

eventually coming with some documentation

19/06/2024
10th Dirac Users’ Workshop

Alexandre Boyer

Navigating diracx architecture and deployment tools

DiracX 0.1.0: Requirements
● Stable underpinnings

○ interfaces for services, dbs, auth
● No schema changes beyond what Dirac v9 requires
● Support for extensions
● Support for Legacy Adapter (i.e Dirac -> DiracX interactions)

○ One fully supported service: JobStateUpdate
● Complete administration documentation

○ Including how to run with K3s

We are not

so far:

2

Plan
> Focus on the foundational aspects essential for developing and deploying
DiracX.

> Serves as an initial step to assist you in creating a DiracX extension tailored
for your community.

1. DBs
2. Services
3. Clients
4. Extensions
5. Deployment

3

Architecture

4

Repositories:
● diracx: backend
● diracx-web: frontend

● diracx-charts: helm charts
● container-images: docker

images to run diracx

1. Interfacing with DBs

diracx-db: data access layer of diracx.
Supports:

● SQL DBs: Most of the operational data.
● OpenSearch: medium-term data about jobs

and pilots, Open Telemetry data.

5

https://github.com/DIRACGrid/diracx/blob/main/docs/DATABASES.md

1.1.1 Generating the interface: SQL DBs
● SQLAlchemy:

○ Python SQL toolkit and Object-Relational Mapping (ORM)
library.

● Supported SQL implementations in diracx:
○ MySQL
○ MariaDB
○ SQLite (only for testing)

● diracx-db SQL structure:
○ schema.py: <db> schema based on SQLAlchemy API

(tables, attributes). No more .sql file within the code.
○ db.py: Methods to interact with <db> using

schema.py. <db> should inherit from diracx
BaseSQLDB.

6

1.1.2 Example: SQL DBs
schema.py:
from sqlalchemy.orm import declarative_base

JobDBBase = declarative_base() # define a table

class JobJDLs(JobDBBase):

 # table name

 __tablename__ = "JobJDLs"

 # primary key

 JobID = Column(Integer, autoincrement=True,

primary_key=True)

 # other columns

 JDL = Column(Text)

 JobRequirements = Column(Text)

 OriginalJDL = Column(Text)

7

db.py:
from .schema import JobJDLs

from sqlalchemy import delete

inherits from BaseSQLDB

class JobDB(BaseSQLDB):

 metadata = JobDBBase.metadata

 # uses sqlalchemy to build SQL requests

 async def delete_jobs(self, job_ids: list[int]):

 """Delete jobs from the database."""

 stmt = delete(JobJDLs).

 where(JobJDLs.JobID.in_(job_ids))

 await self.conn.execute(stmt)

1.2.1 Generating the interface: OS DBs

● Interface depends on the
OpenSearch API.

● diracx-db OS structure:
○ <db-name>.py contains the fields

and the index name.
○ Class should inherit from BaseOSDB.

8

1.2.2 Example: OS DBs
job_parameters.py:
class JobParametersDB(BaseOSDB):

 fields = {

 "JobID": {"type": "long"},

 "timestamp": {"type": "date"},

 "HostName": {"type": "keyword"},

 …

 }

 index_prefix = "elasticjobparameters_index_"

 def index_name(self, doc_id: int) -> str:

 return f"{self.index_prefix}_{doc_id // 1e6:.1f}m"

9

1.3.1 Actually connecting to a DB

10

1.3.2 Actually connecting to a DB: further details
● Configuration is no longer specified in dirac.cfg file but through

environment variables.
● SQL DBs: configuration must follow the SQLAlchemy connection URL

format.
○ The driver part of the URL is always specified and must refer to an async-compatible

backend.
● OS DBs: configuration must be defined as a JSON mapping (more details

in the opensearch documentation)

11

https://docs.sqlalchemy.org/en/20/core/engines.html#database-urls
https://docs.sqlalchemy.org/en/20/core/engines.html#database-urls
https://opensearch.org/docs/latest/clients/python-low-level/#connecting-to-opensearch

2. Dealing with Services
diracx-routers: business logic layer of diracx, based on
FastAPI.

● Services are now contained within a single FastAPI
application:

diracx.routers.create_app()

● What was previously a Dirac handler (service) is now an
API router.

