A novel method for calculating Bose-Einstein correlation functions with Coulomb final-state interaction

<u>Márton Nagy</u>, Máté Csanád, Aletta Purzsa, Dániel Kincses (Eötvös University, Budapest)

Based on: arXiv:2308.10745; just about to be published in EPJ C.

Day of Femtoscopy 2023, Gyöngyös October 30, 2023

Outline

- Introduction
 - HBT correlations, Coulomb effect, basic formulas
 - Need for refinement: non-Gaussian sources, precision measurements
 - Numerical & methodological motivation
- New method for treatment of Coulomb interaction
 - Calculation of the Coulomb integral kernel
 - Rigorous mathematics needed
 - Spherically symmetric case: limiting functional expressed
 - Implementation; esp. for Lévy-type sources
- Outlook
 - Ready to use in experimental analyses
 - Generalizations: non-spherically symmetric case, strong interaction

Introduction

- Bose-Einstein-correlations of like particles ($\pi^+\pi^+$, $\pi^-\pi^-$, K^+K^+ ...): measure fm-scale space-time extent of particle emitting source
- Some definitions:

source function:
$$S(x,\mathbf{p})$$

single part. distr.: $N_1(\mathbf{p}) = \int \mathrm{d}x \, S(x,\rho)$
pair wave function: $\psi^{(2)}(x_1,x_2)$
pair mom. distr.: $N_2(\mathbf{p}_1,\mathbf{p}_2) = \int \mathrm{d}x_1 \, dx_2 \, S(x_1,p_1) S(x_2,p_2) \big| \psi^{(2)}(x_1,x_2) \big|^2$
corr. function: $C(\mathbf{p}_1,\mathbf{p}_2) = \frac{N_2(\mathbf{p}_1,\mathbf{p}_2)}{N_1(\mathbf{p}_1)N_1(\mathbf{p}_2)}$
pair source: $D(\mathbf{r},\mathbf{K}) = \int \mathrm{d}^4\rho \, S(\rho + \frac{r}{2},\mathbf{K}) \, S(\rho - \frac{r}{2},\mathbf{K})$

Approximately thus

$$C(\mathbf{k},\mathbf{K}) = \frac{\int D(\mathbf{r},\mathbf{K}) |\psi_{\mathbf{k}}(\mathbf{r})|^2 \mathrm{d}\mathbf{r}}{\int D(\mathbf{r},\mathbf{K}) \mathrm{d}\mathbf{r}}, \qquad \mathbf{K} := \frac{\mathbf{p}_1 + \mathbf{p}_2}{2}, \quad \mathbf{k} := \frac{\mathbf{p}_1 - \mathbf{p}_2}{2}.$$

Introduction

• Core-halo model intercept parameter λ : $S = \sqrt{\lambda}S_c + (1 - \sqrt{\lambda})S_h$

• No final state interactions: $C(\mathbf{k}) \equiv C^{(0)}(\mathbf{k})$, Fourier transform of source

$$\left|\psi_{\mathbf{k}}^{(0)}(\mathbf{r})\right|^2 \!=\! 1 + \!\cos(2\mathbf{k}\mathbf{r}) \quad \Rightarrow \quad C^{(0)}(\mathbf{k}) \!=\! 1 + \lambda \frac{\int \! D_c(\mathbf{r},\mathbf{K}) \cos(2\mathbf{k}\mathbf{r}) \mathrm{d}\mathbf{r}}{\int \! D_c(\mathbf{r},\mathbf{K}) \mathrm{d}\mathbf{r}}.$$

ullet Final state Coulomb interaction: $\psi^{(0)}$ replaced by solution of two-body Coulomb Schr. eq.; NR case: well known formulas (see below)

$$C^{(0)}(\mathbf{k}) = \frac{C(\mathbf{k})}{K(\mathbf{k})}, \quad K(\mathbf{k}) \equiv \frac{\int D_c(\mathbf{r}) |\psi_{\mathbf{k}}(\mathbf{r})|^2 d\mathbf{r}}{\int D_c(\mathbf{r}) |\psi_{\mathbf{k}}^{(0)}(\mathbf{r})|^2 d\mathbf{r}} \quad \text{Coulomb correction}$$

• Final state strong interaction: small (?) for $\pi\pi$, KK Usual treatment: only s-wave (1 parameter: strong scattering length f_0)

