Workload Management

Spotlight on Current Advancements and Future Plans

The 10t Dirac User Workshop
June 20t 2024

Federico Stagni & Alexandre Boyer
federico.stagni@cern.ch & alexandre.boyer@cern.ch

European Organization for Nuclear Research 0 D I RAC

Meyrin, Switzerland THE INTERWARE

https://en.wikipedia.org/wiki/Auguste_and_Louis_Lumi%C3%A8re

Introduction

7N
G <)
Workload Management System Production System
* Central Role in Dirac: as the backbone of > <
Dirac, it ensures efficient and effective job Transformation System
scheduling and execution. - Y,

« Comprehensive Resource
Federation: aggregates a vast network of

heterogeneous computing resources. .+ wc.- obs

* Empowering Communities: facilitates the

[
submit pr‘ocluction :\obs

v

scale, essential for scientific and research
communities.

execution of complex workflows at a large [
N\

Resource Resource Resource
Interfoce Interfoce Interfoce

V V

Compu‘ting Compu‘t ng Compu‘t ng
Resource Resource Resource

1.1.1 Dirac jobs

Dirac Job

* Type of container to acquire
resources on a computing system.

* Combination of a task (or workflow)
along with its metadata (hardware,
software)

A word about multi-node tasks

While multi-core jobs running on a
single node are supported, multi-node
jobs are currently out of scope (no use
case).

™
(™
(=) (=
O

02000

1.1.2 Content of a job

Task definition

* Python and bash script

* Dirac workflow: Linear workflow described as an XML file, specific to Dirac.
Tasks can be described in Python.

CWL (common workflow language): open standard for describing
how to run command line tools and connect them to create workflows. (#/542)

Metadata
* JDL file (Job Description Language): provide metadata for the Dirac WMS.

* Along with task requirements, you can also define Dirac-specific parameters
such as the site(s) you want to target.

* JDL allows specifying parametric jobs (same task processing different inputs).

https://github.com/DIRACGrid/DIRAC/pull/7542

1.1.3 Aword about CWL

cwlVersion: v1.2

class: CommandLineTool

PowerfUldescription language baseCommand: echo
e Benefits of CWL: inputs:
Interoperable, portable, reusable, message :
lable, transparent, communit type: string
SCala ’ p ? y default: "Hello World"
support inputBinding:
o . position: 1
* Limitations of CWL: can be complex outputs: []

Future directions:

* CWL supportis (and will stay) very limited in Dirac.

* Butwe aim to make CWL the primary method for job description in DiracX.
e Should replace Dirac workflows at some point, as well as a large part of the JDL.
* Ongoing efforts to use at the production/transformation level.

* Ongoing discussion about the user interface (feel free to participate): #1/5

https://github.com/DIRACGrid/diracx/discussions/175

1.2.17 Submitting jobs: Validation

Dirac workflow and CWL

« dirac-jobexec: execute the Dirac workflow locally.

« cwltool: equivalent to dirac-jobexec for cwl workflows.

New in v9.0 JDL validation (#69/3)

* Performed server side
* Immediate feedback if any obvious error:

* inputData contains too many files (must contain at most 500)
* maxNumberOfProcessors must be greater than minNumberOfProcessors
* sites and bannedSites are mutually exclusive

* Invalid platform

https://github.com/DIRACGrid/DIRAC/pull/6973

1.2.2 Submitting jobs: Interfaces

Interfaces

* CLI: create your JDL manually and submit it with Dirac commands.

* Python API: define the metadata of the task, the APl is handling the rest.
* Web app: similarto the Python AP| but easier for muggles.

Note:

* Submitting a parametric JDLs will result in the generation of multiple jobs.

* CWL can be tested by specifying cwltool asthe executable and the cwlfile as
an argument inthe JDL.

Accessing
Heterogeneous Computing Resources

2.1.1 Traditional Grid Sites

Description

* Clusters composed of worker nodes
and orchestrated by a batch system.