12

https://github.com/DIRACGrid/diracx/blob/main/docs/SERVICES.md

2.1.1 Routers
● Each service is associated with a DiracxRouter

○ Services are served under /api/<service>:
○ Service names are defined in the dirac.services

entrypoint of pyproject.toml.

[project.entry-points."diracx.services"]

jobs = "diracx.routers.job_manager:router"

● Routes & Operations (HTTP methods) are the
equivalent of the export_<method>() methods
from Dirac handlers:

13

@router.<operation>("/<route>")

async def …

curl -X <operation> <diracxurl>/<route>

@router.delete("/{job_id}")

async def delete_single_job(...)

curl -X DELETE <diracxurl>/api/jobs/<job_id>

2.1.2 Routers: Example

14

● Deleting a job in Dirac:
class JobManagerHandler(RequestHandler):

 def export_deleteJob(self, jobIDs):

 """Delete jobs.

 """

 …

● Deleting a job in DiracX:
if router is defined as “jobs” in

pyproject.toml

router = DiracxRouter()

then the following operation is available

through DELETE /api/jobs/

@router.delete("/")

async def delete_bulk_jobs(

 job_ids: Annotated[list[int], Query()],

 …

● Secrets are no longer specified using the
dirac.cfg file.

● create_app() uses environment variables
to set them.

● Refer to these as “settings”:
○ Based on pydantic settings management

● Examples:
○ Signing key for tokens
○ OIDC client credentials
○ Service specific things (token lifetimes, sandbox store

options…)

● Note: there exist environment variables to
disable specific services :

DIRACX_SERVICE_<service-name>_ENABLED=false

2.2.1 Injecting Settings in services

15

https://docs.pydantic.dev/latest/concepts/pydantic_settings/#environment-variable-names

2.2.2 injecting Settings in services: Example

16

● Settings class for the Authentication
router:

@add_settings_annotation

class AuthSettings(ServiceSettingsBase):

 """Settings for the authentication

service."""

 model_config =

SettingsConfigDict(env_prefix="DIRACX_SERVI

CE_AUTH_")

 dirac_client_id: str = "myDIRACClientID"

● Defining settings as environment
variables:

DIRACX_SERVICE_AUTH_DIRAC_CLIENT_ID =
”myNewDIRACClientID”

● Get values from a route:
@router.get("/openid-configuration")

async def openid_configuration(settings:

AuthSettings):

 ...

 client_id = settings.dirac_client_id

2.3.1 Getting Configuration
● DiracX only has a read-only view of the

CS.
○ Will be the last thing to be migrated

● Updates are made to the legacy CS and
synchronized.

● Structure of the DiracX Configuration is
not the same.
○ Truly multi-VO
○ Strictly typed
○ Well defined schema

17

https://github.com/DIRACGrid/diracx/blob/main/docs/CONFIGURATION.md

● Get configuration from a route:

from diracx.routers.dependencies import Config

@router.post("/summary")

async def summary(

 config: Config,

)…

 if not config.Operations["Defaults"].Services.JobMonitoring.GlobalJobsInfo:

 …

2.3.2 Getting Configuration: Example

18

● SQL and OS DBs are available through the same module:
diracx.routers.dependencies

from diracx.routers.dependencies import JobDB

@router.get("/{job_id}")
async def get_single_job(job_db: JobDB):

● SQL DBs: transactions are opened for the duration of the request.
○ Successful requests: commit transaction.
○ Bad request (HTTP status code >=400): roll back the transaction.

● No such transaction/rollback mechanism for OS DBs.

2.4 Getting data through diracx-db

19

● Managed by access_policies modules:
○ Every route should rely on a given policy
○ Open routes (requiring no authN/authZ) should be

explicitly decorated with @open_access.
● Rely on the access token payload.

