A novel method for calculating Bose-Einstein correlation functions with Coulomb final-state interaction

Márton Nagy, Máté Csanád, Aletta Purzsa, Dániel Kincses
(Eötvös University, Budapest)

Based on: arXiv:2308.10745; just about to be published in EPJ C.

Day of Femtoscopy 2023, Gyöngyös
October 30, 2023
Outline

- **Introduction**
 - HBT correlations, Coulomb effect, basic formulas
 - Need for refinement: non-Gaussian sources, precision measurements
 - Numerical & methodological motivation

- **New method for treatment of Coulomb interaction**
 - Calculation of the Coulomb integral kernel
 - Rigorous mathematics needed
 - Spherically symmetric case: limiting functional expressed
 - Implementation; esp. for Lévy-type sources

- **Outlook**
 - Ready to use in experimental analyses
 - Generalizations: non-spherically symmetric case, strong interaction
Bose-Einstein-correlations of like particles ($\pi^+\pi^+$, $\pi^-\pi^-$, K^+K^+...): measure fm-scale space-time extent of particle emitting source

Some definitions:

- **source function:** $S(x, p)$
- **single part. distr.:** $N_1(p) = \int dx \, S(x, p)$
- **pair wave function:** $\psi^{(2)}(x_1, x_2)$
- **pair mom. distr.:** $N_2(p_1, p_2) = \int dx_1 dx_2 \, S(x_1, p_1) S(x_2, p_2) |\psi^{(2)}(x_1, x_2)|^2$
- **corr. function:** $C(p_1, p_2) = \frac{N_2(p_1, p_2)}{N_1(p_1) N_1(p_2)}$
- **pair source:** $D(r, K) = \int d^4 \rho \, S(\rho + \frac{r}{2}, K) S(\rho - \frac{r}{2}, K)$

Approximately thus

$$C(k, K) = \frac{\int D(r, K) |\psi_k(r)|^2 dr}{\int D(r, K) dr}, \quad K := \frac{p_1 + p_2}{2}, \quad k := \frac{p_1 - p_2}{2}.$$
Core-halo model intercept parameter λ: $S = \sqrt{\lambda}S_c + (1 - \sqrt{\lambda})S_h$

S_h,”large”: \Rightarrow observable $C(k, K) = 1 - \lambda + \lambda \frac{\int D_c(r, K) |\psi_k(r)|^2 dr}{\int D_c(r, K) dr}$.

No final state interactions: $C(k) \equiv C^{(0)}(k)$, Fourier transform of source

$|\psi^{(0)}_k(r)|^2 = 1 + \cos(2kr) \Rightarrow C^{(0)}(k) = 1 + \lambda \frac{\int D_c(r, K) \cos(2kr) dr}{\int D_c(r, K) dr}$.

Final state Coulomb interaction: $\psi^{(0)}$ replaced by solution of two-body Coulomb Schr. eq.; NR case: well known formulas (see below)

$C^{(0)}(k) = \frac{C(k)}{K(k)}$, $K(k) \equiv \frac{\int D_c(r) |\psi_k(r)|^2 dr}{\int D_c(r) |\psi^{(0)}_k(r)|^2 dr}$ Coulomb correction

Final state strong interaction: small (?) for $\pi\pi, KK$

Usual treatment: only s-wave (1 parameter: strong scattering length f_0)
Source types

- **Gaussian**: usual choice; \(D_{cc}(r) \propto \exp(-r_{kl}R_{kl}^{-1}) \).
 - Fit parameters: \(R_{kl}(K) \) and \(\lambda(K) \)
 - A generalization: Edgeworth expansion of \(C(k) \); in this source: FT of \(C^{(0)}(k) \)

- **Lévy-type sources**: generalized Gaussian; new parameter \(\alpha \in \mathbb{R}^+ \): stability index; \(\alpha \leq 2 \).
 - Expressed as a Fourier transform:
 \[
 D_{cc}(r) = \frac{1}{(2\pi)^3} \int d^3 q \, e^{iqr} \exp(-|qR|^\alpha).
 \]
 - Arises in natural processes: stability property (just as for Gaussian)
 - Generalization: Levy polynomials (same as Edgeworth for Gaussians)

- **Cauchy sources**: \(\Leftrightarrow\) exponential \(C(k) \): special case of Levy (\(\alpha = 1 \))
 - employed at CMS for HBT in p+p collisions...
Illustration of Lévy sources

- $\alpha=2$: Gaussian, $\alpha=1$: Cauchy distribution
- For $\alpha \neq 2$, power law like $r \to \infty$ decrease ($\sim r^{-3-\alpha}$); no finite variance

For such sources, $C_2^{(0)}(Q) = 1 + \lambda \exp(-|QR|^\alpha)$ easy, $D_{cc}(r)$ source itself calculable only numerically (for $\alpha \neq 1, 2$)
Lévy sources in heavy ion collisions

- **Non-Gaussian behavior:**
 - Model independent source extraction („imaging“)
 - PHENIX, PRL 98 (2007) 132301

- **PHENIX measurement with Lévy assumption**
 - $\alpha \neq 2$ confirmed m_t-independently

- **Coulomb effect:** an essential ingredient
Introduction

Coulomb interaction

- Non-relativistic treatment: valid in Pair Co-Moving System (PCMS).

