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1.1.1 Dirac jobs

Dirac Job

* Type of container to acquire
resources on a computing system.

* Combination of a task (or workflow)
along with its metadata (hardware,
software)

A word about multi-node tasks

While multi-core jobs running on a
single node are supported, multi-node
jobs are currently out of scope (no use
case).
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1.1.2 Content of a job

Task definition

* Python and bash script

* Dirac workflow: Linear workflow described as an XML file, specific to Dirac.
Tasks can be described in Python.

CWL (common workflow language): open standard for describing
how to run command line tools and connect them to create workflows. (#/542)

Metadata
* JDL file (Job Description Language): provide metadata for the Dirac WMS.

* Along with task requirements, you can also define Dirac-specific parameters
such as the site(s) you want to target.

* JDL allows specifying parametric jobs (same task processing different inputs).


https://github.com/DIRACGrid/DIRAC/pull/7542

1.1.3 Aword about CWL

cwlVersion: v1.2

class: CommandLineTool

PowerfUldescription language baseCommand: echo
e Benefits of CWL: inputs:
Interoperable, portable, reusable, message :
lable, transparent, communit type: string
SCala ’ p ? y default: "Hello World"
support inputBinding:
o . position: 1
* Limitations of CWL: can be complex outputs: []

Future directions:

* CWL supportis (and will stay) very limited in Dirac.

* Butwe aim to make CWL the primary method for job description in DiracX.
e Should replace Dirac workflows at some point, as well as a large part of the JDL.
* Ongoing efforts to use at the production/transformation level.

* Ongoing discussion about the user interface (feel free to participate): #1/5


https://github.com/DIRACGrid/diracx/discussions/175

1.2.17 Submitting jobs: Validation

Dirac workflow and CWL

« dirac-jobexec: execute the Dirac workflow locally.

« cwltool: equivalent to dirac-jobexec for cwl workflows.

New in v9.0 JDL validation (#69/3)

* Performed server side
* Immediate feedback if any obvious error:

* inputData contains too many files (must contain at most 500)
* maxNumberOfProcessors must be greater than minNumberOfProcessors
* sites and bannedSites are mutually exclusive

* Invalid platform


https://github.com/DIRACGrid/DIRAC/pull/6973

1.2.2 Submitting jobs: Interfaces

Interfaces

* CLI: create your JDL manually and submit it with Dirac commands.

* Python API: define the metadata of the task, the APl is handling the rest.
* Web app: similarto the Python AP| but easier for muggles.

Note:

* Submitting a parametric JDLs will result in the generation of multiple jobs.

* CWL can be tested by specifying cwltool asthe executable and the cwlfile as
an argument inthe JDL.
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Heterogeneous Computing Resources




2.1.1 Traditional Grid Sites

Description

* Clusters composed of worker nodes
and orchestrated by a batch system.

* Mostly composed of x86 CPUs (Intel,
AMD).

* External connectivity from the worker

nodes. G Grid Site
e CVMFES isinstalled and mounted on

the worker nodes (software CUNFS '.

dependencies). @‘ T
* Available through a Computing

Element (CE)

using X509 certificates and/or OIDC Worker Nodes
tokens.

Computing Element
(e.g.ARC, HTCondor)

Batch System
(SLURM, HTCondor schedd
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2.1.2 Computing Elements: ARC

ARC

e LTS: v6 (V7 is coming "soon").

* Job management: replacing
gridftp with AREXto manage
jobs. AREX comes with a REST
interface.

* AuthN/Z: through x509 certificates.
Limited support for OIDC tokens
(that we have not been able
to use so far). They should be better
supported from v7.

Dirac interface
* ARCCE: the good old interface,

leveraging the python arc client and
the gridftp interface to interact with
ARC instances. Dropped from v9.0

ARCG6CE: intermediate solutions,
using the AREX services through the

python arc client. Dropped from
v9.0

AREXCE: the new

interface, leveraging the REST
Interface to interact with the AREX
Services.