Source types

- Gaussian: usual choice; $D_{cc}(\mathbf{r}) \propto \exp(-r_k r_l R_{kl}^{-1})$.
 - Fit parameters: $R_{kl}(\mathbf{K})$ and $\lambda(\mathbf{K})$
 - A generalization: Edgeworth expansion of C(k); in thisource: FT of C⁽⁰⁾(k) see eg. T. Csörgő, S. Hegyi, Phys. Lett. B 489, 15 (2000)
- Lévy-type sources: generalized Gaussian; new parameter $\alpha \in \mathbb{R}^+$: stability index; $\alpha \leq 2$. Expressed as a Fourier transform:

$$D_{cc}(\mathbf{r}) = \frac{1}{(2\pi)^3} \int d^3\mathbf{q} \, e^{i\mathbf{q}\mathbf{r}} \exp(-|\mathbf{q}R|^{\alpha}).$$

- Arises in natural processes: stability property (just as for Gaussian)
- Generalization: Levy polynomials (same as Edgeworth for Gaussians)
 T. Novák, et al., Acta Phys. Polon. Supp. 9, 289 (2016)
- Cauchy sources \Leftrightarrow exponential C(k): special case of Levy (α =1) employed at CMS for HBT in p+p collisions...

Illustration of Lévy sources

- α =2: Gaussian, α =1: Cauchy distribution
- For $\alpha \neq 2$, power law like $r \to \infty$ decrease $(\sim r^{-3-\alpha})$; no finite variance

• For such sources, $C_2^{(0)}(\mathbf{Q}) = 1 + \lambda \exp(-|QR|^{\alpha})$ easy, $D_{cc}(\mathbf{r})$ source itself calculable only numerically (for $\alpha \neq 1, 2$)

Lévy sources in heavy ion collisions

- Non-Gaussian behavior:
 - Model independent source extraction (,,imaging")
 - PHENIX, PRL 98 (2007) 132301

- PHENIX measurement with Lévy assumption
 - $\alpha \neq 2$ confirmed m_t -independently

• Coulomb effect: an essential ingredient

- Non-relativistic treatment: valid in Pair Co-Moving System (PCMS).
- $\mathbf{p} = \hbar \mathbf{k}$: relative momentum, $E = \frac{p^2}{2m}$, m: reduced mass
- Sommerfeld parameter (Coulomb parameter) η : ratio of classical closest distance $r_0 \equiv \frac{q_e^2}{4\pi\varepsilon_0} \frac{1}{E}$ to wavelength $\lambda \equiv \frac{2\pi\hbar}{P}$:

$$\eta \equiv \alpha_{\rm em} \frac{mc}{\hbar k} = \frac{\pi r_0}{\lambda}, \quad {\rm with} \quad \alpha_{\rm em} \equiv \frac{q_e^2}{4\pi\varepsilon_0} \frac{1}{\hbar c} \approx \frac{1}{137}.$$

- Two-particle wave function: symmetrized scattering ,,out" state
 - \bullet ,,out" states asymptotically plane wave + incoming spherical wave
 - alternate "in" state (plane wave + outgoing spherical wave) yields same results

$$\psi^{(C)} = e^{i\mathbf{K}\mathbf{R}} \times \frac{\mathcal{N}^*}{\sqrt{2}} e^{-ikr} \left\{ M(1-i\eta, 1, i(kr+\mathbf{k}\mathbf{r})) + (\mathbf{k} \leftrightarrow -\mathbf{k}) \right\}.$$

Making use of the M(a, b, z) confluent hypergeometric function

• Normalization (\mathcal{N}) and Gamow factor ($|\mathcal{N}|^2$):

$$\mathcal{N} = e^{-\pi\eta/2} \Gamma(1+i\eta), \qquad |\mathcal{N}|^2 = e^{-\pi\eta} |\Gamma(1+i\eta)|^2 = \frac{2\pi\eta}{e^{2\pi\eta} - 1}.$$
 (1)

Coulomb wave function: distorted plane wave, asymptotically logarithmic corrections

• Gamow correction captures only the value at the origin

- Gamow correction captures only the value at the origin
- Calculational methods:
 - Direct integrating $D(\mathbf{r})|\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2$ during fit: time-consuming, even nowadays
 - Pre-calculate a "Coulomb correction" with fix parameters (say, $R=5\,\mathrm{fm}$ Gaussian): fast but inconsistent
 - Use iterative method, use memory lookup table...