- \(p = \hbar k \): relative momentum, \(E = \frac{p^2}{2m} \), \(m \): reduced mass

- Sommerfeld parameter (Coulomb parameter) \(\eta \): ratio of classical closest distance \(r_0 \equiv \frac{q_e^2}{4\pi\varepsilon_0} \frac{1}{E} \) to wavelength \(\lambda \equiv \frac{2\pi\hbar}{p} \):

\[
\eta \equiv \alpha_{em} \frac{mc}{\hbar k} = \frac{\pi r_0}{\lambda}, \quad \text{with} \quad \alpha_{em} \equiv \frac{q_e^2}{4\pi\varepsilon_0} \frac{1}{\hbar c} \approx \frac{1}{137}.
\]

- Two-particle wave function: symmetrized scattering ,,out” state
 - ,,out” states asymptotically plane wave + incoming spherical wave
 - alternate ,,in” state (plane wave + outgoing spherical wave) yields same results

\[
\psi^{(C)} = e^{iKR} \times \frac{\mathcal{N}^*}{\sqrt{2}} e^{-ikr} \left\{ M(1-i\eta, 1, i(kr+k)) + (k \leftrightarrow -k) \right\}.
\]

Making use of the \(M(a, b, z) \) confluent hypergeometric function

- Normalization (\(\mathcal{N} \)) and Gamow factor (\(|\mathcal{N}|^2 \)):

\[
\mathcal{N} = e^{-\pi\eta/2} \Gamma(1+i\eta), \quad |\mathcal{N}|^2 = e^{-\pi\eta} |\Gamma(1+i\eta)|^2 = \frac{2\pi\eta}{e^{2\pi\eta} - 1}. \quad (1)
\]
Coulomb interaction

- Coulomb wave function: distorted plane wave, asymptotically logarithmic corrections

\[|\psi^{(0)}|^2, k = 50 \text{ MeV/c} \]

\[|\psi^{\text{(Coulomb)}}|^2, k = 50 \text{ MeV/c} \]
Coulomb interaction

- Coulomb wave function: distorted plane wave, asymptotically logarithmic corrections
Coulomb interaction

- Coulomb wave function: distorted plane wave, asymptotically logarithmic corrections
Coulomb wave function: distorted plane wave, asymptotically logarithmic corrections

- Gamow correction captures only the value at the origin

Calculational methods:
- Direct integrating
- Pre-calculate a ,,Coulomb correction" with fix parameters (say, $R = 5$ fm Gaussian): fast but inconsistent
- Use iterative method, use memory lookup table...
Coulomb interaction

- Coulomb wave function: distorted plane wave, asymptotically logarithmic corrections

- Gamow correction captures only the value at the origin
Coulomb interaction

- Coulomb wave function: distorted plane wave, asymptotically logarithmic corrections

- Gamow correction captures only the value at the origin

- Calculational methods:
 - Direct integrating $D(r)|\psi_k^{(2)}(r)|^2$ during fit: time-consuming, even nowadays
 - Pre-calculate a „Coulomb correction” with fix parameters (say, $R = 5 \text{ fm}$ Gaussian): fast but inconsistent
 - Use iterative method, use memory lookup table...
New method for calculating the Coulomb effect

New method needed

- Many (if not all) interesting source types defined as Fourier transforms
 \[
 D(r) := \int \frac{d^3 q}{(2\pi)^3} f(q) e^{iqr} \Leftrightarrow f(q) = \int d^3 r \, D(r) e^{-irq}
 \]

- In many cases (eg. Lévy sources), even this is possible only numerically

- Direct numerical calculation of \(C_2(Q) \) thus (although used) **very** problematic
 - Slow decrease of \(D(r) \), oscillating asymptotic \(\psi^{(2)}_k(r) \)
 - Awkward: Fourier transform, then ,,almost inverse” Fourier transform, *numerically*

- Natural idea: ,,interchange order of ,,integrals”
New method for calculating the Coulomb effect

New method needed

- Many (if not all) interesting source types defined as Fourier transforms

\[D(r) := \int \frac{d^3 q}{(2\pi)^3} f(q) e^{iqr} \iff f(q) = \int d^3 r D(r) e^{-iqr} \]

- In many cases (e.g., Lévy sources), even this is possible only numerically
- Direct numerical calculation of \(C_2(Q) \) thus (although used) **very** problematic
 - Slow decrease of \(D(r) \), oscillating asymptotic \(\psi_k^{(2)}(r) \)...
 - Awkward: Fourier transform, then ,,almost inverse” Fourier transform, *numerically*...
- Natural idea: ,,interchange order of ,,integrals”

\[C_2(Q) = \frac{1}{(2\pi)^3} \int d^3 r |\psi_k^{(2)}(r)|^2 \int d^3 q f(q) e^{iqr} \]
New method needed

- Many (if not all) interesting source types defined as Fourier transforms
 \[D(r) := \int \frac{d^3 q}{(2\pi)^3} f(q)e^{iqr} \quad \Leftrightarrow \quad f(q) = \int d^3 r \ D(r)e^{-iqr} \]

- In many cases (e.g., Lévy sources), even this is possible only numerically

- Direct numerical calculation of \(C_2(Q) \) thus (although used) very problematic
 - Slow decrease of \(D(r) \), oscillating asymptotic \(\psi_k^{(2)}(r) \)
 - Awkward: Fourier transform, then ,,almost inverse” Fourier transform, \textit{numerically} ...

- Natural idea: ,,interchange order of ,,integrals”
 \[C_2(Q) = \frac{1}{(2\pi)^3} \int d^3 r \ |\psi_k^{(2)}(r)\|^2 \int d^3 q \ f(q)e^{iqr} = \frac{1}{(2\pi)^3} \int d^3 r \ \int d^3 q \ f(q)e^{iqr} |\psi_k^{(2)}(r)|^2 \]
New method needed

- Many (if not all) interesting source types defined as Fourier transforms

\[D(\mathbf{r}) := \int \frac{d^3 \mathbf{q}}{(2\pi)^3} f(\mathbf{q}) e^{i\mathbf{q} \cdot \mathbf{r}} \iff f(\mathbf{q}) = \int d^3 \mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q} \cdot \mathbf{r}} \]

- In many cases (e.g., Lévy sources), even this is possible only numerically

- Direct numerical calculation of \(C_2(\mathbf{Q}) \) thus (although used) **very** problematic
 - Slow decrease of \(D(\mathbf{r}) \), oscillating asymptotic \(\psi_k^{(2)}(\mathbf{r}) \ldots \)
 - Awkward: Fourier transform, then ,,almost inverse” Fourier transform, *numerically* ..

