

Electroweak Precision at FCCee A quantum leap into new Era ZPW2024, Zurich Christoph Paus January 8, 2024

FCC-ee Run Plan

The baseline run plan for FCC-ee

- Z run has most events followed by WW run: most stringent exp. requirements
- Baseline run plan was updated for the midterm report of FCC feasibility study to have 4 IPs instead of 2 IPs increasing available event sample by factor of ~1.7

time [operation years]

Working point	Z, years 1-2	Z, later	WW, years 1-2	WW, later	ZH	$t\overline{t}$	
$\sqrt{s} \; (\text{GeV})$	88, 91, 94		157, 163		240	340-350	365
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	70	140	10	20	5.0	0.75	1.20
Lumi/year (ab^{-1})	34	68	4.8	9.6	2.4	0.36	0.58
Run time (year)	2	2	2	0	3	1	4
	610^{12} Z		$2.410^8\mathrm{WW}$		$1.4510^{6}{ m HZ}$	1.910^{6}	⁵ t ī
Number of events					+	$+330\mathrm{k}\mathrm{HZ}$	
					$45k WW \rightarrow H$	$+80 \text{kWW} \rightarrow \text{H}$	

FCC-ee Run Plan

Baseline FCC-ee staged running scenario

- Starting with the lowest energy scenario at the Z pole is most obvious to stage the installation of RF cavities
- Z pole running will result in an enormous data set with unprecedented precision
- Precision LEP uncertainties are devised by ~500 (statistical uncertainties, only)

At FCC-ee it takes about a minute to accumulate an entire LEP Z pole dataset

FCC-ee Run Plan

Alternate FCC-ee running scenario

- After questions during P5 sessions, whether Higgs factory of FCC-ee could start earlier, an alternative scenario has been developed that also fits into a 16 year operation plan
- The initial ZH and Z pole running will initially ramp up and after development reach the design luminosity

At FCC-ee it takes about a minute to accumulate an entire LEP Z pole dataset

Motivation for Precision

At LEP

- Measure crucial fundamental parameters of the standard model
- Z mass, W mass, α_{s} , α_{QED} , number of light neutrinos
- Convert direct observables like σ , A_{FB} , τ_{POL} , ... to pseudo observables
- Constrain indirectly m_t and m_H using pseudo observables as input
- Find discrepancies in the measurements indicating the SM is broken or better that there is physics beyond the standard model (BSM)

For FCC ee

- All standard model parameters are known and look to be consistent
 - Last additions m_H (LHC, 2012) and m_t (Tevatron, 1995)
 - ... neutrinos are another story
- Consistency between all measurements will be tested about 3 orders of magnitude more stringently than before, inconsistencies will immediately invoke new physics

Latest Status

Why do precision EW?

CDF experiments last word

• W mass is too heavy by seven standard deviations !

Why do precision EW? CDF experiments last word

W mass too heavy by seven standard deviations !

Source:https://non-trivial-solution.blogspot.com/2022/04/do-we-have-finally-found-new-physics.html

Source: https://www.quantamagazine.org/fermilab-says-particle-is-heavy-enough-to-break-the-standard-model-20220407/

Lineshape Summary

Key topics for theory to address

Observables	Present value	FCC-ee stat.	FCC-ee current syst.	FCC-ee ultimate syst.	Theory input (not exhaustive)
m _z (keV)	91187500 ± 2100	4	100	10?	Lineshape QED unfolding Relation to measured quantities
$\Gamma_{ m Z}$ (keV)	2495500 ± 2300 [*]	4	25	5?	Lineshape QED unfolding Relation to measured quantities
$\sigma^{0}_{had}(pb)$	41480.2 ± 32.5 [*]	0.04	4	0.8	Bhabha cross section to 0.01% $e^+e^- \rightarrow \gamma\gamma$ cross section to 0.002%
$N_{\nu}(\times 10^3)$ from σ_{had}	2996.3 ± 7.4	0.007	1	0.2	Lineshape QED unfolding $(\Gamma_{ m vv}/\Gamma_{\ell\ell})_{ m SM}$
$R_{\ell}(imes 10^3)$	20766.6 ± 24.7	0.04	1	0.2 ?	Lepton angular distribution (QED ISR/FSR/IFI, EW corrections)
$\alpha_{s}(m_{Z})$ (×10 ⁴) from R _{ℓ}	1196 ± 30	0.1	1.5	0.4?	Higher order QCD corrections for $\Gamma_{\rm had}$
$R_{b}(x10^{6})$	216290 ± 660	0.3	?	< 60 ?	QCD (gluon radiation, gluon splitting, fragmentation, decays,)