@router.get("/{job_id}")
async def get_single_job(check_permissions:
CheckWMSPolicyCallable …

● Implementation of policies can be injected
within the code through pyproject.toml

2.5.1 Permission management: Using Access policies

20

● PolicyAccess:
class SandboxAccessPolicy(BaseAccessPolicy):

 @staticmethod
 async def policy(
 policy_name: str,
 user_info: AuthorizedUserInfo,
 /,
 *,
 action: ActionType | None = None,
 job_db: JobDB | None = None,

 …): ...

 if action == ActionType.CREATE:
 if NORMAL_USER not in user_info.properties:
 raise HTTPException(status.HTTP_403_FORBIDDEN)
 return

2.5.2 Permission management: Example

21

● Calling it from a route:
await check_permissions(

 action=ActionType.CREATE,

sandbox_metadata_db=sandbox_metadata_db, pfns=[pfn]

)

3. Clients: Overview
● diracx-client: generated by autorest

from the OpenAPI json file generated by
FastAPI.

● diracx-api: Python API to interact
with services using diracx-client
methods(business logic).

● diracx-cli: a CLI for direct interaction
with the services.

22

https://github.com/DIRACGrid/diracx/blob/main/docs/CLIENT.md

3.1.1 generating/updating diracx-client
● Each time there is a PR targeting the main branch, a CI/CD job aims at

detecting breaking changes in the API.

● If approved by the repo admins, you can try to regenerate it following the
“documentation”.
○ If you don’t manage, admins can also regenerate a client on your behalf within your PR.

23

https://github.com/DIRACGrid/diracx/blob/b610ec7e862e3aab06a14bf0f90492bc829313fb/.github/workflows/main.yml#L136-L156

3.1.2 customising diracx-client
● Structure:

○ models: data structures
○ operations: methods to interact with the services
○ aio: asynchronous clients (constains async operations)

● _patch.py: allows customising the generated
client/operations/models.

Note1: modifications should be avoided as much as
possible.

Note2: any modifications in the sync client should be
ported to the async client, and vice-versa.

24

3.2.1 creating a diracx-API method

25

● Import DiracClient
● Decorate the method with @with_client to handle client configuration.
● Pass the client as a keyword argument

from diracx.client.aio import DiracClient

from .utils import with_client

@with_client

async def create_sandbox(paths: list[Path], *, client: DiracClient) -> str:

 ...

3.2.2 using a diracx-API method

26

● Not passing a DiracClient to the API method:
○ Can be provided by @with_client.
○ Useful for quick work requiring a single call to a service.

result = await create_sandbox(paths)

● Passing a DiracClient to the API method:
○ For optimised performances: calls to multiple services.

async with DiracClient() as client:

 result = await create_sandbox(paths, client)

3.3 creating a diracx-cli (replacement for Dirac scripts)

27

● Import DiracClient and/or a
diracx-api

● Import AsyncTyper (custom async
Typer)

● Decorate the method with
@app.async_command()

Note: Typer allows generating
commands and subcommands such as:

$dirac jobs search <parameters>

from diracx.client.aio import

DiracClient

from .utils import AsyncTyper

app = AsyncTyper()

@app.async_command()

async def login():

 async with DiracClient() as client:

$dirac login

3.4 Configuring clients: preferences

28

● DiracXPreferences: configuration is loaded from the environment
variables (Similar to the service settings).

● Options (environment variables):
○ (Required)$DIRACX_URL: pointing to the diracx services.
○ (“Required”)$DIRACX_CA_PATH: CA path to interact with the services.
○ $DIRACX_CREDENTIALS_PATH: path where access and refresh tokens are stored.
○ $DIRAC_LOG_LEVEL: log level.
○ $DIRAC_OUTPUT_FORMAT: output format

4. General word about Extending DiracX
● DiracX provides many Python “entrypoints” (pyproject.toml)
● Used to override databases/services/auth policies
● No support for setting at runtime

○ Extensions are configured at install time based on the extension code
○ Changes require making a new release of your extension

29

[project.entry-points."diracx.db.sql"]

AuthDB = "diracx.db.sql:AuthDB"

JobDB = "<extension>.db.sql:ExtendedJobDB"

https://github.com/DIRACGrid/diracx/pull/249

● Kubernetes (k8s) has become the defacto way:
○ allows you to deploy containerized applications
○ underlying infrastructure is abstracted.
○ configuration of the application and how it should run is

communicated to k8s via yaml files.
● Helm: allows templating these yaml files.