- Natural idea: ,,interchange order of ,,integrals”

\[C_2(\mathbf{Q}) = \frac{1}{(2\pi)^3} \int d^3 \mathbf{r} |\psi_k^{(2)}(\mathbf{r})|^2 \int d^3 \mathbf{q} f(\mathbf{q}) e^{i\mathbf{q} \cdot \mathbf{r}} = \frac{1}{(2\pi)^3} \int d^3 \mathbf{r} \int d^3 \mathbf{q} f(\mathbf{q}) e^{i\mathbf{q} \cdot \mathbf{r}} |\psi_k^{(2)}(\mathbf{r})|^2 \]
New method for calculating the Coulomb effect

New method needed

- Many (if not all) interesting source types defined as Fourier transforms

\[D(\mathbf{r}) := \int \frac{d^3 q}{(2\pi)^3} f(q) e^{i\mathbf{q} \cdot \mathbf{r}} \quad \Leftrightarrow \quad f(q) = \int d^3 r \ D(\mathbf{r}) e^{-i\mathbf{q} \cdot \mathbf{r}} \]

- In many cases (eg. Lévy sources), even this is possible only numerically

- Direct numerical calculation of \(C_2(\mathbf{Q}) \) thus (although used) very problematic
 - Slow decrease of \(D(\mathbf{r}) \), oscillating asymptotic \(\psi_k^{(2)}(\mathbf{r}) \)
 - Awkward: Fourier transform, then ,,almost inverse” Fourier transform, *numerically*

- Natural idea: ,,interchange order of ,,integrals”

\[
C_2(\mathbf{Q}) = \frac{1}{(2\pi)^3} \int d^3 r \ |\psi_k^{(2)}(\mathbf{r})|^2 \int d^3 q \ f(q) e^{i\mathbf{q} \cdot \mathbf{r}} = \frac{1}{(2\pi)^3} \int d^3 \mathbf{r} \int d^3 q \ f(q) e^{i\mathbf{q} \cdot \mathbf{r}} |\psi_k^{(2)}(\mathbf{r})|^2 =
\]

Not working in this form: Fourier transform \(\neq \) integral (Lebesgue)

Workaround: regularization, \(\lambda \in \mathbb{R}^+ \), then \(\lambda \to 0 \).

Careful math needed (once in a physicist’s lifetime...)

Márton Nagy (Eötvös University)
New method for calculating the Coulomb effect

New method needed

- Many (if not all) interesting source types defined as Fourier transforms
 \[D(r) := \int \frac{d^3q}{(2\pi)^3} f(q)e^{iqr} \iff f(q) = \int d^3r D(r)e^{-iqr} \]

- In many cases (e.g., Lévy sources), even this is possible only numerically

- Direct numerical calculation of \(C_2(Q) \) thus (although used) very problematic
 - Slow decrease of \(D(r) \), oscillating asymptotic \(\psi_k^{(2)}(r) \)...
 - Awkward: Fourier transform, then ,,almost inverse” Fourier transform, *numerically*...

- Natural idea: ,,interchange order of ,,integrals”
 \[
 C_2(Q) = \frac{1}{(2\pi)^3} \int d^3r |\psi_k^{(2)}(r)|^2 \int d^3q f(q)e^{iqr} = \frac{1}{(2\pi)^3} \int d^3r \int d^3q f(q)e^{iqr} |\psi_k^{(2)}(r)|^2 \\
 \overset{??}{=} \frac{1}{(2\pi)^3} \int d^3q \int d^3r f(q)e^{iqr} |\psi_k^{(2)}(r)|^2
 \]
New method needed

- Many (if not all) interesting source types defined as Fourier transforms
 \[
 D(\mathbf{r}) := \int \frac{d^3 \mathbf{q}}{(2\pi)^3} f(\mathbf{q}) e^{i\mathbf{q} \cdot \mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int d^3 \mathbf{r} \ D(\mathbf{r}) e^{-i\mathbf{q} \cdot \mathbf{r}}
 \]

- In many cases (eg. Lévy sources), even this is possible only numerically

- Direct numerical calculation of \(C_2(\mathbf{Q}) \) thus (although used) very problematic
 - Slow decrease of \(D(\mathbf{r}) \), oscillating asymptotic \(\psi_k^{(2)}(\mathbf{r}) \)...
 - Awkward: Fourier transform, then ,,almost inverse” Fourier transform, \textit{numerically}...

- Natural idea: ,,interchange order of ,,integrals”
 \[
 C_2(\mathbf{Q}) = \frac{1}{(2\pi)^3} \int d^3 \mathbf{r} |\psi_k^{(2)}(\mathbf{r})|^2 \int d^3 \mathbf{q} f(\mathbf{q}) e^{i\mathbf{q} \cdot \mathbf{r}} = \frac{1}{(2\pi)^3} \int d^3 \mathbf{r} \int d^3 \mathbf{q} f(\mathbf{q}) e^{i\mathbf{q} \cdot \mathbf{r}} |\psi_k^{(2)}(\mathbf{r})|^2 \equiv \\
 \equiv \frac{1}{(2\pi)^3} \int d^3 \mathbf{q} \int d^3 \mathbf{r} f(\mathbf{q}) e^{i\mathbf{q} \cdot \mathbf{r}} |\psi_k^{(2)}(\mathbf{r})|^2 =
 \]
New method needed

- Many (if not all) interesting source types defined as Fourier transforms

\[D(\mathbf{r}) := \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} f(\mathbf{q}) e^{i\mathbf{q}\cdot \mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^3 \mathbf{r} \; D(\mathbf{r}) e^{-i\mathbf{q}\cdot \mathbf{r}} \]

- In many cases (e.g. Lévy sources), even this is possible only numerically

- Direct numerical calculation of \(C_2(Q) \) thus (although used) very problematic
 - Slow decrease of \(D(\mathbf{r}) \), oscillating asymptotic \(\psi_2^{(2)}(\mathbf{r}) \)
 - Awkward: Fourier transform, then ,,almost inverse” Fourier transform, \textit{numerically} . . .

