

On behalf of

+ Special Relativity

i = ? Quantum Field Theory

i = ? The Standard Model

Special Relativity

i = ? Quantum Field Theory

i = ? The Standard Model

No, of course. The SM merely **accommodates** all fields we have observed and the corresponding particles. And, it seems, not all of them, like Dark Matter.

Special Relativity

i = ? Quant

Our present knowledge of fundamental (or not) particles emerges from past observations. The existence or non-existence of other particles can thus be only established by future observations

こ=? The Standard Model

No, of course. The SM merely **accommodates** all fields we have observed and the corresponding particles. And, it seems, not all of them, like Dark Matter.

Special Relativity

i = ? Quantum Field Theory

No! Quantum fields with local Lagrangian and gauge theories are one implementation of QM+SR principles (definitely incomplete, as it fails with Gravity). Its success surely stem from an even deeper unknown underlying principle.

i = ? The Standard Model

No, of course. The SM merely **accommodates** all fields we have observed and the corresponding particles. And, it seems, not all of them, like Dark Matter.

The Higgs is revolutionary!

One more direct experimental confirmation of the QFT implementation of QM+SR principles (and indirectly of the principles).

The first manifestation of a new class of theories: massive gauge theories

The Higgs is revolutionary!

One more direct experimental confirmation of the QFT implementation of QM+SR principles (and indirectly of the principles).

The first manifestation of a new class of theories: massive gauge theories

Higgs is not a superconductor There is no Higgs "medium"

Spin-one relativistic particles and their high-energy description are as unique of hep as it sounds

The Higgs is revolutionary!

- One more direct experimental confirmation of the QFT implementation of QM+SR principles (and indirectly of the principles).
- The first manifestation of a new class of theories: massive gauge theories
- A special m.g.t.: perturbatively **extends to high, untested, energies**

The Higgs is revolutionary!

One more direct experimental confirmation of the QFT implementation of QM+SR principles (and indirectly of the principles).

The first manifestation of a new class of theories: massive gauge theories

A special m.g.t.: perturbatively extends to high, untested, energies

Testing new SM predictions is a prime target

The Higgs is revolutionary!

- One more direct experimental confirmation of the QFT implementation of QM+SR principles (and indirectly of the principles).
- The first manifestation of a new class of theories: massive gauge theories
- A special m.g.t.: perturbatively extends to high, untested, energies
- Could be the first elementary scalar.
- Disproves Wilsonian explanation of QFT emergent as EFT.

The Higgs is revolutionary!

One more direct experimental confirmation of the QFT implementation of QM+SR principles (and indirectly of the principles).

The first manifestation of a new class of theories: massive gauge theories

A special m.g.t.: perturbatively extends to high, untested, energies

Could be the first elementary scalar.

Disproves Wilsonian explanation of QFT emergent as EFT.

We must check!!

The Higgs is revolutionary!

- One more direct experimental confirmation of the QFT implementation of QM+SR principles (and indirectly of the principles).
- The first manifestation of a new class of theories: massive gauge theories
- A special m.g.t.: perturbatively extends to high, untested, energies
- Could be the first elementary scalar.
- Disproves Wilsonian explanation of QFT emergent as EFT.

Higgs Physics questions for future colliders:

Is it the Standard Model Higgs Particle?

- Single-Higgs couplings
- Trilinear Higgs coupling

What is it made of?

• Composite Higgs

The Higgs is revolutionary!

- One more direct experimental confirmation of the QFT implementation of QM+SR principles (and indirectly of the principles).
- The first manifestation of a new class of theories: massive gauge theories
- A special m.g.t.: perturbatively extends to high, untested, energies
- Could be the first elementary scalar.
- Disproves Wilsonian explanation of QFT emergent as EFT.

Higgs Physics questions for future colliders:

Is it the Standard Model Higgs Particle?

- Single-Higgs couplings
- Trilinear Higgs coupling

What is it made of?

• Composite Higgs

Is it the Standard Model Higgs Theory?

• High-energy EW (with Higgs) Physics

Why Muons?