Asymmetry Summary

Key topics for theory to address

Observables	Present value (×10 ⁴)	TeraZ / GigaZ stat.	TeraZ / GigaZ current syst.	Theory input (not exhaustive)	
A_e from P_{τ} (FCC-ee)		0.07	0.20	SM relation to measured quantities	
A _e from A _{LR} (ILC)	1514 ± 19	0.15	0.80	Similation to measured quantities	
A_{μ} from A_{FB} (FCC-ee)	1.56 + 01	0.23	0.22		
A_{μ} from A_{FB}^{pol} (ILC)	1450 ± 91	0.30	0.80	Accurate QED (ISK, IFI, FSK)	
A_{τ} from P_{τ} (FCC-ee)		0.05	2.00		
A_{τ} from A_{FB} (FCC-ee)	1449 ± 40	0.23	1.30	Prediction for non- τ backgrounds	
A_{τ} from A_{FB}^{pol} (ILC)		0.30	0.80		
A _b from A _{FB} (FCC-ee)	9000 ± 400	0.24	2.10		
A_b from A_{FB}^{pol} (ILC)	8990 ± 130	0.90	5.00	QCD calculations	
A _c from A _{FB} (FCC-ee)	65100 + 210	2.00	1.50		
A _c from A _{FB} ^{pol} (ILC)	05400 ± 210	2.00	3.70		

The Lineshape

Cross section

- Z mass (m_7) , Z width (Γ_7)
- Hadronic peak cross section ($\sigma_{0, hadr}$)
- Ratio of leptons (R_l)
- (Number of light neutrinos)
- Hadrons "win" (quarks have color)
 - mass, width and σ_0

Theory needed

 Deconvolute QED and the EW/QCD corrections.... tricky

Cross section $\sigma(\sqrt{s}) = \frac{N_{\rm selected} - N_{\rm background}}{\varepsilon A \mathcal{L}}$

• Resonant depolarization and many more 'tricks'

Luminosity: \mathcal{L}

- How tightly packed is the beam?
- Basic idea: find accurately calculable process and count, it should not depend on the Z boson (too much).
- Event counts: N_{selected}, N_{background}
 - Selected events contain signal and the remaining background

Acceptance, A, and efficiency, ε

- Acceptance loss: particle outside detector fiducial volume
- Efficiency loss: particle inside detector volume, but not identified

Energy Calibration \sqrt{s}

Resonant depolarization is key

• It will be run in situ using pilot bunches during data taking

Other important feature

- Absolute calibration will be transported precisely from point-to-point
- Calibration repetition rate needs to be considered
- Beam energy spread and its uncertainty will affect Z width and $\alpha_{QED}(m_Z)$
- Can dimuons/dielectrons to measure beamspread or even center-of-mass energy and help beam calibrations? Needs calibrated muons/electrons using well known resonances... see W mass from LHC/CDF

Compared to LEP

- Main calibration idea is the same
- ... but much more precise with huge data rate and in situ calibration schemes substantially expanding the scope
- A lot more detail but not for this talk

Energy Calibration \sqrt{s}

FCC calibration is still in rapid development

- Latest studies showed a much improved point-to-point uncertainty and more is to come
- The latest study is summarized below
- Overall uncertainty still needs to be shrunk...

