
Workload Management
Spotlight on Current Advancements and Future Plans

The 10th Dirac User Workshop
June 20th 2024

Federico Stagni & Alexandre Boyer
federico.stagni@cern.ch & alexandre.boyer@cern.ch

European Organization for Nuclear Research
Meyrin, Switzerland

https://en.wikipedia.org/wiki/Auguste_and_Louis_Lumi%C3%A8re

Introduction

• Central Role in Dirac: as the backbone of
Dirac, it ensures efficient and effective job
scheduling and execution.

• Comprehensive Resource
Federation: aggregates a vast network of
heterogeneous computing resources.

• Empowering Communities: facilitates the
execution of complex workflows at a large
scale, essential for scientific and research
communities.

Workload Management System

2

Defining Jobs

1.1.1 Dirac jobs

• Type of container to acquire
resources on a computing system.

• Combination of a task (or workflow)
along with its metadata (hardware,
software)

Dirac Job

While multi-core jobs running on a
single node are supported, multi-node
jobs are currently out of scope (no use
case).

A word about multi-node tasks

4

1.1.2 Content of a job

• Python and bash script
• Dirac workflow: Linear workflow described as an XML file, specific to Dirac.

Tasks can be described in Python.
• New in v8.0 CWL (common workflow language): open standard for describing

how to run command line tools and connect them to create workflows. (#7542)

Task definition

5

• JDL file (Job Description Language): provide metadata for the Dirac WMS.
• Along with task requirements, you can also define Dirac-specific parameters

such as the site(s) you want to target.
• JDL allows specifying parametric jobs (same task processing different inputs).

Metadata

https://github.com/DIRACGrid/DIRAC/pull/7542

1.1.3 A word about CWL

• Benefits of CWL:
Interoperable, portable, reusable,
scalable, transparent, community
support

• Limitations of CWL: can be complex

Powerful description language

6

• CWL support is (and will stay) very limited in Dirac.
• But we aim to make CWL the primary method for job description in DiracX.

• Should replace Dirac workflows at some point, as well as a large part of the JDL.
• Ongoing efforts to use at the production/transformation level.

• Ongoing discussion about the user interface (feel free to participate): #175

Future directions:

cwlVersion: v1.2

class: CommandLineTool

baseCommand: echo

inputs:

 message:

 type: string

 default: "Hello World"

 inputBinding:

 position: 1

outputs: []

https://github.com/DIRACGrid/diracx/discussions/175

1.2.1 Submitting jobs: Validation

• dirac-jobexec: execute the Dirac workflow locally.
• cwltool: equivalent to dirac-jobexec for cwl workflows.

Dirac workflow and CWL

7

• Performed server side
• Immediate feedback if any obvious error:

• inputData contains too many files (must contain at most 500)

• maxNumberOfProcessors must be greater than minNumberOfProcessors

• sites and bannedSites are mutually exclusive

• Invalid platform

New in v9.0 JDL validation (#6973)

https://github.com/DIRACGrid/DIRAC/pull/6973

1.2.2 Submitting jobs: Interfaces

• CLI: create your JDL manually and submit it with Dirac commands.
• Python API: define the metadata of the task, the API is handling the rest.
• Web app: similar to the Python API but easier for muggles.

Interfaces

8

• Submitting a parametric JDLs will result in the generation of multiple jobs.
• CWL can be tested by specifying cwltool as the executable and the cwl file as

an argument in the JDL.

Note:

Accessing
Heterogeneous Computing Resources

2.1.1 Traditional Grid Sites

• Clusters composed of worker nodes
and orchestrated by a batch system.

• Mostly composed of x86 CPUs (Intel,
AMD).

• External connectivity from the worker
nodes.

• CVMFS is installed and mounted on
the worker nodes (software
dependencies).

• Available through a Computing
Element (CE)
using X509 certificates and/or OIDC
tokens.

Description

10

2.1.2 Computing Elements: ARC

• LTS: v6 (v7 is coming "soon").
• Job management: replacing

gridftp with AREX to manage
jobs. AREX comes with a REST
interface.

• AuthN/Z: through x509 certificates.
Limited support for OIDC tokens
(that we have not been able
to use so far). They should be better
supported from v7.