- Natural idea: ,,interchange order of ,,integrals”

\[C_2(Q) = \frac{1}{(2\pi)^3} \int \mathrm{d}^3 \mathbf{r} |\psi_2^{(2)}(\mathbf{r})|^2 \int \mathrm{d}^3 \mathbf{q} \; f(\mathbf{q}) e^{i\mathbf{q}\cdot \mathbf{r}} = \frac{1}{(2\pi)^3} \int \mathrm{d}^3 \mathbf{r} \int \mathrm{d}^3 \mathbf{q} \; f(\mathbf{q}) e^{i\mathbf{q}\cdot \mathbf{r}} |\psi_2^{(2)}(\mathbf{r})|^2 \]

\[
\begin{align*}
\quad \approx & \quad \frac{1}{(2\pi)^3} \int \mathrm{d}^3 \mathbf{q} \int \mathrm{d}^3 \mathbf{r} \; f(\mathbf{q}) e^{i\mathbf{q}\cdot \mathbf{r}} |\psi_2^{(2)}(\mathbf{r})|^2 \\
\quad = & \quad \frac{1}{(2\pi)^3} \int \mathrm{d}^3 \mathbf{q} \; f(\mathbf{q}) \int \mathrm{d}^3 \mathbf{r} \; e^{i\mathbf{q}\cdot \mathbf{r}} |\psi_2^{(2)}(\mathbf{r})|^2
\end{align*}
\]
New method needed

- Many (if not all) interesting source types defined as Fourier transforms
 \[D(r) := \int \frac{d^3 q}{(2\pi)^3} f(q) e^{iqr} \Leftrightarrow f(q) = \int d^3 r D(r) e^{-iqr} \]

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of \(C_2(Q) \) thus (although used) **very** problematic
 - Slow decrease of \(D(r) \), oscillating asymptotic \(\psi^{(2)}_k(r) \)...
 - Awkward: Fourier transform, then ,,almost inverse” Fourier transform, *numerically*...
- Natural idea: ,,interchange order of ,,integrals”
 \[
 C_2(Q) = \frac{1}{(2\pi)^3} \int d^3 r |\psi^{(2)}_k(r)|^2 \int d^3 q f(q) e^{iqr} = \frac{1}{(2\pi)^3} \int d^3 r \int d^3 q f(q) e^{iqr} |\psi^{(2)}_k(r)|^2 \\
 \overset{??}{=} \frac{1}{(2\pi)^3} \int d^3 q \int d^3 r f(q) e^{iqr} |\psi^{(2)}_k(r)|^2 = \\
 = \frac{1}{(2\pi)^3} \int d^3 q f(q) \int d^3 r e^{iqr} |\psi^{(2)}_k(r)|^2
 \]
New method needed

- Many (if not all) interesting source types defined as Fourier transforms

\[
D(r) := \int \frac{d^3 q}{(2\pi)^3} f(q) e^{iqr} \quad \Leftrightarrow \quad f(q) = \int d^3 r \, D(r) e^{-iqr}
\]

- In many cases (eg. Lévy sources), even this is possible only numerically

- Direct numerical calculation of \(C_2(Q) \) thus (although used) very problematic

 - Slow decrease of \(D(r) \), oscillating asymptotic \(\psi_k^{(2)}(r) \)...

 - Awkward: Fourier transform, then ,,almost inverse” Fourier transform, \textit{numerically}...

- Natural idea: ,,interchange order of ,,integrals”

\[
C_2(Q) = \frac{1}{(2\pi)^3} \int d^3 r \, |\psi_k^{(2)}(r)|^2 \int d^3 q \, f(q) e^{iqr} = \frac{1}{(2\pi)^3} \int d^3 r \int d^3 q \, f(q) e^{iqr} |\psi_k^{(2)}(r)|^2
\]

\[
= \frac{1}{(2\pi)^3} \int d^3 q \int d^3 r \, f(q) e^{iqr} |\psi_k^{(2)}(r)|^2
\]

\[
= \frac{1}{(2\pi)^3} \int d^3 q \, f(q) \int d^3 r \, e^{iqr} |\psi_k^{(2)}(r)|^2
\]

- Not working in this form

Márton Nagy (Eötvös University)
Day of Femtoscopy 2023, Gyöngyös
10 / 17
New method needed

- Many (if not all) interesting source types defined as Fourier transforms
 \[D(r) := \int \frac{d^3q}{(2\pi)^3} f(q) e^{iqr} \iff f(q) = \int d^3r \, D(r) e^{-iqr} \]

- In many cases (e.g. Lévy sources), even this is possible only numerically

- Direct numerical calculation of \(C_2(Q) \) thus (although used) very problematic
 - Slow decrease of \(D(r) \), oscillating asymptotic \(\psi_k^{(2)}(r) \)...
 - Awkward: Fourier transform, then ,,almost inverse” Fourier transform, \textit{numerically}...

- Natural idea: ,,interchange order of ,,integrals”
 \[C_2(Q) = \frac{1}{(2\pi)^3} \int d^3r |\psi_k^{(2)}(r)|^2 \int d^3q \, f(q) e^{iqr} = \frac{1}{(2\pi)^3} \int d^3q \int d^3r \, f(q) e^{iqr} |\psi_k^{(2)}(r)|^2 \]
 \[\approx \frac{1}{(2\pi)^3} \int d^3q \int d^3r \, f(q) e^{iqr} |\psi_k^{(2)}(r)|^2 = \]
 \[= \frac{1}{(2\pi)^3} \int d^3q \, f(q) \int d^3r \, e^{iqr} |\psi_k^{(2)}(r)|^2 \]

- Not working in this form: Fourier transform \(\neq \) integral (Lebesgue)
New method for calculating the Coulomb effect

New method needed

- Many (if not all) interesting source types defined as Fourier transforms

\[
D(r) := \int \frac{d^3 q}{(2\pi)^3} f(q) e^{iqr} \quad \Leftrightarrow \quad f(q) = \int d^3 r \ D(r) e^{-iqr}
\]

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of \(C_2(Q)\) thus (although used) very problematic
 - Slow decrease of \(D(r)\), oscillating asymptotic \(\psi^{(2)}_k(r)\)
 - Awkward: Fourier transform, then „almost inverse” Fourier transform, numerically...
- Natural idea: „interchange order of „integrals”

\[
C_2(Q) = \frac{1}{(2\pi)^3} \int d^3 r \ |\psi^{(2)}_k(r)|^2 \int d^3 q \ f(q) e^{iqr} = \frac{1}{(2\pi)^3} \int d^3 r \ \int d^3 q \ f(q) e^{iqr} |\psi^{(2)}_k(r)|^2 \nonumber
\]

\[
= \frac{1}{(2\pi)^3} \int d^3 q \ \int d^3 r f(q) e^{iqr} |\psi^{(2)}_k(r)|^2 = \nonumber
\]

\[
= \frac{1}{(2\pi)^3} \int d^3 q f(q) \int d^3 r e^{iqr} |\psi^{(2)}_k(r)|^2
\]