Table 15. Calculated uncertainties on the quantities most affected by the centre-of-mass energyuncertainties, under the final systematic assumptions.

	statistics	$\Delta \sqrt{s}_{\rm abs}$	$\Delta \sqrt{s}_{\rm syst-ptp}$	calib. stats.	$\sigma_{\sqrt{s}}$
Observable		$100\mathrm{keV}$	$40\mathrm{keV}$	$200{ m keV}/\sqrt{N^i}$	$85\pm 0.05\mathrm{MeV}$
$m_Z (keV)$	4	100	28	1	—
$\Gamma_{\rm Z} \ ({\rm keV})$	4	2.5	22	1	10
$\sin^2 \theta_{\rm W}^{\rm eff} \times 10^6 \text{ from } A_{\rm FB}^{\mu\mu}$	2	—	2.4	0.1	—
$\frac{\Delta \alpha_{\rm QED}(m_Z^2)}{\alpha_{\rm QED}(m_Z^2)} \times 10^5$	3	0.1	0.9	_	0.1

From: arxiv:1909.12245

Uncertainties have been decreasing but no full update available, yet.

Luminosity

Small angle Bhabha scattering from LEP?

- Cross section very large (78 nb): good statistical precision
- Need to have excellent control of the geometry: O(10-5) precision
 - Precision on radial dimensions $\Delta r \sim 1 \mu m$
 - Half distance between lumi monitors at $\varDelta\ell\,{\sim}50~\mu\text{m}$
- Theory prediction improved from 0.061% at LEP to 0.037% recently, but still far from statistical precision of hadronic final states (~4x10-7)

Another clean and copious process?

- $e^+e^- \rightarrow \gamma\gamma$: precise prediction, no Z dependence and clean
- Only 1 in 1000 Z events accuracy O(10-5)
- No perfect solution but pretty good

Best plan, so far

- Use $e^+e^- \rightarrow \gamma\gamma$ as overall normalization (global)
- Bhabha events to extrapolate across CM energies (σ_{theory} = 14 nb)
- Loose significant precision on $\sigma_{0, hadr}$ (# light neutrinos) and
- ... some on *m_z, Γ_z*

From: <u>arxiv:1912.02067</u>

Luminous region FCC

Size of the luminous region versus beam energy

- *y*-direction [nm], *x*-direction [µm]
- z- direction [mm] ... at Z pole below mm level
- vertexing uncertainty at µm level

My conclusion on luminous region?

- Due to well focused beam and pristine vertex reconstruction neither significant beam crossing angle nor uncertainties on those should be an issues
- Event pileup at about 2 in a thousand events can be cleanly identified (µm vertex with 0.4 mm luminous region at Z pole)
- Needs to be careful implemented in MC and confirmed!

* https://github.com/HEP-FCC/FCCeePhysicsPerformance/tree/master/General#vertex-distribution

Importance of Monte Carlo

Hadron colliders

- Collisions never use the full center-of-mass energy, protons are complex
- Collisions: full of 'uninteresting' events,
- Highly selective before they are written to tape
- Monte Carlo simulation very hard and patched together
- Huge cross sections are very useful for detector and physics calibrations

Lepton colliders

- Every event uses the 'full' center-of-mass energy
- Calculations can be very precise and are reasonable to produce
- Monte Carlo is used for most backgrounds and more inclusive
- Separate calibration data samples are hard to come by

Event Counts

Number of selected events

- Statistical precision is ultimate limitation; you cannot get better
- Keep as many events as possible, but not let in too much background
- Number of background events
 - Monte Carlo predicts it precisely, if you have enough and it agrees
 - Detailed detector description is crucial (*realistic** Monte Carlo)
 - Exception: two-photon collision events notoriously difficult, in particular two photons with hadronic decay products (e+e- → e+e- qqbar)
 - Event pileup needs to be accounted for (2x10-3)

Two-Photon events $(e^+e^- \rightarrow e^+e^- ffbar)$

- Key issues: shape in visible energy and number of particles produced
- Tails are sensitive to noise, promoting them to multihadron events, other final states safer
- Off-peak running, or explicit tagging of e⁺/e⁻?
- Better MC is needed (theory community)