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^{3}\mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of $C_2(\mathbf{Q})$ thus (although used) very problematic
 - Slow decrease of $D(\mathbf{r})$, oscillating asymptotic $\psi_{\mathbf{L}}^{(2)}(\mathbf{r})$...
 - Awkward: Fourier transform, then ,,almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^{3}\mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- ullet Direct numerical calculation of $C_2({f Q})$ thus (although used) very problematic
 - Slow decrease of $D(\mathbf{r})$, oscillating asymptotic $\psi_{\mathbf{k}}^{(2)}(\mathbf{r})$...
- Awkward: Fourier transform, then "almost inverse" Fourier transform, numerically...
- Natural idea: ,,interchange order of ,,integrals"

$$C_2(\mathbf{Q}) = \frac{1}{(2\pi)^3} \int \! \mathrm{d}^3 \mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 \! \int \! \mathrm{d}^3 \mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}}$$

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^{3}\mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- ullet Direct numerical calculation of $C_2({f Q})$ thus (although used) very problematic
 - Slow decrease of $D(\mathbf{r})$, oscillating asymptotic $\psi_{\mathbf{k}}^{(2)}(\mathbf{r})$...
 - Awkward: Fourier transform, then "almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

$$C_2(\mathbf{Q}) = \frac{1}{(2\pi)^3} \int \! \mathrm{d}^3 \mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 \int \! \mathrm{d}^3 \mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} = \frac{1}{(2\pi)^3} \int \! \mathrm{d}^3 \mathbf{r} \int \! \mathrm{d}^3 \mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2$$

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^{3}\mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- ullet Direct numerical calculation of $C_2({f Q})$ thus (although used) very problematic
 - Slow decrease of $D(\mathbf{r})$, oscillating asymptotic $\psi_{\mathbf{L}}^{(2)}(\mathbf{r})$...
 - Awkward: Fourier transform, then "almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

$$C_2(\mathbf{Q}) = \frac{1}{(2\pi)^3} \int \! \mathrm{d}^3 \mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 \int \! \mathrm{d}^3 \mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} = \frac{1}{(2\pi)^3} \int \! \mathrm{d}^3 \mathbf{r} \int \! \mathrm{d}^3 \mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2$$

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^{3}\mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of $C_2(\mathbf{Q})$ thus (although used) very problematic
 - Slow decrease of $D(\mathbf{r})$, oscillating asymptotic $\psi_{\mathbf{L}}^{(2)}(\mathbf{r})$...
 - Awkward: Fourier transform, then "almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

$$C_2(\mathbf{Q}) = \frac{1}{(2\pi)^3} \int \! \mathrm{d}^3 \mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 \int \! \mathrm{d}^3 \mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} = \frac{1}{(2\pi)^3} \int \! \mathrm{d}^3 \mathbf{r} \int \! \mathrm{d}^3 \mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 \stackrel{??}{=}$$

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^3 \mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- ullet Direct numerical calculation of $C_2({f Q})$ thus (although used) very problematic
 - Slow decrease of $D(\mathbf{r})$, oscillating asymptotic $\psi_{\mathbf{r}}^{(2)}(\mathbf{r})$...
- Awkward: Fourier transform, then ,,almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

$$\begin{split} C_{2}(\mathbf{Q}) &= \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} = \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{r} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \stackrel{??}{=} \\ &\stackrel{??}{=} \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{q} \int \mathrm{d}^{3}\mathbf{r} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \end{split}$$

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^3 \mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of $C_2(\mathbf{Q})$ thus (although used) very problematic
 - Slow decrease of $D(\mathbf{r})$, oscillating asymptotic $\psi_{\mathbf{L}}^{(2)}(\mathbf{r})$...
- Awkward: Fourier transform, then "almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

$$C_{2}(\mathbf{Q}) = \frac{1}{(2\pi)^{3}} \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \int d^{3}\mathbf{q} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} = \frac{1}{(2\pi)^{3}} \int d^{3}\mathbf{r} \int d^{3}\mathbf{q} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \stackrel{??}{=} \frac{1}{(2\pi)^{3}} \int d^{3}\mathbf{q} \int d^{3}\mathbf{r} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} =$$

