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Motivation: details
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Basic problem: first approximations usually Gaussian or exponential.
When data improve, they frequently become unsatisfactory.
Parameter estimates may become unreliable, need for precision.



Examples: Laguerre expansions

T. Csérgd, S. Hegyi / Physics Letters B 480 (2000) 15-23

Laguerre expansion fit
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Fig. 1. The figures show D3 which 1s proportional to the two-particle Bose—Einstein correlation function, as measured by the UA1 and the
NA22 Collaborations. The dashed lines stand for the exponential fit, which clearly underestimates the measured points at low value of the
squared invariant momentum difference O} (note the logarithmic horizontal scale). The solid lines stand for the fits with the Laguerre
expansion method, which is able to reproduce the data with a statistically acceptable y?/NDF. The fit results are summarized in Table 1.

For describing nearly exponential data
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Fig. 1. The figures show D3 which is proportional to the two-particle Bose—Einstein correlation function, as measured by the UA1 and the
NAZ?2 Collaborations. The dashed lines stand for the exponential fit, which clearly underestimates the measured points at low value of the
squared invariant momentum difference @} (note the logarithmic horizontal scale). The solid lines stand for the fits with the Laguerre
expansion method, which is able to reproduce the data with a statistically acceptable y?/NDF. The fit results are summarized in Table 1.

Basic problem: first approximations usually Gaussian or exponential.
When data improve, they frequently become unsatisfactory.
Parameter estimates may become unreliable, need for precision.
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Figure 2. The ratio, (de/dt — ref) /ref, evaluated from the TOTEM pp elastic differential cross-section
data at /s = 8 TeV [8]. The curve corresponds to the fitted model defined by Equation (44).
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Deviation from a reference exponential indicates a strong non-
exponential behaviour of data. How to characterize this well?




Model-independent Levy expansions
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For o« = 1, these reduce to Laguerre polynomials and the Lévy expansion
reduces to the Laguerre expansion of Ref. [4]
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For describing nearly exponential data




Model-indep. Gauss/Edgeworth expansions

The o = 2 case provides a new expansion around a Gaussian shape that is
defined for non-negative values of ¢ only
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5o } where the order-» Hermite polynomial is defined as
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The general form of Eq. (10) takes the particular
form of the Edgeworth expansion [5.6,15] as:

Two different Gaussian expansion (t>0, or not)




Model-independent Levy expansions

The Lévy expansion of short-range correlation functions results in the
following formula which can be easily fitted to a given data set as

t = QR,
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These Lévy polynomials were introduced in Ref. [6]; the first three are:
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For describing nearly Levy data




Examples: Levy expansions

¢ pp: TOTEM- 13 TeV R =0.7216 + 0.0044 fm
preliminary data A =361.9 + 5.2 mbGeV2
- |evy expansion (pos.def) o = 0.9032 L 0.004

a,=.0.3184 + 0.0039
b, - 0.0706 + 0.0013
4, = 0.05673 + 0.0019
b, - .0.03504 + 0.0018
43 = -0.01934 + 0.00064
b; - 0.02269 + 0.00074
4, = 0.006749 + 0.00023
b, = .0.002157 + 0.00023

Otot =115.21 £ 0.76 mb

p = 0.087 + 0.0004

¥2/INDF = 330/ 279, CL = 2.007e-02
| | | |
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For describing data over 10 orders of magnitude




