INVESTIGATION OF THE TWO-PARTICLE SOURCE FUNCTION AT $\sqrt{S_{NN}} = 2.76$ TeV WITH EPOS

BALÁZS KÓRODI1,2, DÁNIEL KINCSSES1, MÁTÉ CSANÁD1

1Eötvös Loránd University, 2The Ohio State University

DAY OF FEMTOSCOPY

2023, GYÖNGYÖS

• Two-particle (pair) source: \(D(r, K) = \int S\left(\rho + \frac{r}{2}, K \right) S\left(\rho - \frac{r}{2}, K \right) d^4 \rho \)

• Correlation function: \(C(q, K) = \frac{\int D(r, K) |\Psi_q(r)|^2 d^4r}{\int D(r, K) d^4r} \)

• Experiments – no direct access to pair-source
 • Assume given source shape and wave function
 • Calculate the correlation function
 • Test the assumptions on the measured correlation

• Event generator models (like EPOS) – direct access to pair-source!
LÉVY DISTRIBUTIONS IN HEAVY ION PHYSICS

- Measurements suggest phenomena beyond Gaussian distribution

- Lévy-stable distribution: \(L(r; \alpha, R) = (2\pi)^{-3} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^\alpha} \)
 - \(\alpha \): Lévy stability index
 - \(R \): Lévy scale parameter

- 1-D projection: \(L(r; \alpha, R) = (2\pi^2 r)^{-1} \int dq e^{-\frac{1}{2}(qr)^\alpha} \sin(qr)q \)

- Some possible causes:
 - Event averaging (Cimerman et al., Phys.Part.Nucl. 51 (2020) 282)
THE EPOS MODEL

• EPOS = Energy conserving quantum mechanical multiple scattering approach, based on Partons (parton ladders), Off-shell remnants, and Saturation of parton ladders K. Werner et al., PRC82 (2010) 044904, PRC89 (2014) 064903

• Monte-Carlo based phenomenological model

• Stages of the evolution:
 • Initial stage – parton based Gribov-Regge theory
 • Core-corona separation
 • 3+1D viscous hydrodynamic evolution
 • Hadronic rescattering – UrQMD

• Dataset: EPOS3 2.76 TeV PbPb, 800k events
RECONSTRUCTING THE TWO-PARTICLE SOURCE

• Source spherically symmetric in the LCMS (PHENIX coll., *Phys. Rev. Lett.* 93 (2004), 152302)

\[r_{LCMS} = \left(x_1 - x_2, y_1 - y_2, z_1 - z_2 - \frac{\beta(t_1 - t_2)}{\sqrt{1 - \beta^2}} \right), \quad \beta = \frac{p_{z,1} + p_{z,2}}{E_1 + E_2} \]

• Calculate \(D(r_{LCMS}) \) event-by-event!

• Average transverse momentum \((k_T) \) classes

• Investigated cases:
 • Pions:
 • CORE, primordial
 • CORE, primordial+decay
 • CORE+CORONA+UrQMD, primordial
 • CORE+CORONA+UrQMD, primordial+decay
 • Kaons: CORE+CORONA+UrQMD, primordial+decay
 • Protons: CORE+CORONA+UrQMD, primordial+decay
LÉVY FITS TO THE TWO-PARTICLE SOURCE

• Event-by-event Lévy fits
• Without decays and UrQMD → close to Gaussian
• After decays or UrQMD → far from Gaussian
• Lévy shape appears in single events!
• Similar fits for kaons and protons
• Only keep fits with CL > 0.1%
Introduction

EPOS model

Analysis details

Results

7/16 DISTRIBUTION OF THE SOURCE PARAMETERS

- Collect all fit results in R vs α histograms
- Similar figures for each centrality, k_T and for kaons or protons
- Extract average values $\langle R \rangle$ and $\langle \alpha \rangle$
- Extract standard deviations
- Investigate centrality and k_T dependence
CONTOURS OF THE R VS α DISTRIBUTIONS

- 1σ contours for all k_T classes
- Ellipses from σ_α, σ_R and $corr_{\alpha,R}$
- Only 2 centralities in one figure for clarity
- $\alpha - R$ anti-correlation
- Illustrates centrality and k_T dependence