* Transition details: wiki
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https://github.com/DIRACGrid/DIRAC/wiki/DIRAC-9.0

2.1.3 Computing Elements: HTCondor

HTCondor Dirac interface: HTCondorCE

e LTS: V23 * Calls the HTCondor CLI to interact

« Change release management, new with the instances (could be worth
terminology, better support for trying the Python bindings).
containers... * Support OIDC tokens (#6803)

* Job management: HTCondor and, temporarily, SSL certificates
client necessary to interact with (#7630). New from v8.0
HTCondor instances. Python . ,
bindings available. * Afew fixes to get more details about

« AuthN/Z: dropped support for failed/aborted jobsin v8.0 (#7069)

Globus toolkit in v9.3 and fully
embraced OIDC tokens. SSL
certificates are still

supported though.
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https://github.com/DIRACGrid/DIRAC/pull/6803
https://github.com/DIRACGrid/DIRAC/pull/7630
https://github.com/DIRACGrid/DIRAC/pull/7069

2.2.1 Opportunistic resources and HPCs

Description
Batch System
* Clusters composed of worker nodes Supercomputer  (SLURM, PES)

with fast inter-node connectivity.

 Cancontain non-x86 CPUs (ARM)
and GPUs.

* External connectivity is not
guaranteed and access can be
protected via a VPN.

e CVMFS is notinstalled and mounted
on the worker nodes.

Queue
of Jobs

Worker Nodes with fast inter-

. node connectivity.
° Avallable thrOUgh SSH Accelerators and non x86-CPUS
(6PUs, FPGAs)
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2.2.2 SSH and batch systems:

Batch Systems Dirac interface: SSHCE
* Various Batch Systems: HTCondor, * Dirac-specific solution calling SSH
Slurm, PBS/Torque, SGE, LSF. commands to interact with the

* Nowadays, 2 of them are batch system.

predominant: HTCondor in HTC, * Python library such as Fabric could
Slurm in HPC. be investigated.

* Batch Systems have different
interfaces: there are Dirac-specific
plugins to interact with them
properly.

* Slurm is well supported. Plugins for
Condor, PBS, SGE, LSF, OAR too.

* New inv8.0 Ajob parameter indicating
the batch system used (#/289)
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https://github.com/DIRACGrid/DIRAC/pull/7289

2.3.7 Clouds (laaS)

Description

e Clusters composed of Virtual
Machines spawned by the users

according to their needs.

Computing Element
e.f.1lib-cloud, AWS Client)

* External connectivity from the VMs.

Cloud Infrastructure

API

e CVMES can be installed and mounted (e.g. OpenStack, AWS)

<

on the VMs (software dependencies).

.

* Available through the cloud service
provider API. CVNFS IR Mgt

Images

Virtual Machines hased on
physical servers
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2.3.2 Cloud service provider APIs

APls & libcloud

* Various APIs: AWS, Google cloud,
Azure, Openstack, OpenNebula...

* libcloud: python library for
interacting with many of the popular
cloud service providers using a
unified API.

Dirac interface

* VMDirac: Dirac-specific and
complex solution to interact with a
few cloud service providers
(#6380). Dropped from v9.0

* CloudCE: Replace VMDirac. A
much simpler solution based on
libcloud.
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https://github.com/DIRACGrid/DIRAC/pull/6380

2.4.17 Aword about volunteering computing

BOINC

* There was some efforts to support integration of BOINC within Dirac.
* Trustless environments based on small clusters and desktop computers.

* Interesting for preemptible HTC workloads.

Dirac interface: BOINCCE

* Allows to interact with BOINC resources via SOAP. No progress since 2013.

e Could potentially be resurrected from the work done with HPC resources, but
NO USEe case.

* |f not used anymore, it will likely be dropped during the transition to v9.0.

17






3.7.1 Pre-processing Dirac jobs

Default asynchronous operations (Optimizers)
* JobSanity: New from v8.0 Simply assign a sandbox to a job (JDL validation is
performed synchronously now).

* InputData: Query the file catalog for specified input data and adds
information for the next operation.

* JobScheduling: Make a scheduling decision and gathers similar jobs in task
queues, waiting for being matched with a computing resource.