Leptons are the ideal probes of short-distance physics:

All the energy is stored in the colliding partons No energy "waste" due to parton distribution functions High-energy physics probed with much smaller collider energy No QCD background, to study EW+Higgs

Electrons radiate too much

[cannot accelerate them in rings above few 100 GeV] [linear colliders limited to few TeV by size and power]

Muon Colliders

1980 First ideas **2011-2014** MAP in U.S. Muon Accelerator Program **2020** Update of EU Strategy outcome: set up collaboration

MInternational UON Collider Collaboration muoncollider.web.cern.ch

Why Muons?

Leptons are the ideal probes of short-distance physics:

All the energy is stored in the colliding partons No energy "waste" due to parton distribution functions High-energy physics probed with much smaller collider energy No QCD background, to study EW+Higgs

Electrons radiate too much

[cannot accelerate them in rings above few 100 GeV] [linear colliders limited to few TeV by size and power]

Muon Colliders

1980 First ideas **2011-2014** MAP in U.S. Muon Accelerator Program

2020 Update of EU Strategy outcome: set up collaboration

nternational

ON Collider

llaboration

muoncollider.web.cern.ch

2023 P5 outcome: "The Muon Shot"

Why Muons?

Leptons are the ideal probes of short-distance physics:

All the energy is stored in the colliding partons No energy "waste" due to parton distribution functions High-energy physics probed with much smaller collider energy No QCD background, to study EW+Higgs

Electrons radiate too much

Muon Colliders Symbol Target value Parameter Unit Centre-of-mass energy $E_{\rm cm}$ TeV 103 14 $1 \times 10^{34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$ 1.8 \mathfrak{L} 2040 Luminosity Unprecedented Collider circumference $C_{\rm coll}$ 4.510 14km enthusiasm: $\left(\frac{E_{\rm cm}}{10\,{\rm TeV}}\right)$ 5 yrs run, 1 IP: $\mathfrak{L}_{int} = 10 \, ab^{-1}$ Date of paper (ft muon collider*) Pheno papers 1.2 MuCol _/P_{beam} [10³⁴cm⁻²s⁻¹/MW] 1.1 MuCo 1 0.9 0.8 0.7 FCC 0.6 MC 3 TeV 0.5 0.4 International 0.3 VÓN Gollider 0.2 LHC 0.1 ollaborration -1983 2023 CLIC muoncollider, Weby cern.ch

The muon collider combines pp and ee advantages:

• High available energy for new heavy particles production

The muon collider combines pp and ee advantages:

- High available energy for new heavy particles production
- High available statistics for precise measurements (and no QCD bck)

Precision

Direct searches

High-precision indirect probes

High-precision indirect probes

Many unexplored opportunities [e.g., VV scattering]

The muon collider combines pp and ee advantages:

- High available energy for new heavy particles production
- High available statistics for precise measurements (and no QCD bck)

Precision

The muon collider combines pp and ee advantages:

- High available energy for new heavy particles production
- High available statistics for precise measurements (and no QCD bck)

Furthermore:

• Can measure processes of very high energy

Precision

Many discoveries came neither from new particle detection, nor from extreme precision, **but needed energy**. E.g.:

Neutral Currents Proton Compositeness

Many discoveries came neither from new particle detection, nor from extreme precision, but needed energy. E.g.:

 $F(E/\Lambda$

proton

Neutral Currents Proton Compositeness

Proton compositeness discovery: Order 10% departure from point-like prediction. Visible form-factor effects required large energy

High-energy probes

High-energy probes

Precision

Muons!!

Precision

Muons!!

Muons colliding for first time

Self-evident potential of exploration.

Novelty and **challenge** for accelerator physics, technology, and detector, **make such long-term project plausible!**

Precision

Muons!!

Muons colliding for first time

Self-evident potential of exploration.

Novelty and challenge for accelerator physics, technology, and detector, make such long-term project plausible! Muons decay to neutrinos:

Collimated, perfectly known, TeV-energy neutrino beams!

Muons!!

Muons colliding for first time

Self-evident potential of exploration.