- Not working in this form: Fourier transform \(\neq\) integral (Lebesgue)
 - Workaround: regularization, \(\lambda \in \mathbb{R}^+\), then \(\lambda \to 0\).
New method needed

- Many (if not all) interesting source types defined as Fourier transforms

\[
D(r) := \int \frac{d^3 q}{(2\pi)^3} f(q)e^{iqr} \quad \Leftrightarrow \quad f(q) = \int d^3 r \; D(r)e^{-iqr}
\]

- In many cases (e.g. Lévy sources), even this is possible only numerically

- Direct numerical calculation of \(C_2(Q) \) thus (although used) very problematic
 - Slow decrease of \(D(r) \), oscillating asymptotic \(\psi^{(2)}_k (r) \)
 - Awkward: Fourier transform, then „almost inverse” Fourier transform, \textit{numerically}...

- Natural idea: „interchange order of „integrals”

\[
C_2(Q) = \frac{1}{(2\pi)^3} \int d^3 r \; |\psi^{(2)}_k (r)|^2 \int d^3 q \; f(q)e^{iqr} = \frac{1}{(2\pi)^3} \int d^3 r \int d^3 q \; f(q)e^{iqr} |\psi^{(2)}_k (r)|^2 \\
= \frac{1}{(2\pi)^3} \int d^3 q \int d^3 r \; f(q)e^{iqr} |\psi^{(2)}_k (r)|^2
\]

- Not working in this form: Fourier transform \(\neq \) integral (Lebesgue)
 - Workaround: regularization, \(\lambda \in \mathbb{R}^+ \), then \(\lambda \to 0 \).
 - Careful math needed (once in a physicist’s lifetime...)

Mártan Nagy (Eötvös University)
Day of Femtoscopy 2023, Gyöngyös
Details of derivation

- Interchanging our integrals in a careful way:

\[C_2(Q) \]
Details of derivation

Interchanging our integrals in a careful way:

$$C_2(Q) = \int d^3r \left| \psi_k^{(2)}(r) \right|^2 D(r)$$
Details of derivation

- Interchanging our integrals in a careful way:

\[C_2(Q) = \int d^3 r \left| \psi_k^{(2)}(r) \right|^2 D(r) = \int d^3 r \lim_{\lambda \to 0} e^{-\lambda r} \left| \psi_k^{(2)}(r) \right|^2 D(r) \]
Details of derivation

- Interchanging our integrals in a careful way:

\[C_2(Q) = \int d^3r \, |\psi_k^{(2)}(r)|^2 D(r) = \int d^3r \, \lim_{\lambda \to 0} e^{-\lambda r} |\psi_k^{(2)}(r)|^2 D(r) \]
Details of derivation

- Interchanging our integrals in a careful way:

\[C_2(Q) = \int d^3r \left| \psi_k^{(2)}(r) \right|^2 D(r) = \int d^3r \lim_{\lambda \to 0} e^{-\lambda r} \left| \psi_k^{(2)}(r) \right|^2 D(r) \]
Details of derivation

- Interchanging our integrals in a careful way:

\[C_2(Q) = \int d^3r \left| \psi_k^{(2)}(r) \right|^2 D(r) = \int d^3r \left(\lim_{\lambda \to 0} e^{-\lambda r} \left| \psi_k^{(2)}(r) \right|^2 \right) D(r) = \]

\[= \lim_{\lambda \to 0} \int d^3r e^{-\lambda r} \left| \psi_k^{(2)}(r) \right|^2 D(r) \]
Details of derivation

- Interchanging our integrals in a careful way:

\[
C_2(Q) = \int d^3r \, |\psi_k^{(2)}(r)|^2 D(r) = \int d^3r \, \lim_{\lambda \to 0} e^{-\lambda r} |\psi_k^{(2)}(r)|^2 D(r) =
\]

\[
= \lim_{\lambda \to 0} \int d^3r \, e^{-\lambda r} |\psi_k^{(2)}(r)|^2 D(r)
\]
Details of derivation

- Interchanging our integrals in a careful way:

\[
C_2(Q) = \int d^3 r \left| \psi_k^{(2)}(r) \right|^2 D(r) = \int d^3 r \lim_{\lambda \to 0} e^{-\lambda r} \left| \psi_k^{(2)}(r) \right|^2 D(r) = \\
= \lim_{\lambda \to 0} \int d^3 r \ e^{-\lambda r} \left| \psi_k^{(2)}(r) \right|^2 D(r)
\]
Details of derivation

- Interchanging our integrals in a careful way:

\[
C_2(Q) = \int d^3 r \left| \psi_2^{(2)}(r) \right|^2 D(r) = \int d^3 r \lim_{\lambda \to 0} e^{-\lambda r} \left| \psi_2^{(2)}(r) \right|^2 D(r) = \\
= \lim_{\lambda \to 0} \int d^3 r \ e^{-\lambda r} \left| \psi_2^{(2)}(r) \right|^2 D(r) = \\
= \lim_{\lambda \to 0} \int d^3 r \int \frac{d^3 q}{(2\pi)^3} f(q) \ e^{-\lambda r} \left| \psi_2^{(2)}(r) \right|^2 e^{iqr}
\]
Details of derivation

- Interchanging our integrals in a careful way:

\[C_2(Q) = \int d^3r \, |\psi_k^{(2)}(r)|^2 D(r) = \int d^3r \lim_{\lambda \to 0} e^{-\lambda r} |\psi_k^{(2)}(r)|^2 D(r) = \]

\[= \lim_{\lambda \to 0} \int d^3r \, e^{-\lambda r} |\psi_k^{(2)}(r)|^2 D(r) = \]

\[= \lim_{\lambda \to 0} \int d^3r \int \frac{d^3q}{(2\pi)^3} f(q) \, e^{-\lambda r} |\psi_k^{(2)}(r)|^2 \, e^{iqr} \]
Details of derivation