* simulate time dependent effects of detector and other running conditions: MC mapped to specific data recorded

e-

Acceptance/Efficiency

Typical numbers

- Excellent control of geometry and positioning: O(10-5) precision
- In situ active laser alignment systems are crucial (µm precision)
- Definition of the fully active detector borders very important
 - Calorimeters: ~ Molière radius distance from the edges
 - Hermeticity more important than resolution: overlapping detectors to avoid dead areas

Different final states

- Hadrons hard to miss
 - We look for jets (many particles, broadly spread)
 - Fragmentation/hadronization are an issue: hard to derive systematic uncertainty
 - Reproducing multiplicity traditionally problematic (QCD / Infrared divergent ...)
 - Whizard and KKMC do not agree at all on hadronic shower constitutents
- Leptons easier to miss
 - Cracks or dead areas crucial, definition of fiducial volume most important here
 - Independent subdetectors: tracker/muon chambers, tracker/ECAL, tracker/HCAL, ...
 - Final state much clearer no additional uncertainties (?), collision angle (?)

Acceptance/Alignments

Philosophy from LEP

- There are many events
- Statistical precision is high
- Measure systematic: it usually stops when you run out of events
- ... there are of course limitations to this philosophy

Alignments and acceptance

- Many events with given detector geometry and positioning will result in precise and accurate alignments, see previous experiments and most recently the LHC ones
- Precise detector acceptance measurement is possible 'in situ' for dimuon, dielectron and diphoton events based on tracker and calorimeter information
- This general idea should apply also to the luminosity calorimeter and the small angle Bhabha scattering and the muon detection system... some interesting studies should follow

$Z \rightarrow$ Hadrons: A and ε

Statistical precision: order 10⁻⁷ – 10⁻⁶

- LEP acceptance down to $12^{\circ} \rightarrow \cos(12^{\circ}) = 0.9781$ (L3)
- FCC acceptance down to $7^{\circ} \rightarrow \cos(7^{\circ}) = 0.9925$
 - Enormous improvement in number of *lost particles* $(2.2\% \rightarrow 0.75\%)$
 - Jets are too big to not register: efficiency should be *very* close to 100%
 - No trigger \odot , which is good but redundancy in detectors much needed
 - Tracker versus calorimeter based analysis essential (add timing layer?)
 - Is the detector on and is there any noise? \rightarrow *realistic* detector Monte Carlo
 - Collision angle should not matter, as long as it is simulated well

Quantity	ALEPH	DELPHI	L3	OPAL
Acceptance	s'/s > 0.1	s'/s > 0.1	s'/s > 0.1	s'/s > 0.1
Efficiency [%]	99.1	94.8	99.3	99.5
Background	0.7	0.5	0.3	0.3

22/48

Look at $Z \rightarrow Hadrons$ with FCC tools

Basic Selection

 $0.5 < E_{\rm vis}/\sqrt{s} < 2.0$ $n_{\rm particles} > 15$

 $(E_{\rm long}/E_{\rm vis} < 0.6 \& E_{\rm trans}/E_{\rm vis} < 0.6)$

$Z \rightarrow$ Hadrons: Message from LEP

Example plots for hadron selection at L3

- There is noise, number of clusters in MC do not agree
- Two photon background is leaking

$Z \rightarrow$ Hadrons: Message from LEP

Example plots for hadron selection at L3

- There is noise, number of clusters in MC do not agree
- Two photon background is leaking

Z→Hadrons: Multiplicity

Initial comparison – making multi-hadron events at the Z pole (compare two reasonable programs)

Compare

- Different orders implemented
- Pythia for showering
- Pythia 8 versus 6
- KKMC versus Whizard

Issues

- Shower interface partially disabled
- Various other smaller items

Z→Hadrons: Multiplicity

Best status after fixing all problems and a reasonable selection: two MCs look pretty close.