Novelty and challenge for accelerator physics, technology, and detector, make such long-term project plausible! Muons decay to neutrinos:

Collimated, perfectly known, TeV-energy neutrino beams!

The Standard Model Higgs Theory ?

34

 $E \gg m_W$

The Standard Model Higgs Theory ?

The Standard Model Higgs Theory ?

The SM Physics Case

The muon collider will probe a new regime of EW (+H) force: $E\gg m_{W}$

Plenty of cool things will happen:

Electroweak Restoration. The $SU(2) \times U(1)$ group emerging, finally!

Electroweak Radiation in nearly massless broken gauge theory. Never observed, never computed (and we don't know how!)

The **partonic content of the muon**: EW bosons, neutrinos, gluons, tops, ... Copious **scattering of 5 TeV neutrinos!**

The **particle content of partons:** e.g., find Higgs in tops, or in W's, etc **Neutrino jets** will be observed, and many more cool things

Conclusions

Why dreaming of a muon collider? Explore energy frontier comprehensively by a variety of strategies

Why **working** on muon collider physics?

It is **Useful:** we must **consolidate** the potential, define **new targets**, **motivate** and **inform** Accelerator design.

It is **Fun:** novel BSM possibilities wait to be explored, as well as novel **challenges for predictions**, object reconstruction, BIB mitigation, etc. The novelty of the theme and the lack of established solution enables and require innovative research that **is advancing and revitalising particle physics today**, on top of paving the way towards a muon collider

Conclusions

Technically limited timeline [Stay tuned for consolidated timeline release] Soon we will know if concept mature for CDR Demonstrator program will initiate right after.

MuC R&D program is as ambitious as it sound: a brand new accelerator concept Tremendous opportunity that we cannot (and will not) miss!

Conclusions

Thank You !

Backup

Theory Challenges

EW theory is weakly coupled, but observables are not IR safe

Large muon collider energy $E_{\rm cm} \gg m_W$ Small IR cutoff scale

Scale separation entails enhancement of Radiation effect.

Like QCD (
$$E \gg \Lambda_{\text{QCD}}$$
) and QED ($E \gg m_{\gamma} = 0$), but:

EW symmetry is broken: EW color is observable ($W \neq Z$). KLN Theorem non-applicable. (inclusive observables not safe)

EW theory is Weakly-Coupled The IR cutoff is physical Practical need of computing EW Radiation effects Enhanced by $\log^{(2)} E^2 / m_{EW}^2$

First-Principle predictions **must** be possible For arbitrary multiplicity final state

Theory Challenges

EW theory is weakly coupled, but observables are not IR safe

Theory Challenges

Benchmark predictions we must learn how to make:

• Direct $2 \rightarrow 2$ annihilation:

need X-S calculations and modelling of radiation (showering)

• EW-scale VBS: single Higgs production:

same scale of radiation emission as of scattering

Muon Collider Plans

Principal Challenges:

Demonstrate neutrino flux mitigation system Full design of collider and acceleration Integration of muon production and cooling stages Optimise collider/MDI for the suppression of BIB from muon decay

Neutrino Flux Mitigation

Concentrate neutrino cone from arcs can approach legal limits for 14 TeV Goal is to reduce to level similar to LHC

3 TeV, 200 m deep tunnel is about OK

Need mitigation of arcs at 10+ TeV: idea of Mokhov, Ginneken to move beam in aperture Our approach: move collider ring components, e.g. vertical bending with 1% of main field

Mucraticatures a novel type of BIB. Detector and reconstruction design studies are crucial even at this early stage.

FLUKA @ 1.5 TeV

Experiment Design

Design detector for precision at multi-TeV scale

- Extract physics from GeV- and from TeV-energy particles
- Built-in sensitivity to "unconventional" signatures

The BIB is under control. See EPJC Review

- Demonstrated LHC-level performances with CLIC-like design
- Sensitivity to Higgs production
- Disappearing tracks detection

Exciting opportunities ahead

- Explore new detector concepts
- Identify and pursue key R&D requirements for technology development in next 20 years
- New challenges → new techniques that could be ported back to HL-LHC and F.C.
- Tackle the gigantic physics program of the MuC!