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^3 \mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- ullet Direct numerical calculation of $C_2({f Q})$ thus (although used) very problematic
 - Slow decrease of $D(\mathbf{r})$, oscillating asymptotic $\psi_{\mathbf{r}}^{(2)}(\mathbf{r})$...
 - Awkward: Fourier transform, then ,,almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

$$\begin{split} C_{2}(\mathbf{Q}) &= \frac{1}{(2\pi)^{3}} \int \! \mathrm{d}^{3}\mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \! \int \! \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \! = \! \frac{1}{(2\pi)^{3}} \! \int \! \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \! \stackrel{??}{=} \\ &\stackrel{??}{=} \frac{1}{(2\pi)^{3}} \! \int \! \mathrm{d}^{3}\mathbf{q} \int \! \mathrm{d}^{3}\mathbf{r} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \! = \\ &= \frac{1}{(2\pi)^{3}} \! \int \! \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) \! \int \! \mathrm{d}^{3}\mathbf{r} \, e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \end{split}$$

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^{3}\mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of $C_2(\mathbf{Q})$ thus (although used) very problematic
 - Slow decrease of $D(\mathbf{r})$, oscillating asymptotic $\psi_{\mathbf{L}}^{(2)}(\mathbf{r})$...
- Awkward: Fourier transform, then ,,almost inverse" Fourier transform, numerically...
- Natural idea: ,,interchange order of ,,integrals"

$$\begin{split} C_{2}(\mathbf{Q}) &= \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} = \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{r} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \stackrel{??}{=} \\ &\stackrel{??}{=} \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{q} \int \mathrm{d}^{3}\mathbf{r} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} = \\ &= \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) \int \mathrm{d}^{3}\mathbf{r} \, e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} & \checkmark \checkmark \checkmark \end{split}$$

• Many (if not all) interesting source types defined as Fourier transforms

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^{3}\mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of $C_2(\mathbf{Q})$ thus (although used) very problematic
 - Slow decrease of $D(\mathbf{r})$, oscillating asymptotic $\psi_{\mathbf{L}}^{(2)}(\mathbf{r})$...
- Awkward: Fourier transform, then "almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

Not working in this form

Many (if not all) interesting source types defined as Fourier transforms

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^3 \mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- ullet Direct numerical calculation of $C_2({f Q})$ thus (although used) very problematic
 - Slow decrease of $D(\mathbf{r})$, oscillating asymptotic $\psi_{\mathbf{r}}^{(2)}(\mathbf{r})$...
- Awkward: Fourier transform, then ,,almost inverse" Fourier transform, numerically...
- Natural idea: ,,interchange order of ,,integrals"

Not working in this form: Fourier transform ≠ integral (Lebesgue)

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^3 \mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- ullet Direct numerical calculation of $C_2({f Q})$ thus (although used) very problematic
 - Slow decrease of $D(\mathbf{r})$, oscillating asymptotic $\psi_{\mathbf{r}}^{(2)}(\mathbf{r})$...
- Awkward: Fourier transform, then "almost inverse" Fourier transform, numerically...
- Natural idea: ,,interchange order of ,,integrals"

$$\begin{split} C_{2}(\mathbf{Q}) &= \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} = \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{r} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \stackrel{??}{=} \\ &\stackrel{??}{=} \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{q} \int \mathrm{d}^{3}\mathbf{r} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} = \\ &= \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) \int \mathrm{d}^{3}\mathbf{r} \, e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} & \checkmark \checkmark \checkmark \end{split}$$

- ullet Not working in this form: Fourier transform \neq integral (Lebesgue)
 - Workaround: regularization, $\lambda \in \mathbb{R}^+$, then $\lambda \to 0$.

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^{3}\mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of $C_2(\mathbf{Q})$ thus (although used) very problematic
 - Slow decrease of $D(\mathbf{r})$, oscillating asymptotic $\psi_{\mathbf{r}}^{(2)}(\mathbf{r})$...
- Awkward: Fourier transform, then ,,almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

$$\begin{split} C_{2}(\mathbf{Q}) &= \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} = \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{r} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \stackrel{??}{=} \\ &\stackrel{??}{=} \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{q} \int \mathrm{d}^{3}\mathbf{r} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} = \\ &= \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) \int \mathrm{d}^{3}\mathbf{r} \, e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} & \checkmark \checkmark \checkmark \checkmark \end{split}$$

- Not working in this form: Fourier transform \neq integral (Lebesgue)
 - Workaround: regularization, $\lambda \in \mathbb{R}^+$, then $\lambda \to 0$.
 - Careful math needed (once in a physicist's lifetime...)