ARC
• ARCCE: the good old interface,

leveraging the python arc client and
the gridftp interface to interact with
ARC instances. Dropped from v9.0

• ARC6CE: intermediate solutions,
using the AREX services through the
python arc client. Dropped from
v9.0

• AREXCE: the new
interface, leveraging the REST
interface to interact with the AREX
services.

• Transition details: wiki

Dirac interface

11

https://github.com/DIRACGrid/DIRAC/wiki/DIRAC-9.0

2.1.3 Computing Elements: HTCondor

• LTS: v23
• Change release management, new

terminology, better support for
containers...

• Job management: HTCondor
client necessary to interact with
HTCondor instances. Python
bindings available.

• AuthN/Z: dropped support for
Globus toolkit in v9.3 and fully
embraced OIDC tokens. SSL
certificates are still
supported though.

HTCondor
• Calls the HTCondor CLI to interact

with the instances (could be worth
trying the Python bindings).

• Support OIDC tokens (#6803)
and, temporarily, SSL certificates
(#7630). New from v8.0

• A few fixes to get more details about
failed/aborted jobs in v8.0 (#7069)

Dirac interface: HTCondorCE

12

https://github.com/DIRACGrid/DIRAC/pull/6803
https://github.com/DIRACGrid/DIRAC/pull/7630
https://github.com/DIRACGrid/DIRAC/pull/7069

2.2.1 Opportunistic resources and HPCs

• Clusters composed of worker nodes
with fast inter-node connectivity.

• Can contain non-x86 CPUs (ARM)
and GPUs.

• External connectivity is not
guaranteed and access can be
protected via a VPN.

• CVMFS is not installed and mounted
on the worker nodes.

• Available through SSH.

Description

13

2.2.2 SSH and batch systems:

• Various Batch Systems: HTCondor,
Slurm, PBS/Torque, SGE, LSF.

• Nowadays, 2 of them are
predominant: HTCondor in HTC,
Slurm in HPC.

Batch Systems
• Dirac-specific solution calling SSH

commands to interact with the
batch system.

• Python library such as Fabric could
be investigated.

• Batch Systems have different
interfaces: there are Dirac-specific
plugins to interact with them
properly.
• Slurm is well supported. Plugins for

Condor, PBS, SGE, LSF, OAR too.
• New in v8.0 A job parameter indicating

the batch system used (#7289)

Dirac interface: SSHCE

14

https://github.com/DIRACGrid/DIRAC/pull/7289

2.3.1 Clouds (IaaS)

• Clusters composed of Virtual
Machines spawned by the users
according to their needs.

• External connectivity from the VMs.
• CVMFS can be installed and mounted

on the VMs (software dependencies).
• Available through the cloud service

provider API.

Description

15

2.3.2 Cloud service provider APIs

• Various APIs: AWS, Google cloud,
Azure, Openstack, OpenNebula...

• libcloud: python library for
interacting with many of the popular
cloud service providers using a
unified API.

APIs & libcloud
• VMDirac: Dirac-specific and

complex solution to interact with a
few cloud service providers
(#6380). Dropped from v9.0

• CloudCE: Replace VMDirac. A
much simpler solution based on
libcloud.

Dirac interface

16

https://github.com/DIRACGrid/DIRAC/pull/6380

2.4.1 A word about volunteering computing

• There was some efforts to support integration of BOINC within Dirac.
• Trustless environments based on small clusters and desktop computers.
• Interesting for preemptible HTC workloads.

BOINC

• Allows to interact with BOINC resources via SOAP. No progress since 2013.
• Could potentially be resurrected from the work done with HPC resources, but

no use case.
• If not used anymore, it will likely be dropped during the transition to v9.0.

Dirac interface: BOINCCE

17

Supplying Computing Resources with Jobs

3.1.1 Pre-processing Dirac jobs

• JobSanity: New from v8.0 Simply assign a sandbox to a job (JDL validation is
performed synchronously now).

• InputData: Query the file catalog for specified input data and adds
information for the next operation.

• JobScheduling: Make a scheduling decision and gathers similar jobs in task
queues, waiting for being matched with a computing resource.

A few old and unused features were deleted from v8.0: VO plugins (#6161),
filtering by platforms (#6178).