* Mostly composed of x86 CPUs (Intel,
AMD).

* External connectivity from the worker

nodes. G Grid Site
e CVMFES isinstalled and mounted on

the worker nodes (software CUNFS '.

dependencies). @‘ T
* Available through a Computing

Element (CE)

using X509 certificates and/or OIDC Worker Nodes
tokens.

Computing Element
(e.g.ARC, HTCondor)

Batch System
(SLURM, HTCondor schedd

10

2.1.2 Computing Elements: ARC

ARC

e LTS: v6 (V7 is coming "soon").

* Job management: replacing
gridftp with AREXto manage
jobs. AREX comes with a REST
interface.

* AuthN/Z: through x509 certificates.
Limited support for OIDC tokens
(that we have not been able
to use so far). They should be better
supported from v7.

Dirac interface
* ARCCE: the good old interface,

leveraging the python arc client and
the gridftp interface to interact with
ARC instances. Dropped from v9.0

ARCG6CE: intermediate solutions,
using the AREX services through the

python arc client. Dropped from
v9.0

AREXCE: the new

interface, leveraging the REST
Interface to interact with the AREX
Services.

* Transition details: wiki

11

https://github.com/DIRACGrid/DIRAC/wiki/DIRAC-9.0

2.1.3 Computing Elements: HTCondor

HTCondor Dirac interface: HTCondorCE

e LTS: V23 * Calls the HTCondor CLI to interact

« Change release management, new with the instances (could be worth
terminology, better support for trying the Python bindings).
containers... * Support OIDC tokens (#6803)

* Job management: HTCondor and, temporarily, SSL certificates
client necessary to interact with (#7630). New from v8.0
HTCondor instances. Python . ,
bindings available. * Afew fixes to get more details about

« AuthN/Z: dropped support for failed/aborted jobsin v8.0 (#7069)

Globus toolkit in v9.3 and fully
embraced OIDC tokens. SSL
certificates are still

supported though.

12

https://github.com/DIRACGrid/DIRAC/pull/6803
https://github.com/DIRACGrid/DIRAC/pull/7630
https://github.com/DIRACGrid/DIRAC/pull/7069

2.2.1 Opportunistic resources and HPCs

Description
Batch System
* Clusters composed of worker nodes Supercomputer (SLURM, PES)

with fast inter-node connectivity.

 Cancontain non-x86 CPUs (ARM)
and GPUs.

* External connectivity is not
guaranteed and access can be
protected via a VPN.

e CVMFS is notinstalled and mounted
on the worker nodes.

Queue
of Jobs

Worker Nodes with fast inter-

. node connectivity.
° Avallable thrOUgh SSH Accelerators and non x86-CPUS
(6PUs, FPGAs)

13

2.2.2 SSH and batch systems:

Batch Systems Dirac interface: SSHCE
* Various Batch Systems: HTCondor, * Dirac-specific solution calling SSH
Slurm, PBS/Torque, SGE, LSF. commands to interact with the

* Nowadays, 2 of them are batch system.

predominant: HTCondor in HTC, * Python library such as Fabric could
Slurm in HPC. be investigated.

* Batch Systems have different
interfaces: there are Dirac-specific
plugins to interact with them
properly.

* Slurm is well supported. Plugins for
Condor, PBS, SGE, LSF, OAR too.

* New inv8.0 Ajob parameter indicating
the batch system used (#/289)

14

https://github.com/DIRACGrid/DIRAC/pull/7289

2.3.7 Clouds (laaS)

Description

e Clusters composed of Virtual
Machines spawned by the users

according to their needs.

Computing Element
e.f.1lib-cloud, AWS Client)

* External connectivity from the VMs.

Cloud Infrastructure

API

e CVMES can be installed and mounted (e.g. OpenStack, AWS)

<

on the VMs (software dependencies).

.