• Interchanging our integrals in a careful way:

 $C_2(\mathbf{Q})$

$$C_2(\mathbf{Q}) = \int d^3 \mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 D(\mathbf{r})$$

$$C_2(\mathbf{Q}) = \int d^3 \mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 D(\mathbf{r}) = \int d^3 \mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 D(\mathbf{r})$$

$$C_2(\mathbf{Q}) = \int d^3 \mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 D(\mathbf{r}) = \int d^3 \mathbf{r} \lim_{\lambda \to 0} e^{-\lambda \mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 D(\mathbf{r})$$

$$C_2(\mathbf{Q}) = \int d^3\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 D(\mathbf{r}) = \int d^3\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 D(\mathbf{r})$$

$$C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r})$$

$$C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r})$$

$$C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r})$$

$$C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}}$$

$$C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}}$$

$$C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}}$$

$$C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} =$$

$$= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

$$C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} =$$

$$= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

$$\frac{C_{2}(\mathbf{Q})}{=} \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} = \\
= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

$$\frac{C_{2}(\mathbf{Q})}{=} \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} = \\
= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

• Interchanging our integrals in a careful way:

$$\frac{C_{2}(\mathbf{Q})}{=} \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} = \\
= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

,,Ingredients":

$$\frac{C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = }{= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = }$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} = }$$

$$= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

- ,,Ingredients":
 - Conditions of (Lebesgue) integrability

$$\frac{C_{2}(\mathbf{Q})}{=} \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} = \\
= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

- ,,Ingredients":
 - Conditions of (Lebesgue) integrability
 - Lebesgue theorem (for interchanging integrals and limits)

$$\frac{C_{2}(\mathbf{Q})}{=} \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} = \\
= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

- ,,Ingredients":
 - Conditions of (Lebesgue) integrability
 - Lebesgue theorem (for interchanging integrals and limits)
 - Fubini's theorem (for interchanging repeated integrals)

$$\frac{C_{2}(\mathbf{Q})}{=} \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} = \\
= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

- ,,Ingredients":
 - Conditions of (Lebesgue) integrability
 - Lebesgue theorem (for interchanging integrals and limits)
 - Fubini's theorem (for interchanging repeated integrals)
- In last step, cannot interchange $\int d^3 \mathbf{q}$ and $\lim_{\lambda \to 0}$.

$$\frac{C_{2}(\mathbf{Q})}{=} \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} = \\
= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

- ,,Ingredients":
 - Conditions of (Lebesgue) integrability
 - Lebesgue theorem (for interchanging integrals and limits)
 - Fubini's theorem (for interchanging repeated integrals)
- In last step, cannot interchange $\int d^3 \mathbf{q}$ and $\lim_{\lambda \to 0}$.
- As of now, continuing only in the spherically symmetric case:

$$f(\mathbf{q}) \equiv f_s(q), \ D_{cc}(r) = 2\pi \int_0^\infty \mathrm{d}q \ q^2 \sin(qr) f_s(q).$$

Details of derivation (cont'd)

• After substituting $\psi_{\mathbf{k}}^{(2)}(\mathbf{r})$, "master" formula thus reads as

$$\begin{split} C_2(Q) &= \frac{|\mathcal{N}|^2}{2\pi^2} \lim_{\lambda \to 0} \int_0^\infty q^2 f_s(q) \Big[\mathcal{D}_{1\lambda s}(q) + \mathcal{D}_{2\lambda s}(q) \Big], \qquad \text{where} \\ \mathcal{D}_{1\lambda s}(q) &= \int \mathrm{d}^3 \mathbf{r} \frac{\sin(qr)}{qr} e^{-\lambda r} M\big(1 + i\eta, 1, -i(kr + \mathbf{kr})\big) M\big(1 - i\eta, 1, i(kr + \mathbf{kr})\big), \\ \mathcal{D}_{2\lambda s}(q) &= \int \mathrm{d}^3 \mathbf{r} \frac{\sin(qr)}{qr} e^{-\lambda r} M\big(1 + i\eta, 1, -i(kr - \mathbf{kr})\big) M\big(1 - i\eta, 1, i(kr + \mathbf{kr})\big). \end{split}$$