Z→Hadrons: Multiplicity

Compare ALEPH and FCC simulation

- After fixing the comparison issues between KKMC and Whizard
- Reconstructed particles disagreed
- ALEPH plot is fully corrected to gen. particle level

Reconstructed Particles

Generator Level Particles

Compare multiplicity in barrel

- Looks quite similar, except background much reduced at FCCee
- Hadrons should look 'the same', no two photons in the barrel

Compare multiplicity in endcaps

- Looks quite similar, except background much reduced at FCCee
- Hadrons should look 'the same', two photons not there! wrong?

Compare visible energy

- Resolution much better at FCC-ee: lower tail is physics
- Two photon and Tau MC substantially lower with respect to LEP

Compare energy imbalance (transverse)

- Resolution much better at FCC-ee: lower tail is physics
- Two photon and Tau MC substantially lower with respect to LEP

Compare energy imbalance (longitudinal)

- Resolution much better at FCC-ee: lower tail is physics
- Two photon and Tau MC substantially lower with respect to LEP

Compare visible energy

• Lower tail clearly needs to be understood very well

Z→Hadrons: Acceptance

MC comparison not close: 8.7 std difference == 0.1%!

Better MC needed to estimate theory uncertainties

How important is the definition of the detector hole?

- Reject particles smaller than x axis value
- Significant difference
- Make acceptance as large as possible!

Data driven test

- Study jet acceptance in the barrel
- Was used at LEP, but might be stat. limited

Match Experiment/Theory

Undusted L3 program to fit two-fermion data

- LEP/SLC: theory and experiment used Pseudo Observables (PO)
 - Assume: QED correct (ISR/FSR/int), weak interaction V-A, effective Born Approx., and Z boson decays to fermions only, photon/Z interference
- For verification the full L3 cross section and forward-backward asymmetry dataset was fit, including all details and the numbers in the last L3 paper were reproduced with minute differences
- Various theory programs are interfaced (TOPAZ0, ZFITTER, ALIBHABHA, MIBA,): ZFITTER is the only program used for the following studies

What about FCC-ee?

- Is it still feasible to use Pseudo Observables?
- Maybe differential measurements: direct comparison between MC and data needed to extract physics parameters

How well can we do?

Extract Pseudo Observables: m_Z , Γ_Z and $\sigma_{O, hadr}$

Inputs: hadronic TXS, 3 points: 91.2 GeV: 125/ab; 88.0, 94.0 GeV: 40/ab

- 1) statistical uncertainty on hadrons only, nothing else
- 2) Add fully correlated systematic uncertainty as large as peak stat. uncertainty
- 3) Add stat. uncertainty on luminosity corresponding to 14 nb cross section
- 4) Add 1.4 x 10⁻⁵ syst. fully correlated, and another 10⁻⁵ uncorrelated on luminosity
- 5) Add 10 keV correlated uncertainty on E_{CMS}
- 6) Or alternatively 100 keV correlated uncertainty on ECMS

Setup	delta(<i>m</i> _z)		de	lta(<i>Γ_z)</i>	delta(σ_0	delta($\sigma_{\scriptscriptstyle 0, hadr}$)	
units	[keV]		[keV]		[pb]		
1		3.0		2.9		0.026	
2	3.0		2.9		0.034		
 3		3.6			3.6	0.04	7
4		16			22	0.73	3
5		18			22	0.73	3
6		101			22	0.73	3

Leptonic Ratios and α_s

Advantage of Ratios (and Asymmetries)

- Relative measurements do not need the luminosity ...
- It seems luminosity will be very hard to pin down to desired precision
- Provides sensitive test of lepton universality by comparing different lepton flavors
- Quark-lepton universality will be tested and allows a determination of the strong coupling constant, theoretical uncertainties need to be evaluated carefully

Limitations at LEP

• *R*_ℓ at LEP has largest experimentally uncertainty from the acceptance

How about FCCee

- Acceptance at FCCee is substantially improved
 - Coverage is much larger
 - Angular and vertex resolutions much improved
- An expected uncertainty on R_l at 0.001 needs theory uncertainty to be improved by about a factor of 4 to approximate exp. precision