* Available through the cloud service
provider API. CVNFS IR Mgt

Images

Virtual Machines hased on
physical servers

15

2.3.2 Cloud service provider APIs

APls & libcloud

* Various APIs: AWS, Google cloud,
Azure, Openstack, OpenNebula...

* libcloud: python library for
interacting with many of the popular
cloud service providers using a
unified API.

Dirac interface

* VMDirac: Dirac-specific and
complex solution to interact with a
few cloud service providers
(#6380). Dropped from v9.0

* CloudCE: Replace VMDirac. A
much simpler solution based on
libcloud.

16

https://github.com/DIRACGrid/DIRAC/pull/6380

2.4.17 Aword about volunteering computing

BOINC

* There was some efforts to support integration of BOINC within Dirac.
* Trustless environments based on small clusters and desktop computers.

* Interesting for preemptible HTC workloads.

Dirac interface: BOINCCE

* Allows to interact with BOINC resources via SOAP. No progress since 2013.

e Could potentially be resurrected from the work done with HPC resources, but
NO USEe case.

* |f not used anymore, it will likely be dropped during the transition to v9.0.

17

3.7.1 Pre-processing Dirac jobs

Default asynchronous operations (Optimizers)
* JobSanity: New from v8.0 Simply assign a sandbox to a job (JDL validation is
performed synchronously now).

* InputData: Query the file catalog for specified input data and adds
information for the next operation.

* JobScheduling: Make a scheduling decision and gathers similar jobs in task
queues, waiting for being matched with a computing resource.

A few old and unused features were deleted from v8.0: VO plugins (#6161),
filtering by platforms (#671/8).

19

https://github.com/DIRACGrid/DIRAC/pull/6161
https://github.com/DIRACGrid/DIRAC/pull/6178

3.7.2 Moving away from executors

Task
repository

IV

Executor Executor Executor

20

Executors

* Dirac-specific task queue solution:
composed of a Mind that distribute
tasks to Executors.

* There has been an attemptto replace
the framework with Celery and
message queues from v8.0 (#/022),
but it was not straightforward.

e Solutions will be reassess within
DiracX.

https://github.com/DIRACGrid/DIRAC/pull/7022

3.2.1 Getting allocations using the pull model

k. Pilots fetch)
Jjobs
4, Pilots
6. Jobs run evaluates
environment

Waiting

Pilot-Factory 6*. Jobs get
(SiteDirector) software
S dependencies

1. Jobs arrive
in WMS gqueue CERN VM File

DIRAC System (CVMFS)

2. Pilot- Factory _ _
generates & 3. Pilots wait

submits pilots Computing in the Site Grid Site
Element gueues

21

3.2.2 Generating Pilots

Site Director

* Submit pilots: check available jobs
for a given resource and slots
available and submit pilots
accordingly (using Dirac Interfaces).

 New from v9.0, SiteDirector does not
take Task queues into account
anymore, submissions are parallelized
per CE (#/110).

* Monitor pilots: check the status of

the submitted pilots (parallelized per
CE).

A few old and unused options were
(#/110) and 1 Site
Director acts for 1 specific VO (#/263).

22

https://github.com/DIRACGrid/DIRAC/pull/7110
https://github.com/DIRACGrid/DIRAC/pull/7110
https://github.com/DIRACGrid/DIRAC/pull/7263

3.2.3 Pilot Structure

Pilot architecture

e Various commands: At a minimum
install DIRAC, configures it, and
run a JobAgent.

Pilot upgrades

* devel branch: fixes and new
features should target the
development branch (tested in
certification).

* master branch: admins are taking
care of merging devel into master
when required.