○ a templated description of an application like DiracX is called chart.
○ also allows managing dependencies between charts.

(e.g. the DiracX application needs a database to run, so the
DiracX charts has a dependency on the mysql charts.

5. Deployment

30

https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://helm.sh/
https://github.com/DIRACGrid/diracx-charts

● Contains the deployment for diracx and diracx-web, as well as
dependencies:
○ MySQL, OpenSearch databases
○ Dex and IAM as identity provider
○ Minio as an object store for the SandboxStore
○ OpenTelemetry to manage traces, monitoring and logging

(experimental).

5.1.1 diracx-charts: presentation

31

● 4 types of installation:
○ demo/dev: install everything and configure everything with

pre-configured values.
○ prod: a DIRAC installation with it's own DBs and everything already

exist. Create a cluster, but bridge on existing external resources (like
DBs).

○ new: start from absolutely nothing (no DIRAC), and install all the
dependencies.

○ new without dependencies: start with nothing, but use externally
managed resources (like DB provided by your IT service).

5.1.2 diracx-charts: Installation Type

32

● DiracX environment variables are provided through a yaml file.
● Settings and DB credentials are loaded as secrets.
diracx:

 hostname: <hostname>

 settings: # Service settings and Config location

 DIRACX_SANDBOX_STORE_AUTO_CREATE_BUCKET: "true"

 sqlDbs: # SQL DB credentials and configuration

 dbs:

 JobDB:

 osDbs: # OS DB credentials and configuration

 dbs:

 JobParametersDB:

5.1.3 diracx-charts: Values

33

● Useful for demo or testing purposes.
● Simply start it with: run_demo.sh
● Once ready, you will get some information on how to interact with the

installation:
○ Set environment variables to interact with the cluster:

KUBECONFIG, HELM_DATA_HOME, PATH
○ Set environment variables to configure the DiracX client:

DIRACX_URL, DIRACX_CA_PATH
○ URL and credentials to access the demo from a web browser

(diracx-web).

5.2.1 Running the demo installation (locally)

34

● Python and Node modules can be mounted within the containers.
○ Example: DiracX, Dirac, Diracx-Web
○ Code can be edited and applied within the cluster in real time.
○ run_demo.sh /path/to/diracx /path/to/diracx-web …

● Configuration is also mounted within the containers.
○ You can access it locally, edit it and git commit.

5.2.2 Running the demo installation: A few tips

35

1. Does your institute provide a managed k8s service?
○ E.g. Rancher, Openshift, Tanzu, public clouds
○ -> If yes, use it!

2. Else, we recommend k3s?
○ A lightweight kubernetes distribution (single or multi node)

○ Installation docs
○ DIRAC certification will run with k3s

5.3.1 Running the prod installation

36

https://github.com/DIRACGrid/diracx-charts/tree/master/k3s

● Custom branches (diracx, diracx-web) can be deployed:
○ Use cases: test features on certification instances, hotfix in production

diracx:

 pythonModulesToInstall:

 - "git+https://github.com/USERNAME/diracx.git@BRANCH_NAME#egg=diracx_core&subdirectory=diracx-core"

 - "git+https://github.com/USERNAME/diracx.git@BRANCH_NAME#egg=diracx_db&subdirectory=diracx-db"

diracx-web:

 repoURL: "https://github.com/USERNAME/diracx-web.git"

 branch: "feat-custom-branch"

5.3.2 Running the prod installation: a few tips

37

A word about diracx-web

38

Foundations are almost there:
● Generic table and filters

○ JobMonitor
● Dashboard with draggable

instances of applications
● Possibility to create extensions

Further details in a presentation
dedicated to the web interface at the
next BiLD meeting.

Questions?

39