- Interchanging our integrals in a careful way:

\[
C_2(Q) = \int d^3 r \, |\psi^{(2)}_k(r)|^2 D(r) = \int d^3 r \, \lim_{\lambda \to 0} e^{-\lambda r} |\psi^{(2)}_k(r)|^2 D(r) = \\
= \lim_{\lambda \to 0} \int d^3 r \, e^{-\lambda r} |\psi^{(2)}_k(r)|^2 D(r) = \\
= \lim_{\lambda \to 0} \int d^3 r \int \frac{d^3 q}{(2\pi)^3} f(q) \, e^{-\lambda r} |\psi^{(2)}_k(r)|^2 \, e^{iqr}
\]
Details of derivation

- Interchanging our integrals in a careful way:

\[
C_2(Q) = \int d^3r \lvert \psi_k^{(2)}(r) \rvert^2 D(r) = \int d^3r \lim_{\lambda \to 0} e^{-\lambda r} \lvert \psi_k^{(2)}(r) \rvert^2 D(r) = \\
= \lim_{\lambda \to 0} \int d^3r e^{-\lambda r} \lvert \psi_k^{(2)}(r) \rvert^2 D(r) = \\
= \lim_{\lambda \to 0} \int d^3r \int \frac{d^3q}{(2\pi)^3} f(q) e^{-\lambda r} \lvert \psi_k^{(2)}(r) \rvert^2 e^{iqr} = \\
= \lim_{\lambda \to 0} \int \frac{d^3q}{(2\pi)^3} f(q) \int d^3r e^{-\lambda r} e^{iqr} \lvert \psi_k^{(2)}(r) \rvert^2.
\]
Details of derivation

- Interchanging our integrals in a careful way:

\[
C_2(Q) = \int d^3 r \mid \psi_k^{(2)}(r) \mid^2 D(r) = \int d^3 r \lim_{\lambda \to 0} e^{-\lambda r} \mid \psi_k^{(2)}(r) \mid^2 D(r) = \\
= \lim_{\lambda \to 0} \int d^3 r \ e^{-\lambda r} \mid \psi_k^{(2)}(r) \mid^2 D(r) = \\
= \lim_{\lambda \to 0} \int d^3 r \int \frac{d^3 q}{(2\pi)^3} f(q) \ e^{-\lambda r} \mid \psi_k^{(2)}(r) \mid^2 e^{iqr} = \\
= \lim_{\lambda \to 0} \int \frac{d^3 q}{(2\pi)^3} f(q) \int d^3 r \ e^{-\lambda r} e^{iqr} \mid \psi_k^{(2)}(r) \mid^2.
\]
Details of derivation

- Interchanging our integrals in a careful way:

\[
C_2(Q) = \int d^3r \vert \psi^{(2)}_k(r) \vert^2 D(r) = \int d^3r \lim_{\lambda \to 0} e^{-\lambda r} \vert \psi^{(2)}_k(r) \vert^2 D(r) =
\]

\[
= \lim_{\lambda \to 0} \int d^3r e^{-\lambda r} \vert \psi^{(2)}_k(r) \vert^2 D(r) =
\]

\[
= \lim_{\lambda \to 0} \int d^3r \int \frac{d^3q}{(2\pi)^3} f(q) e^{-\lambda r} \vert \psi^{(2)}_k(r) \vert^2 e^{iqr} =
\]

\[
= \lim_{\lambda \to 0} \int \frac{d^3q}{(2\pi)^3} f(q) \int d^3r e^{-\lambda r} e^{iqr} \vert \psi^{(2)}_k(r) \vert^2.
\]
Details of derivation

- Interchanging our integrals in a careful way:

\[C_2(Q) = \int d^3r \, |\psi_k^{(2)}(r)|^2 D(r) = \int d^3r \, \lim_{\lambda \to 0} e^{-\lambda r} |\psi_k^{(2)}(r)|^2 D(r) = \]

\[= \lim_{\lambda \to 0} \int d^3r \, e^{-\lambda r} |\psi_k^{(2)}(r)|^2 D(r) = \]

\[= \lim_{\lambda \to 0} \int d^3r \int \frac{d^3q}{(2\pi)^3} f(q) \, e^{-\lambda r} |\psi_k^{(2)}(r)|^2 e^{iqr} = \]

\[= \lim_{\lambda \to 0} \int \frac{d^3q}{(2\pi)^3} f(q) \int d^3r \, e^{-\lambda r} e^{iqr} |\psi_k^{(2)}(r)|^2. \]
Details of derivation

- Interchanging our integrals in a careful way:

$$C_2(Q) = \int d^3 r \left| \psi_k^{(2)}(r) \right|^2 D(r) = \int d^3 r \lim_{\lambda \to 0} e^{-\lambda r} \left| \psi_k^{(2)}(r) \right|^2 D(r) =$$

$$= \lim_{\lambda \to 0} \int d^3 r e^{-\lambda r} \left| \psi_k^{(2)}(r) \right|^2 D(r) =$$

$$= \lim_{\lambda \to 0} \int d^3 r \int \frac{d^3 q}{(2\pi)^3} f(q) e^{-\lambda r} \left| \psi_k^{(2)}(r) \right|^2 e^{iqr} =$$

$$= \lim_{\lambda \to 0} \int \frac{d^3 q}{(2\pi)^3} f(q) \int d^3 r e^{-\lambda r} e^{iqr} \left| \psi_k^{(2)}(r) \right|^2.$$

- "Ingredients":

- Conditions of (Lebesgue) integrability
- Lebesgue theorem (for interchanging integrals and limits)
- Fubini's theorem (for interchanging repeated integrals)

In last step, cannot interchange $\int d^3 q$ and $\lim_{\lambda \to 0}$. As of now, continuing only in the spherically symmetric case: $f(q) \equiv f_s(q)$, $D_{cc}(r) = 2\pi R_\infty \int_0 d^3 q q^2 \sin(qr) f_s(q)$.
Details of derivation