Default asynchronous operations (Optimizers)

19

https://github.com/DIRACGrid/DIRAC/pull/6161
https://github.com/DIRACGrid/DIRAC/pull/6178

3.1.2 Moving away from executors

• Dirac-specific task queue solution:
composed of a Mind that distribute
tasks to Executors.

• There has been an attempt to replace
the framework with Celery and
message queues from v8.0 (#7022),
but it was not straightforward.

• Solutions will be reassess within
DiracX.

Executors

20

https://github.com/DIRACGrid/DIRAC/pull/7022

3.2.1 Getting allocations using the pull model

21

3.2.2 Generating Pilots

• Submit pilots: check available jobs
for a given resource and slots
available and submit pilots
accordingly (using Dirac Interfaces).
• New from v9.0, SiteDirector does not

take Task queues into account
anymore, submissions are parallelized
per CE (#7110).

• Monitor pilots: check the status of
the submitted pilots (parallelized per
CE).

A few old and unused options were
deleted from v9.0 (#7110) and 1 Site
Director acts for 1 specific VO (#7263).

Site Director

22

https://github.com/DIRACGrid/DIRAC/pull/7110
https://github.com/DIRACGrid/DIRAC/pull/7110
https://github.com/DIRACGrid/DIRAC/pull/7263

3.2.3 Pilot Structure

• Various commands: At a minimum
install DIRAC, configures it, and
run a JobAgent.

Pilot architecture

23

• devel branch: fixes and new
features should target the
development branch (tested in
certification).

• master branch: admins are taking
care of merging devel into master
when required.

Pilot upgrades

3.2.4 Pilot: various new features

• "Register Pilot" command: Pilots
started from the vacuum can
register themselves in the DB and
be declared as "Running" (#6914).

• Remote Pilot logging:
Pilots sends their logs to Tornado by
themselves instead of
being fetched by the CE interfaces
(#158). Configuration includes
(#227):
• Log buffer size: avoid too many

interactions with Tornado
• CE white list: enable remote pilot

logging only for a specific set of CEs.

New features

24

https://github.com/DIRACGrid/DIRAC/pull/6914
https://github.com/DIRACGrid/Pilot/pull/158
https://github.com/DIRACGrid/Pilot/pull/227

3.2.5 Pilot: install Dirac from CVMFS (#205)

• Certificates for each users (for creating proxies)
• CAs and CRLs, because...certificates: Bundle

Delivery service, or better found locally.
• Certificate proxies, so VOMS: Dirac needs

VOMS config files (pointers to VOMS servers).
• Python 2.7+
• Internet access
• Container images: at a minimum for

isolation through Apptainer.
• A pointer to a CS.
• DIRACOS and the DIRAC code: can

be downloaded on-the-fly, or better found
locally.

Dirac Client (Pilot) requirements

25

Can Dirac work without CVMFS?

• Yes, and you may well have
this case in HPCs

• CVMFS_locations may point
to non-CVMFS locations...

https://github.com/DIRACGrid/Pilot/pull/205

3.2.6 JobAgent and inner CEs

26

• Match jobs and submit them to inner
CEs:
• InProcessCE: manages 1 job at a time

on bare-metal
• SingularityCE: manages 1 job at a time

in a container (isolated)
• PoolCE: rely on multi-process and

previous CEs to manage multiple jobs in
parallel.

JobAgent

SingularityCE should be preferred over
InProcessCE to isolate jobs from each
other.

A word about multi-core allocations

3.3.1 Getting allocations using the push model

27

3.3.2 Limitations of the PushJobAgent

• Works only with dirac workflows.
• Not robust: any temporary issue

with the agent or CE results in the loss of the
running jobs.

• Not scalable: consumes too much RAM:
200-250 jobs in parallel
consumes around 50GB of RAM.

• Current workflow:
• PJA fetches jobs,

creates JobWrapper processes for each of them
and executes them in parallel (77MB/proc).

• Each JobWrapper generates a dirac-
jobexec process (90MB/proc), which executes
the "DIRAC workflow".

• These processes are remaining in memory as
long as jobs are running, even if they just wait
for results from remote computing resources.