A few old and unused features were deleted from v8.0: VO plugins (#6161),
filtering by platforms (#671/8).
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https://github.com/DIRACGrid/DIRAC/pull/6161
https://github.com/DIRACGrid/DIRAC/pull/6178

3.7.2 Moving away from executors

Task
repository

IV

Executor Executor Executor
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Executors

* Dirac-specific task queue solution:
composed of a Mind that distribute
tasks to Executors.

* There has been an attemptto replace
the framework with Celery and
message queues from v8.0 (#/022),
but it was not straightforward.

e Solutions will be reassess within
DiracX.



https://github.com/DIRACGrid/DIRAC/pull/7022

3.2.1 Getting allocations using the pull model

k. Pilots fetch )
Jjobs
4, Pilots
6. Jobs run evaluates
environment

Waiting

Pilot-Factory 6*. Jobs get
(SiteDirector) software
S dependencies

1. Jobs arrive
in WMS gqueue CERN VM File

DIRAC System (CVMFS)

2. Pilot- Factory _ _
generates & 3. Pilots wait

submits pilots Computing in the Site Grid Site
Element gueues
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3.2.2 Generating Pilots

Site Director

* Submit pilots: check available jobs
for a given resource and slots
available and submit pilots
accordingly (using Dirac Interfaces).

 New from v9.0, SiteDirector does not
take Task queues into account
anymore, submissions are parallelized
per CE (#/110).

* Monitor pilots: check the status of

the submitted pilots (parallelized per
CE).

A few old and unused options were
(#/110) and 1 Site
Director acts for 1 specific VO (#/263).
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https://github.com/DIRACGrid/DIRAC/pull/7110
https://github.com/DIRACGrid/DIRAC/pull/7110
https://github.com/DIRACGrid/DIRAC/pull/7263

3.2.3 Pilot Structure

Pilot architecture

e Various commands: At a minimum
install DIRAC, configures it, and
run a JobAgent.

Pilot upgrades

* devel branch: fixes and new
features should target the
development branch (tested in
certification).

* master branch: admins are taking
care of merging devel into master
when required.

Get
Pilot
Version
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3.2.4 Pilot: various new features

Classic Solution Remote Pilo‘t lofﬁ]ng
New features s D
c c . ilotManacer
* "Register Pilot" command: Pilots Tethanage Tornardo
started from the vacuum can — — <L
. o nmiLerrace
register themselves in the DB and ~ | ool
be declared as "Running” (#6914).  a. ¢etTobOutputQ on outp;;: i real time
user demands
* Remote Pilot logging: N \f}
Pilots sends their logs to Tornado by
themselves instead of e ce
being fetched by the CE interfaces |
(#158). Configuration includes I ietch Zu‘c%u:ccs ot
(#227); " orecition
* Log buffer size: avoid too many \]/

interactions with Tornado
* CE white list: enable remote pilot Pilot-Tobs Pilot-Tobs
logging only for a specific set of CEs.
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https://github.com/DIRACGrid/DIRAC/pull/6914
https://github.com/DIRACGrid/Pilot/pull/158
https://github.com/DIRACGrid/Pilot/pull/227

3.2.5 Pilot: install Dirac from CVMFES (#205)

Dirac Client (Pilot) requirements Can Dirac work without CVMFS?
* Certificates for each users (for creating proxies) * Yes, and you may well have
e CAs and CRLs, because...certificates: Bundle this case in HPCs

Delivery service, or better found locally. « CVMFS_locations may point
* Certificate proxies, so VOMS: Dirac needs to non-CVMFES locations...

VOMS config files (pointers to VOMS servers).
* Python 2.7+
* Internet access

* Containerimages: ata minimum for
iIsolation through Apptainer.