 These can be calculated (using complex analysis; method pioneered by Nordsieck in the theory of bremsstrahlung & pair creation)

A. Nordsieck, Phys. Rev. 93, 785 (1954).

$$\mathcal{D}_{1\lambda s}(q) = \frac{4\pi}{q} \operatorname{Im} \left[\frac{1}{(\lambda - iq)^2} \left(1 + \frac{2k}{q + i\lambda} \right)^{2i\eta} \mathcal{F}_+ \left(\frac{4k^2}{(q + i\lambda)^2} \right) \right],$$

$$\mathcal{D}_{2\lambda s}(q) = \frac{4\pi}{q} \operatorname{Im} \left[\frac{(\lambda - iq - 2ik)^{i\eta} (\lambda - iq + 2ik)^{-i\eta}}{(\lambda - iq)^2 + 4k^2} \right],$$

Here $\mathcal{F}_{+}(x) \equiv {}_{2}F_{1}(i\eta, 1+i\eta, 1, x)$ is the hypergeometric function

The main result

- For $\lim_{\lambda\to 0}$, function forms of $\mathcal{D}_{1\lambda s}$, $\mathcal{D}_{2\lambda s}$ become "ill-behaved" (*Remark*: a simple well known similar case is the approximation of $\delta(x)$ Dirac delta with smooth peaked functions)
- Need to calculate & simplify $\lambda \to 0$ limit (numerical limit-taking. . . $\Rightarrow \div$) \Rightarrow result: functional, not a proper integral transform of $f_s(q)$
- Result of the calculation:

- $\eta \rightarrow 0$: free $C_2^{(0)}(Q) = 1 + f_s(Q)$ recovered (NB: Q = 2k)
- $|\mathcal{N}|^2$ factor only: Gamow correction $\Rightarrow \mathcal{A}_{1s}, \mathcal{A}_{2s}$, correct the Gamow correction"
- A_{1s} and A_{2s} : well-defined functionals of f_s)(q)
- Care needed about branch cuts ($\pm i0$ terms) of $\mathcal{F}_{+}(x)$ and complex powers

Numerical implementation

- Final numerical integrals needed: in $A_{1\lambda s}$ and $A_{2\lambda s}$
- Transform integral to $x \in [0,1] \Rightarrow$ smooth, ",beautiful" integrands
- Gauss-Krohnrod quadrature (from C++ boost library) used:
 - Main parameters: # of max iterations & tolerance
 - Investigated; optimal value found: few hundred integrand evaluations (instead of many 10000-s)

- Real-time calculation (during fit procedure) possible!
- Codes archived at: github.com/csanadm/CoulCorrLevyIntegral

Example calculations: illustrations

• For Lévy sources, for pion $(\pi^+\pi^+, \pi^-\pi^-)$ pairs:

- most frequent target of HBT measurements
- Shaded region ,,swept" over by $C_2(Q)$ as α changes
- Apparent "nodes" disappear with increased zooming in

Example calculations: illustrations

• For Lévy sources, for kaon (K^+K^+, K^-K^-) pairs:

- Similarly to the case of pions; "nodes" are only apparent
- Coulomb effect stronger ($m_K > m_\pi$; η increases)
- Considerable interplay of experimentally measurable λ , R, α

Summary and outlook

- Efficient new method Coulomb interacting HBT correlation function calculation
 - Calculations directly in momentum (Fourier) space
 - Careful mathematical methods invoked, distribution theory motivated
 - Cross-checked with previous direct calculations
 - Numerical implementation done, ready for use in data analysis
- As of now, implementation only for spherically symmetric sources
 - Prospective generalization I: go beyond spherical symmetry This is where efficiency becomes crucial...
 - Prospective generalization II: short-range strong interactions
 - Prospective generalization (in fact, simplification) for non-identical particle correlations: only $\mathcal{D}_{1\lambda s}$ (ie. \mathcal{A}_{1s}) term needed

New exact analytic formulas for QM Coulomb problem! ©

Thank you for your attention!