 $\alpha_S = x \pm 0.00014(exp) \pm 0.00022(th)$

From: https://arxiv.org/pdf/2005.04545.pdf 38/48

Forward backward asymmetries

- Decouples from cross section, no luminosity uncertainty!
- Measures $\sin^2\theta_W^{\text{eff}}$ and $\alpha_{\text{QED}}(m_Z)$, which mostly decouple
- A_{FB} constrains sin²θ_W^{eff}(m_t and m_W) most significantly at peak, small stat. uncertainty
- Needs accurate MC for ISR, FSR and IFI: QED/SM corrections crucial
- Points to measure α_{QED}(m_Z), are just below or just above the Z peak (87.9 or 94.3 GeV)

$$A_{\rm FB} = \frac{3}{4} A_{\rm e} A_f$$

Forward backward asymmetries

- Decouples from cross section, no luminosity uncertainty!
- Measures $\sin^2\theta_W^{\text{eff}}$ and $\alpha_{\text{QED}}(m_Z)$, which mostly decouple
- A_{FB} constrains sin²θ_W^{eff}(m_t and m_W) most significantly at peak, small stat. uncertainty
- Needs accurate MC for ISR, FSR and IFI: QED/SM corrections crucial
- Points to measure α_{QED}(m_Z), are just below or just above the Z peak (87.9 or 94.3 GeV)

$$A_{\rm FB} = \frac{3}{4} A_{\rm e} A_f$$

Forward backward asymmetries

- Decouples from cross section, no luminosity uncertainty!
- Measures $\sin^2\theta_{W^{eff}}$ and $\alpha_{QED}(m_Z)$, which mostly decouple
- A_{FB} constrains sin²θ_W^{eff}(m_t and m_W) most significantly at peak, small stat. uncertainty
- Needs accurate MC for ISR, FSR and IFI: QED/SM corrections crucial
- Points to measure α_{QED}(m_Z), are just below or just above the Z peak (87.9 or 94.3 GeV) ◆

$$A_{\rm FB} = \frac{3}{4} A_{\rm e} A_f$$

Forward backward asymmetries

- Decouples from cross section, no luminosity uncertainty!
- Measures $\sin^2 \theta_W^{\text{eff}}$ and $\alpha_{\text{QED}}(m_Z)$, which mostly decouple
- A_{FB} constrains sin²θ_W^{eff}(m_t and m_W) most significantly at peak, small stat. uncertainty
- Needs accurate MC for ISR, FSR and IFI: QED/SM corrections crucial
- Points to measure α_{QED}(m_Z), are just below or just above the Z peak (87.9 or 94.3 GeV) ◆

$$A_{\rm FB} = \frac{3}{4} A_{\rm e} A_f$$

Key Ingredients: Tau Polarization

Tau polarization

- Disentangles left-right asymmetry A_e and A_T
- Enables to decorrelate the remaining fermion A_{FB}
- Provides best A_e and A_T

Limitations

- Main issue is the non-tau background and its proper estimate
- Massive calibration samples should provide sufficient control over background but this has to be proven

Heavy Flavours $R_{\rm b,c(,s)} = \frac{\Gamma_{\rm b,c(,s)}}{\Gamma_{\rm bod}}$

Ratios $R_{b,c,(s)}$

- Sensitive to potential top/W vertex modification
- Expect substantial improvements at FCCee, LEP was experimentally and theoretically limited
- Much better vertex detector and vertexing algorithms
- Is it possible to tag strange quarks? Studies show that yes....
- Substantial improvement needed in details of quark production: gluons radiation and splitting, decay models and fragmentation (b, c, ... s)