* A pointerto a CS.

e DIRACOS and the DIRAC code: can
be downloaded on-the-fly, or better found
locally.
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https://github.com/DIRACGrid/Pilot/pull/205

3.2.6 JobAgent and inner CEs

JobAgent
* Match jobs and submit them to inner [ }
PoolCE

CEs:

* InProcessCE: manages 1 job atatime

on bare-metal
e SingularityCE: manages 1 job atatime
In a container (isolated)

L~
* PoolCE: rely on multi-process and L

previous CEs to manage multiple jobs in

parallel. InProcessCE

A word about multi-core allocations

SingularityCE should be preferred over

InProcessCE to isolate jobs from each
other.
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3.3.71 Getting allocations using the push model

Waiting
Jobs

1. Jobs arrive
in WM5 gueue

2. PJA retches a
suitable job

CERN VM File

DIRAC System (CVMFS)

3. PJA submits the

job Computing in the Site Grid Site
Element Jueues
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3.3.2 Limitations of the PushJobAgent

Limitations

* Works only with dirac workflows.

* Not robust: any temporary issue
with the agent or CE results in the loss of the
running jobs.

e Not scalable: consumes too much RAM:
200-250 jobs in parallel
consumes around 50GB of RAM.

e Current workflow:

* PJAfetches jobs,
creates JobWrapper processes for each of them
and executes them in parallel (77MB/proc).

* Each JobWrapper generates a dirac-
jobexec process (90MB/proc), which executes
the "DIRAC workflow",

* These processes are remaining in memory as
long as jobs are running, even if they just wait
for results from remote computing resources.

DIRAC

PushJobAgent

dirac-jobexec

JobWrapper

dirac-jobexec

CE
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3.3.3 Towards a more robust PushJobAgent(# /459)

ComPu‘ting Resource

Dirac WMS with no external conne_c‘tivi‘tl/
(r V)
Changes &)
* Pre/Post process methods in —
JobWrapper: Operations around [ °°| ]
tasks/workflows execution should be o
transferred from the workflows to the v . o
preProcess() and postProcess() method (will be /
customisable). L jeiift?
* JobWrapperOfflineTemplate: JobWrapperTemp Submission Poliy = depleatior
late solely executing the task/workflow (no Compuiting Resource
p re/p OSt p rOCG SSI ng) ) Dirac WMS with no external connectivity
o o 5 o K PushJobAgent j_SL‘{,M;-t%
* PushlobAgent submission policies: |
* Application (temporary): the original and limited Ioiwffppéz) > \
solution: only a small part of the workflow is R S
submitted to a remote computing resources . o J
* JobWrapper: pre/postProcess() operations —

executed by the agent, the whole task/workflow is
sent to the remote computing resource.

Submission Pohcu/ = JobWrapper
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https://github.com/DIRACGrid/DIRAC/issues/7459

Adapting for Tomorrow:
Future Plans and Strategies




4.1 CWL in the Production/Transformation Systems

Unified language Goal

* Production: A CWL with multiple * Local Workflow Testing: Initially, the
steps. Each step could be a workflow user would test the CWL workflow
or a command line tool. locally using cwltool, validating the

workflow's structure and ensuring
that it executes correctly with the
provided inputs.

* Transformation: correspond to a step
of the main CW.L.

e Job: similarto a
transformation with additional

details.

* Submission as a Dirac Job or a Dirac
Production: Just by providing the CWL
and a few additional parameters
(outside the CWL). It should

A few examples of workflows are work transparently.
available in dirac-cwl-proto.
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https://github.com/aldbr/dirac-cwl-proto/tree/main/workflows

4.2 Aword about Dirac Benchmark

Challenges Considered solution (#12)

* DB12 code depends on Python * Freeze DB12 code and
updates: the language becomes dependencies: create an executable
more performant, which impacts the that would last until Python 3.12 is
benchmark scores. deprecated.

* HS06: DB12 was * HEPScore: Align DB12 on HEPScore,
originally mapped to HS06, which should be representative of
which is not used WLCG workloads.
anymore by WLCG. * Assess differences between the

* ARM and GPUs are more prevalent: freezed DB12 package
we are not sure whether DB12 and HEPScore: each time the
performs correctly in these contexts. package needs to be updated (factors

to correct the scores accordingly).
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https://github.com/DIRACGrid/DB12/issues/12

Thank you for your attention

Questions? Comments?
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