Get
Pilot
Version

23

3.2.4 Pilot: various new features

Classic Solution Remote Pilo‘t lofﬁ]ng
New features s D
c c . ilotManacer
* "Register Pilot" command: Pilots Tethanage Tornardo
started from the vacuum can — — <L
. o nmiLerrace
register themselves in the DB and ~ | ool
be declared as "Running” (#6914). a. ¢etTobOutputQ on outp;;: i real time
user demands
* Remote Pilot logging: N \f}
Pilots sends their logs to Tornado by
themselves instead of e ce
being fetched by the CE interfaces |
(#158). Configuration includes I ietch Zu‘c%u:ccs ot
(#227); " orecition
* Log buffer size: avoid too many \]/

interactions with Tornado
* CE white list: enable remote pilot Pilot-Tobs Pilot-Tobs
logging only for a specific set of CEs.

24

https://github.com/DIRACGrid/DIRAC/pull/6914
https://github.com/DIRACGrid/Pilot/pull/158
https://github.com/DIRACGrid/Pilot/pull/227

3.2.5 Pilot: install Dirac from CVMFES (#205)

Dirac Client (Pilot) requirements Can Dirac work without CVMFS?
* Certificates for each users (for creating proxies) * Yes, and you may well have
e CAs and CRLs, because...certificates: Bundle this case in HPCs

Delivery service, or better found locally. « CVMFS_locations may point
* Certificate proxies, so VOMS: Dirac needs to non-CVMFES locations...

VOMS config files (pointers to VOMS servers).
* Python 2.7+
* Internet access

* Containerimages: ata minimum for
iIsolation through Apptainer.

* A pointerto a CS.

e DIRACOS and the DIRAC code: can
be downloaded on-the-fly, or better found
locally.

25

https://github.com/DIRACGrid/Pilot/pull/205

3.2.6 JobAgent and inner CEs

JobAgent
* Match jobs and submit them to inner [}
PoolCE

CEs:

* InProcessCE: manages 1 job atatime

on bare-metal
e SingularityCE: manages 1 job atatime
In a container (isolated)

L~
* PoolCE: rely on multi-process and L

previous CEs to manage multiple jobs in

parallel. InProcessCE

A word about multi-core allocations

SingularityCE should be preferred over

InProcessCE to isolate jobs from each
other.

26

3.3.71 Getting allocations using the push model

Waiting
Jobs

1. Jobs arrive
in WM5 gueue

2. PJA retches a
suitable job

CERN VM File

DIRAC System (CVMFS)

3. PJA submits the

job Computing in the Site Grid Site
Element Jueues

27

3.3.2 Limitations of the PushJobAgent

Limitations

* Works only with dirac workflows.

* Not robust: any temporary issue
with the agent or CE results in the loss of the
running jobs.

e Not scalable: consumes too much RAM:
200-250 jobs in parallel
consumes around 50GB of RAM.

e Current workflow:

* PJAfetches jobs,
creates JobWrapper processes for each of them
and executes them in parallel (77MB/proc).

* Each JobWrapper generates a dirac-
jobexec process (90MB/proc), which executes
the "DIRAC workflow",

* These processes are remaining in memory as
long as jobs are running, even if they just wait
for results from remote computing resources.

DIRAC

PushJobAgent

dirac-jobexec

JobWrapper

dirac-jobexec

CE

28

3.3.3 Towards a more robust PushJobAgent(# /459)

ComPu‘ting Resource

Dirac WMS with no external conne_c‘tivi‘tl/
(r V)
Changes &)
* Pre/Post process methods in —
JobWrapper: Operations around [°°|]
tasks/workflows execution should be o
transferred from the workflows to the v . o
preProcess() and postProcess() method (will be /
customisable). L jeiift?
* JobWrapperOfflineTemplate: JobWrapperTemp Submission Poliy = depleatior
late solely executing the task/workflow (no Compuiting Resource
p re/p OSt p rOCG SSI ng)) Dirac WMS with no external connectivity
o o 5 o K PushJobAgent j_SL‘{,M;-t%
* PushlobAgent submission policies: |
* Application (temporary): the original and limited Ioiwffppéz) > \
solution: only a small part of the workflow is R S
submitted to a remote computing resources . o J
* JobWrapper: pre/postProcess() operations —

executed by the agent, the whole task/workflow is
sent to the remote computing resource.