Forward-backward asymmetries $\rightarrow A_{b.c(.s)}$

- Building on the taggers developed for heavy flavor ratios
- Double tagging techniques from LEP will be very useful to contain systematic ٠ uncertainties
- Careful though, hemisphere correlations turned out to be a big issue during LEP ٠
- QCD uncertainties are fully correlated between all measurements, studies show ٠ that tight cuts on acollinearity will substantially improve the situation
- This will result in precise new A_{b,c(s)} measurements •
- Exclusive decays can also help ٠

LEP/SLC vs FCCee

Key points of comparison: $m_W and sin^2 \theta_W^{eff}$

predicted LEP measured $\sin^2 \theta_{\rm W}^{\rm eff} = 0.231488 \pm 0.000029_{mt} \pm 0.000015_{mZ} \pm 0.000035_{\alpha QED}$ $\sin^2 \theta_{\rm W}^{\rm eff} = 0.23153 \pm 0.00016$ $\pm 0.000010_{\alpha S} \pm 0.000001_{mH} \pm 0.000047_{\text{theory}}$ $= 0.21349 \pm 0.00007_{total}$ FCC projected projected prediction $\sin^2 \theta_{\rm W}^{\rm eff} = 0.231488 \pm 0.000001_{mt} \pm 0.000001_{mZ} \pm 0.000009_{\alpha QED}$ $\sin^2 \theta_{\rm W}^{\rm eff} = 0.23153 \pm 0.000002$ $\pm 0.00001_{\alpha S} \pm 0.00000_{mH} \pm 0.000047_{\text{theory}}$ LEP measured predicted $m_{\rm W} = 80.3584 \pm 0.0055_{mt} \pm 0.0025_{mZ} \pm 0.0018_{\alpha QED}$ $m_{\rm W} = 80.379 \pm 0.012 \,\,{\rm GeV}$ $\pm 0.0020_{\alpha S} \pm 0.0001_{mH} \pm 0.0040_{\text{theory}} \text{GeV}$ $= 80.358 \pm 0.008_{total} \text{GeV}$ FCC projected projected prediction $m_{\rm W} = 80.3584 \pm 0.0001_{mt} \pm 0.0001_{mZ} \pm 0.0005_{\alpha QED}$ $m_{\rm W} = 80.379 \pm 0.0003 \; {\rm GeV}$

 $\pm 0.0002_{\alpha S} \pm 0.0000_{mH} \pm 0.0040_{\text{theory}} \text{GeV}$

Projections by Sven Heinemeyer 45/48

LEP/SLC vs FCCee

Example for new physics in W or Z propagator

- S and T variables parametrize this new physics
- FCCee is doing very well but it is clear we can do much better, if
 - Experimental systematics can be controlled and if theory calculations are precise enough to match statistical uncertainties

Improvements in calculations by factors of 10-20 needed to match the statistical uncertainties, but also experimentalists need to do a lot of work to establish that statistical boundary can really be reached.

Conclusions

New era in precision electroweak physics

- Profound test of standard model at Z pole and WW threshold: re-measure parameters up to 3 orders of magnitude more precisely: m_Z , $\alpha_{QED}(m_Z)$, ...
- Severe constraints from pseudo observables on: m_W , m_t , ...
- Far reaching consequences for predictions

We are not there yet though ...

- Luminosity measurement fundamentally limits $\sigma_{0, hadr}$ (# light neutrinos) and puts some limitations on uncertainties for m_Z , Γ_Z
- Energy calibration largest contribution to Z boson mass uncertainty
- Many experimental uncertainties are believed to be manageable, but significant work is needed to prove this *(see next slide)*
- Detailed detector status monitor and in situ inclusion of it into the MC will be key for precision results
- Hadronic final states: acceptance uncertainty? Compare MC?
- Two photon processes most worrisome, especially for hadronic Z decays

Thank you

Work on lineshape analyses

- Jan Eysermans, Luca Lavezzo, Marina Malta Nogueira
- Tim Neumann, Sofia Lara, Casey Lawson, Bella Torres, Denis Siminiuc, Brenda Chow, Rujuta Sane

General support

• Emmanuel Perez, Patrick Janot, Gerardo Ganis