EPOS3 CORE+CORONA+UrQMD

Balázs Kórodi, Day of Femtoscopy 2023
PION SOURCE PARAMETERS

- Transverse mass: $m_T = \sqrt{k_T^2 + m^2}$
- Lévy scale parameter (R):
 - Larger in central collisions \rightarrow spatial scale
 - Decreases with m_T \rightarrow hydrodynamic scaling
 - Small effect of decay products
- Lévy stability index (α):
 - Weak centrality dependence
 - Small decrease with m_T
 - Smaller after decays \rightarrow source shape influenced
- Error bands = standard deviation of $R/\alpha \neq$ statistical uncertainty of $\langle R \rangle / \langle \alpha \rangle$
• Similar centrality and m_T dependence
• $\langle R \rangle (2.76 \text{ TeV EPOS}) > \langle R \rangle (200 \text{ GeV EPOS})$
• $\langle R \rangle (2.76 \text{ TeV EPOS}) > R (5.02 \text{ TeV data})$?
COMPARISON TO DATA AND LOWER ENERGY EPOS

- Similar centrality and m_T dependence
- $\langle \alpha \rangle (2.76 \text{ TeV EPOS}) < \langle \alpha \rangle (200 \text{ GeV EPOS})$
- $\langle \alpha \rangle (2.76 \text{ TeV EPOS}) < \alpha (5.02 \text{ TeV data})$

Kincses, Stefaniak, Csanád, Entropy 24 (2022) 308
• Similar trends

• Hydrodynamics + Gaussian source \(\frac{1}{R^2} \sim m_T \) particle independent scaling

• EPOS \(\rightarrow R \) depends on the particle type

• No universal \(m_T \) scaling in EPOS

• For given species scaling is approximately fulfilled

• Stat. uncertainties smaller than markers
• R vs. $(m_T - m) \rightarrow$ same curve for pions and kaons

• Divide R with one plus the number of valence quarks \rightarrow same curve for protons

• Unknown reasons and interpretation
• N_{part} : average number of participating nucleons

• $N_{\text{part}}^{1/3} \sim$ one-dimensional initial size

• Approximately linear scaling \rightarrow geometric interpretation

• Super small statistical uncertainties:
 \[\frac{\sigma_R}{\sqrt{N_{\text{evts}}}} \approx 0.01\% \]
PION, KAON, PROTON LÉVY STABILITY INDEX

- Source deviation from Gaussian ($\alpha = 2$)
- In case of anomalous diffusion:
 - Smaller cross-section \rightarrow larger mean free path \rightarrow longer power-law tail \rightarrow smaller α
- Prediction: $\alpha_K < \alpha_\pi < \alpha_p$
- Only partially fulfilled!
- Anomalous diffusion cannot be the only reason for the Lévy shape
SUMMARY

• Analysis steps:
 • Event-by-event reconstruction of the two-particle source in EPOS 2.76 TeV PbPb
 • Single event Lévy fits – event-by-event Lévy shape
 • Extract mean Lévy parameters $\langle R \rangle$ and $\langle \alpha \rangle$

• Results:
 • Hydrodynamic-like and geometric scaling of $\langle R \rangle$
 • $\langle \alpha \rangle$ affected by decays
 • Similar trends to experiment, but different magnitudes
 • Particle species dependent $\langle R \rangle$
 • Partially fulfilled predictions of anomalous diffusion

Supported by the NKFIH OTKA grants K-133046, K-128713, and K-138136.
Supported by the ÚNKP-22-2 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund.
THANK YOU FOR YOUR ATTENTION!
BACKUP SLIDES
KAON AND PROTON EXAMPLE FIT

EPOS3 single event

10-20% Pb+Pb@\sqrt{s_{NN}} = 2.76 TeV
KK, |n| < 1, \(k_T = 0.48\)\(-0.62 \) GeV/c

\[D(r_{\text{LCMS}}) \text{ [fm}^{-3} \text{]} \]

- Levy distr. (\(\alpha,2/\alpha R_{r_{\text{LCMS}}} \))
- Gaussian distr. (\(R_{G_{r_{\text{LCMS}}}} \))

- \(k_T = 1.00\)\(-1.40 \) GeV/c

pp, |n| < 1

CORE+CORONA+UrQMD
primordial+decay kaons
\(\alpha = 1.53 \pm 0.02 \)
\(R = (10.45 \pm 0.09) \) fm
\(\chi^2/\text{NDF} = 72/68 \)
conf. lev. = 34.48%\

CORE+CORONA+UrQMD
primordial+decay protons
\(\alpha = 1.70 \pm 0.04 \)
\(R = (13.58 \pm 0.22) \) fm
\(\chi^2/\text{NDF} = 69/59 \)
conf. lev. = 16.88%