


Ultimate Goal

Traditional Grid Sites

L ' 6rid S ) )

Athena Athena Athena Athena

HPC Concept

PG Conter

Beojan Stanislaus 1



Baby Steps

@ Before we can run (dispatching algorithms), need to walk (dispatch events)

@ First go at this uses Ray — Raythena

Scheduling with Ray - Raythena CHEP 19 Talk
@ Use Ray to distribute events over nodes, Athena on each node

@ Ray Driver process on one node handling comms with outside world
@ Ray Actor process on each worker managing a separate Athena process
e Feeds events to Athena using the Event Service idea already in Athena

@ Mostly implemented in 2019, with inefficiencies due to merging output after
running

e Recently improved with on-the-fly merging


https://indico.cern.ch/event/773049/contributions/3473249/attachments/1937441/3213591/miham_2019_11_05_CHEP_Raythena.pdf

On to HPX

@ Want to reduce the number of moving parts
@ HPX seemed really promising

e C++ APl so it can be integrated into Athena (Ray is in Python)
@ Built for HPCs - Can handle inter-node and intra-node scheduling
@ Support for GPU acceleration



First Impressions

@ First built toy prototype scheduler to compare against TBB flow graph
@ Immediately saw a number of issues

@ Scheduling seemed slower than in TBB

e APl was a bit finicky (can’t just wrap anything in a future)

@ Built-in CUDA support is too limited to be useable

e Defaults to one queue per hardware thread



HPX vs TBB

E ° Scheduler Device
= ;e
2 ® — HPX — CPU
S e —— TBB e GPU
E 08
- O @
=]
Q
_En .\
=} \l
o
e
< 0.6
= °
o
L
iy /

I

0.0 I I ! 1 !
0 20 40 60 80 100 120

Threads

HPX slower than TBB



Pushing On

@ Pushed on anyway, integrated into Gaudi, then into Athena
@ Futures APl needed a shim to look like TBB arena API

e Can't combine HPX and TBB, according to HPX developers
@ Work needs to be explicitly launched on a specific node

e No unified memory space - can't just dispatch algorithms to different nodes
e End up dispatching events to be scheduled by Athena on each worker



The Fatal Flaw

@ Remote launches and local launches have different API calls
@ Both end up running on the same thread pool

@ Separate queue per hardware thread means you can end up stuck behind
slow work
@ This interacts badly with Athena event loop model (schedule “draining” of
slot when we run out):
e If compute work on event ends up scheduled behind task to “drain” slot, event
can never complete
@ Even with a global queue, pushing event can take a significant time
@ Delays of 35 ms to push an event - Seriously limits max throughput



Q
o
c
o
S
S
A
—
)
a
=
>
o
)
<
o
T

440

435

[29s/51A3] ®pou Jad IndysnoayL

=

405

0.0

30

25

20

15

10

30|

I
0
~

o n

&
[28s/s51A3] IndysSnouyy

10

Nodes

Throughput doesn’t scale



Switching to MPI

@ Given up and switched to using MPI (sticking with TBB for local scheduling)

@ Already have a working prototype of Athena MPI, now looking to test with
grid integration

@ Implementation is much cleaner
@ Pull model instead of push model

@ Roughly 15 ps (round-trip) to pull an event



MPI-Gaudi Performance

35

25

20 -

Throughput [Evts/sec]
Throughput per processor [Evts/sec]

Near ideal scaling (tested on different system)



Things we never figured out

@ Both HPX and TBB show drop in performance with 128 threads
@ For some reason performance much better on Cori KNL than Perlmutter
@ Maybe artefact of the way Gaudi CPUCruncher works