- Interchanging our integrals in a careful way:

\[
C_2(Q) = \int d^3r \, |\psi_2(r)|^2 D(r) = \int d^3r \, \lim_{\lambda \to 0} e^{-\lambda r} |\psi^{(2)}_k(r)|^2 D(r) =
\]

= \lim_{\lambda \to 0} \int d^3r \, e^{-\lambda r} |\psi^{(2)}_k(r)|^2 D(r) =

= \lim_{\lambda \to 0} \int d^3r \int \frac{d^3q}{(2\pi)^3} f(q) \, e^{-\lambda r} |\psi^{(2)}_k(r)|^2 \, e^{iqr} =

= \lim_{\lambda \to 0} \int \frac{d^3q}{(2\pi)^3} f(q) \int d^3r \, e^{-\lambda r} e^{iqr} |\psi^{(2)}_k(r)|^2.

- „Ingredients“:
- Conditions of (Lebesgue) integrability
New method for calculating the Coulomb effect

Details of derivation

- Interchanging our integrals in a careful way:

\[C_2(Q) = \int d^3r \ |\psi_k^{(2)}(r)|^2 D(r) = \int d^3r \ \lim_{\lambda \to 0} e^{-\lambda r} |\psi_k^{(2)}(r)|^2 D(r) = \]

\[= \lim_{\lambda \to 0} \int d^3r \ e^{-\lambda r} |\psi_k^{(2)}(r)|^2 D(r) = \]

\[= \lim_{\lambda \to 0} \int d^3r \int \frac{d^3q}{(2\pi)^3} f(q) \ e^{-\lambda r} |\psi_k^{(2)}(r)|^2 e^{iqr} = \]

\[= \lim_{\lambda \to 0} \int \frac{d^3q}{(2\pi)^3} f(q) \int d^3r \ e^{-\lambda r} e^{iqr} |\psi_k^{(2)}(r)|^2. \]

- „Ingredients“:
 - Conditions of (Lebesgue) integrability
 - *Lebesgue theorem* (for interchanging integrals and limits)
Details of derivation

- Interchanging our integrals in a careful way:

\[
C_2(Q) = \int d^3r \lvert \psi_k^{(2)}(r) \rvert^2 D(r) = \int d^3r \lim_{\lambda \to 0} e^{-\lambda r} \lvert \psi_k^{(2)}(r) \rvert^2 D(r) = \\
= \lim_{\lambda \to 0} \int d^3r e^{-\lambda r} \lvert \psi_k^{(2)}(r) \rvert^2 D(r) = \\
= \lim_{\lambda \to 0} \int d^3r \int \frac{d^3q}{(2\pi)^3} f(q) e^{-\lambda r} \lvert \psi_k^{(2)}(r) \rvert^2 e^{iqr} = \\
= \lim_{\lambda \to 0} \int \frac{d^3q}{(2\pi)^3} f(q) \int d^3r e^{-\lambda r} e^{iqr} \lvert \psi_k^{(2)}(r) \rvert^2.
\]

- „Ingredients“:
 - Conditions of (Lebesgue) integrability
 - *Lebesgue theorem* (for interchanging integrals and limits)
 - *Fubini’s theorem* (for interchanging repeated integrals)
Details of derivation

- Interchanging our integrals in a careful way:

\[
C_2(Q) = \int d^3r \left| \psi_k^{(2)}(r) \right|^2 D(r) = \int d^3r \lim_{\lambda \to 0} e^{-\lambda r} \left| \psi_k^{(2)}(r) \right|^2 D(r) = \\
= \lim_{\lambda \to 0} \int d^3r \ e^{-\lambda r} \left| \psi_k^{(2)}(r) \right|^2 D(r) = \\
= \lim_{\lambda \to 0} \int d^3r \int \frac{d^3q}{(2\pi)^3} f(q) \ e^{-\lambda r} \left| \psi_k^{(2)}(r) \right|^2 e^{iqr} = \\
= \lim_{\lambda \to 0} \int \frac{d^3q}{(2\pi)^3} f(q) \int d^3r \ e^{-\lambda r} e^{iqr} \left| \psi_k^{(2)}(r) \right|^2.
\]

- "Ingredients":
 - Conditions of (Lebesgue) integrability
 - Lebesgue theorem (for interchanging integrals and limits)
 - Fubini’s theorem (for interchanging repeated integrals)

- In last step, cannot interchange \(\int d^3q \) and \(\lim_{\lambda \to 0} \).
Details of derivation

Interchanging our integrals in a careful way:

\[C_2(Q) = \int \text{d}^3 r \, |\psi_k^{(2)}(r)|^2 D(r) = \int \text{d}^3 r \, \lim_{\lambda \to 0} e^{-\lambda r} |\psi_k^{(2)}(r)|^2 D(r) = \]

\[= \lim_{\lambda \to 0} \int \text{d}^3 r \, e^{-\lambda r} |\psi_k^{(2)}(r)|^2 D(r) = \]

\[= \lim_{\lambda \to 0} \int \text{d}^3 r \int \frac{\text{d}^3 q}{(2\pi)^3} f(q) \, e^{-\lambda r} |\psi_k^{(2)}(r)|^2 e^{iqr} = \]

\[= \lim_{\lambda \to 0} \int \frac{\text{d}^3 q}{(2\pi)^3} f(q) \int \text{d}^3 r \, e^{-\lambda r} e^{iqr} |\psi_k^{(2)}(r)|^2. \]

,,Ingredients”:

- Conditions of (Lebesgue) integrability
- Lebesgue theorem (for interchanging integrals and limits)
- Fubini’s theorem (for interchanging repeated integrals)

In last step, cannot interchange \(\int \text{d}^3 q \) and \(\lim_{\lambda \to 0} \).

