dp_T} = \langle N \rangle \frac{2\alpha}{3\pi^{3/2}} \left[\frac{1}{T_{\rm f}^{\alpha}} - \frac{1}{T_0^{\alpha}} \right]^{-1} p_T^{-\alpha - 2} \left[\Gamma \left(\alpha + \frac{7}{2}, \frac{p_T}{T_0} \right) - \Gamma \left(\alpha + \frac{7}{2}, \frac{p_T}{T_{\rm f}} \right) \right]$$

 λ and κ are collapsed into α (typical behaviour of hydro): $\alpha = \frac{2\kappa}{\lambda} - 3$

 $T_{\rm f}$: freeze-out temperature

 T_0 : initial temperature

<N>: multiplicity at midrapidity

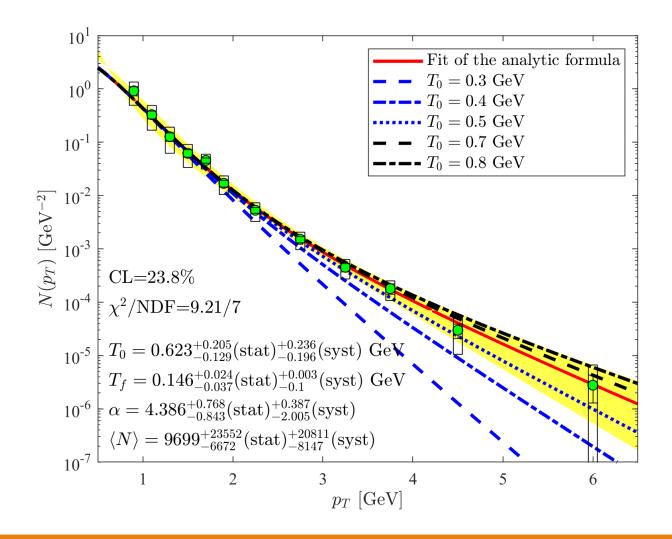

11

Good confidence level with realistic values of physical parameters

Intermediate p_T regime $\rightarrow T_o$ can be determined more precisely

The analytic formula scales with α

Earler results: λ was determined by $dN/d\eta_p$ fits $\rightarrow \kappa$ can be extracted from α

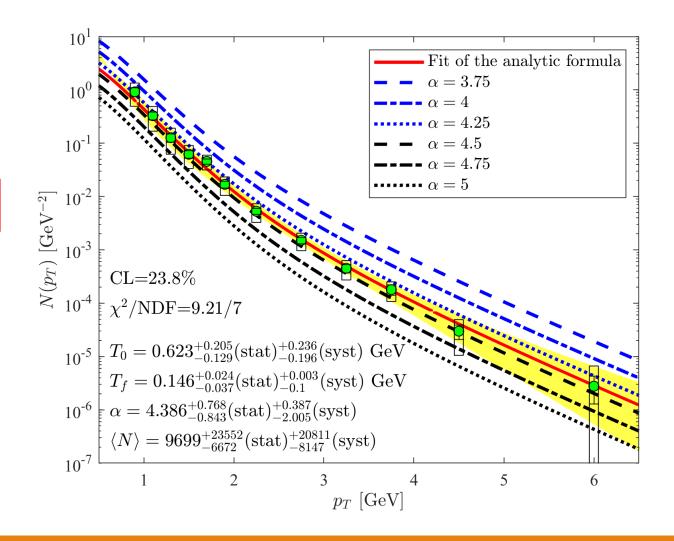


Good confidence level with realistic values of physical parameters

Intermediate p_T regime $\rightarrow T_o$ can be determined more precisely

The analytic formula scales with α

Earler results: λ was determined by $dN/d\eta_p$ fits $\rightarrow \kappa$ can be extracted from α

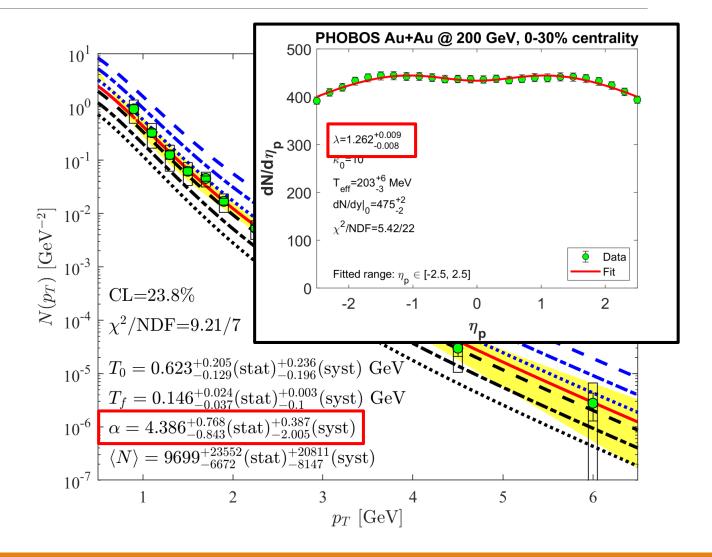


Good confidence level with realistic values of physical parameters

Intermediate p_T regime $\rightarrow T_o$ can be determined more precisely

The analytic formula scales with α

Earler results: λ was determined by $dN/d\eta_p$ fits $\rightarrow \kappa$ can be extracted from α



Good confidence level with realistic values of physical parameters

Intermediate p_T regime $\rightarrow T_o$ can be determined more precisely

The analytic formula scales with α

Earler results: λ was determined by $dN/d\eta_p$ fits $\rightarrow \kappa$ can be extracted from α

Conclusions

New analytic formula for the thermal radiation based on the CKCJ solution:

- Describes well the nonprompt spectrum of the 0-20% Au+Au@200 GeV dataset
- The new formula lacks of radial flow → further corrections are justified
- CKCJ solutions lacks of viscosity → it seems viscous effects are not necessary to describe the data

According to my result, the initial temperature is clearly higher than the Hagedorn temperature:

$$T_{\rm H} \ll T_0 = 0.6^{+0.2}_{-0.1} ({\rm stat})^{+0.2}_{-0.2} ({\rm syst}) \,{\rm GeV}$$

My result confirms the earlier conclusion of PHENIX:

The initial temperature of the created medium is too high for hadronic matter.