Limitations

28

3.3.3 Towards a more robust PushJobAgent(#7459)

• Pre/Post process methods in
JobWrapper: Operations around
tasks/workflows execution should be
transferred from the workflows to the
preProcess() and postProcess() method (will be
customisable).

• JobWrapperOfflineTemplate: JobWrapperTemp
late solely executing the task/workflow (no
pre/post processing).

• PushJobAgent submission policies:
• Application (temporary): the original and limited

solution: only a small part of the workflow is
submitted to a remote computing resources

• JobWrapper: pre/postProcess() operations
executed by the agent, the whole task/workflow is
sent to the remote computing resource.

Changes

29

https://github.com/DIRACGrid/DIRAC/issues/7459

Adapting for Tomorrow:
Future Plans and Strategies

4.1 CWL in the Production/Transformation Systems

• Production: A CWL with multiple
steps. Each step could be a workflow
or a command line tool.

• Transformation: correspond to a step
of the main CWL.

• Job: similar to a
transformation with additional
details.

A few examples of workflows are
available in dirac-cwl-proto.

Unified language

31

• Local Workflow Testing: Initially, the
user would test the CWL workflow
locally using cwltool, validating the
workflow's structure and ensuring
that it executes correctly with the
provided inputs.

• Submission as a Dirac Job or a Dirac
Production: Just by providing the CWL
and a few additional parameters
(outside the CWL). It should
work transparently.

Goal

https://github.com/aldbr/dirac-cwl-proto/tree/main/workflows

4.2 A word about Dirac Benchmark

• DB12 code depends on Python
updates: the language becomes
more performant, which impacts the
benchmark scores.

• HS06: DB12 was
originally mapped to HS06,
which is not used
anymore by WLCG.

• ARM and GPUs are more prevalent:
we are not sure whether DB12
performs correctly in these contexts.

Challenges

32

• Freeze DB12 code and
dependencies: create an executable
that would last until Python 3.12 is
deprecated.

• HEPScore: Align DB12 on HEPScore,
which should be representative of
WLCG workloads.

• Assess differences between the
freezed DB12 package
and HEPScore: each time the
package needs to be updated (factors
to correct the scores accordingly).

Considered solution (#12)

https://github.com/DIRACGrid/DB12/issues/12

Thank you for your attention
Questions? Comments?

	Slide 1: Workload Management
	Slide 2: Introduction
	Slide 3: Defining Jobs
	Slide 4: 1.1.1 Dirac jobs
	Slide 5: 1.1.2 Content of a job
	Slide 6: 1.1.3 A word about CWL
	Slide 7: 1.2.1 Submitting jobs: Validation
	Slide 8: 1.2.2 Submitting jobs: Interfaces
	Slide 9: Accessing Heterogeneous Computing Resources
	Slide 10: 2.1.1 Traditional Grid Sites
	Slide 11: 2.1.2 Computing Elements: ARC
	Slide 12: 2.1.3 Computing Elements: HTCondor
	Slide 13: 2.2.1 Opportunistic resources and HPCs
	Slide 14: 2.2.2 SSH and batch systems:
	Slide 15: 2.3.1 Clouds (IaaS)
	Slide 16: 2.3.2 Cloud service provider APIs
	Slide 17: 2.4.1 A word about volunteering computing
	Slide 18: Supplying Computing Resources with Jobs
	Slide 19: 3.1.1 Pre-processing Dirac jobs
	Slide 20: 3.1.2 Moving away from executors
	Slide 21: 3.2.1 Getting allocations using the pull model
	Slide 22: 3.2.2 Generating Pilots
	Slide 23: 3.2.3 Pilot Structure
	Slide 24: 3.2.4 Pilot: various new features
	Slide 25: 3.2.5 Pilot: install Dirac from CVMFS (#205)
	Slide 26: 3.2.6 JobAgent and inner CEs
	Slide 27: 3.3.1 Getting allocations using the push model
	Slide 28: 3.3.2 Limitations of the PushJobAgent
	Slide 29: 3.3.3 Towards a more robust PushJobAgent(#7459)
	Slide 30: Adapting for Tomorrow: Future Plans and Strategies
	Slide 31: 4.1 CWL in the Production/Transformation Systems
	Slide 32: 4.2 A word about Dirac Benchmark
	Slide 33: Thank you for your attention Questions? Comments?