As of now, continuing only in the spherically symmetric case:

\[f(q) \equiv f_s(q), \ D_{cc}(r) = 2\pi \int_0^{\infty} \text{d} q \, q^2 \sin(qr)f_s(q). \]
Details of derivation (cont’d)

- After substituting $\psi_k^{(2)}(r)$, „master” formula thus reads as

$$C_2(Q) = \frac{|N|^2}{2\pi^2} \lim_{\lambda \to 0} \int_0^\infty dq \, q^2 f_s(q) \left[D_{1s}(q) + D_{2s}(q) \right],$$

where

$$D_{1s}(q) = \int d^3r \frac{\sin(qr)}{qr} e^{-\lambda r} M(1+i\eta, 1, -i(kr+kr)) M(1-i\eta, 1, i(kr+kr)),
$$

$$D_{2s}(q) = \int d^3r \frac{\sin(qr)}{qr} e^{-\lambda r} M(1+i\eta, 1, -i(kr-kr)) M(1-i\eta, 1, i(kr+kr)).$$

- These can be calculated (using complex analysis; method pioneered by Nordsieck in the theory of bremsstrahlung & pair creation)

$$D_{1s}(q) = \frac{4\pi}{q} \text{Im} \left[\frac{1}{(\lambda-iq)^2} \left(1 + \frac{2k}{q+i\lambda} \right)^{2i\eta} \mathcal{F}_+ \left(\frac{4k^2}{(q+i\lambda)^2} \right) \right],$$

$$D_{2s}(q) = \frac{4\pi}{q} \text{Im} \left[\frac{(\lambda-iq-2ik)^i\eta (\lambda-iq+2ik)^{-i\eta}}{(\lambda-iq)^2+4k^2} \right].$$

Here $\mathcal{F}_+(x) \equiv {}_2F_1(i\eta, 1+i\eta, 1, x)$ is the hypergeometric function.
The main result

- For $\lim_{\lambda \to 0}$, function forms of $D_{1\lambda s}, D_{2\lambda s}$ become ,,ill-behaved''

 $\textit{(Remark: a simple well known similar case is the approximation of} \, \delta(x) \, \text{Dirac delta with smooth peaked functions)}$

- Need to calculate & simplify $\lambda \to 0$ limit (numerical limit-taking . . . \Rightarrow)
 \Rightarrow result: $\textit{functional}$, not a proper integral transform of $f_s(q)$

- Result of the calculation:

\[
C_2(Q)=|N|^2 \left(1+f_s(2k)+\frac{\eta}{\pi} \left[A_{1s} + A_{2s} \right] \right), \text{ where }
\]

\[
A_{1s} = -\frac{2}{\eta} \int_0^\infty dq \frac{f_s(q) - f_s(0)}{q} \text{Im} \left[\left(1+\frac{2k}{q}\right)^{2i\eta} \mathcal{F}_+ \left(\frac{4k^2}{q^2} - i0\right) \right],
\]

\[
A_{2s} = -\frac{2}{\eta} \int_0^\infty dq \frac{f_s(q) - f_s(2k)}{q-2k} \frac{q}{q+2k} \text{Im} \left(\frac{q+2k}{q-2k+i0}\right)^{i\eta}.
\]

- $\eta \to 0$: free $C_2^{(0)}(Q) = 1 + f_s(Q)$ recovered (NB: $Q = 2k$)

- $|N|^2$ factor only: Gamow correction
 $\Rightarrow A_{1s}, A_{2s}$,,correct the Gamow correction''

- A_{1s} and A_{2s}: well-defined functionals of $f_s(q)$

- Care needed about branch cuts ($\pm i0$ terms) of $\mathcal{F}_+(x)$ and complex powers
Numerical implementation

- Final numerical integrals needed: in $A_{1\lambda s}$ and $A_{2\lambda s}$
- Transform integral to $x \in [0, 1] \Rightarrow$ smooth, „beautiful” integrands
- Gauss-Krohnrod quadrature (from C++ boost library) used:
 - Main parameters: # of max iterations & tolerance
 - Investigated; optimal value found: few hundred integrand evaluations (instead of many 10000-s)

Real-time calculation (during fit procedure) possible!

Codes archived at: github.com/csanadm/CoulCorrLevyIntegral
Example calculations: illustrations

- For Lévy sources, for pion \((\pi^+ \pi^+, \pi^- \pi^-)\) pairs:

\[
\begin{align*}
\alpha \in (0.6, 2.0) \\
\textcolor{red}{R = 3 \text{ fm}} & \quad \textcolor{magenta}{R = 6 \text{ fm}} \\
\textcolor{blue}{R = 9 \text{ fm}} & \quad \textcolor{cyan}{R = 12 \text{ fm}} \\
\textcolor{red}{\alpha = 2} \\
\textcolor{blue}{\alpha = 0.6} \\
\pi^+ \pi^+
\end{align*}
\]

- most frequent target of HBT measurements
- Shaded region „swept” over by \(C_2(Q)\) as \(\alpha\) changes
- Apparent „nodes” disappear with increased zooming in
Example calculations: illustrations

- For Lévy sources, for kaon \((K^+K^+, K^-K^-)\) pairs:

 \[
 C_2(Q) = 2 \alpha \\
 \alpha \in (0.6, 2.0) \\
 R = 3 \text{ fm} \quad R = 6 \text{ fm} \\
 R = 9 \text{ fm} \quad R = 12 \text{ fm} \\
 \alpha = 2 \\
 \alpha = 0.6
 \]

- Similarly to the case of pions; „nodes” are only apparent
- Coulomb effect stronger \((m_K > m_\pi; \eta \text{ increases})\)
- Considerable interplay of experimentally measurable \(\lambda, R, \alpha\)
Summary and outlook

- Efficient new method Coulomb interacting HBT correlation function calculation
 - Calculations directly in momentum (Fourier) space
 - Careful mathematical methods invoked, distribution theory motivated
 - Cross-checked with previous direct calculations
 - Numerical implementation done, ready for use in data analysis

- As of now, implementation only for spherically symmetric sources
 - Prospective generalization I: go beyond spherical symmetry
 This is where efficiency becomes crucial...
 - Prospective generalization II: short-range strong interactions
 - Prospective generalization (in fact, simplification) for non-identical particle correlations: only $D_{1\lambda s}$ (ie. A_{1s}) term needed

New exact analytic formulas for QM Coulomb problem! 😊

Thank you for your attention!