Submission Pohcu/ = JobWrapper

29

https://github.com/DIRACGrid/DIRAC/issues/7459

Adapting for Tomorrow:
Future Plans and Strategies

4.1 CWL in the Production/Transformation Systems

Unified language Goal

* Production: A CWL with multiple * Local Workflow Testing: Initially, the
steps. Each step could be a workflow user would test the CWL workflow
or a command line tool. locally using cwltool, validating the

workflow's structure and ensuring
that it executes correctly with the
provided inputs.

* Transformation: correspond to a step
of the main CW.L.

e Job: similarto a
transformation with additional

details.

* Submission as a Dirac Job or a Dirac
Production: Just by providing the CWL
and a few additional parameters
(outside the CWL). It should

A few examples of workflows are work transparently.
available in dirac-cwl-proto.

31

https://github.com/aldbr/dirac-cwl-proto/tree/main/workflows

4.2 Aword about Dirac Benchmark

Challenges Considered solution (#12)

* DB12 code depends on Python * Freeze DB12 code and
updates: the language becomes dependencies: create an executable
more performant, which impacts the that would last until Python 3.12 is
benchmark scores. deprecated.

* HS06: DB12 was * HEPScore: Align DB12 on HEPScore,
originally mapped to HS06, which should be representative of
which is not used WLCG workloads.
anymore by WLCG. * Assess differences between the

* ARM and GPUs are more prevalent: freezed DB12 package
we are not sure whether DB12 and HEPScore: each time the
performs correctly in these contexts. package needs to be updated (factors

to correct the scores accordingly).

32

https://github.com/DIRACGrid/DB12/issues/12

Thank you for your attention

Questions? Comments?

	Slide 1: Workload Management
	Slide 2: Introduction
	Slide 3: Defining Jobs
	Slide 4: 1.1.1 Dirac jobs
	Slide 5: 1.1.2 Content of a job
	Slide 6: 1.1.3 A word about CWL
	Slide 7: 1.2.1 Submitting jobs: Validation
	Slide 8: 1.2.2 Submitting jobs: Interfaces
	Slide 9: Accessing Heterogeneous Computing Resources
	Slide 10: 2.1.1 Traditional Grid Sites
	Slide 11: 2.1.2 Computing Elements: ARC
	Slide 12: 2.1.3 Computing Elements: HTCondor
	Slide 13: 2.2.1 Opportunistic resources and HPCs
	Slide 14: 2.2.2 SSH and batch systems:
	Slide 15: 2.3.1 Clouds (IaaS)
	Slide 16: 2.3.2 Cloud service provider APIs
	Slide 17: 2.4.1 A word about volunteering computing
	Slide 18: Supplying Computing Resources with Jobs
	Slide 19: 3.1.1 Pre-processing Dirac jobs
	Slide 20: 3.1.2 Moving away from executors
	Slide 21: 3.2.1 Getting allocations using the pull model
	Slide 22: 3.2.2 Generating Pilots
	Slide 23: 3.2.3 Pilot Structure
	Slide 24: 3.2.4 Pilot: various new features
	Slide 25: 3.2.5 Pilot: install Dirac from CVMFS (#205)
	Slide 26: 3.2.6 JobAgent and inner CEs
	Slide 27: 3.3.1 Getting allocations using the push model
	Slide 28: 3.3.2 Limitations of the PushJobAgent
	Slide 29: 3.3.3 Towards a more robust PushJobAgent(#7459)
	Slide 30: Adapting for Tomorrow: Future Plans and Strategies
	Slide 31: 4.1 CWL in the Production/Transformation Systems
	Slide 32: 4.2 A word about Dirac Benchmark
	Slide 33: Thank you for your attention Questions? Comments?

