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➤ Shower Monte Carlo generators have all the ingredients necessary to model complex collider events 
and are the default tool for intepreting collider data and evaluating capabilities of future colliders

HadronizationFixed-order calculations 

Parton shower Underlying Event

Perturbative QCD Non-perturbative QCDPythia

Herwig

Sherpa



ZPW2024Silvia Ferrario Ravasio

B
e
a
m

B
e
a
m

Hard
Scattering
Q ≈ 100GeV

Shower Monte Carlo Generators

3

➤ Shower Monte Carlo generators have all the ingredients necessary to model complex collider events 
and are the default tool for intepreting collider data

HadronizationFixed-order calculations 

Parton shower Underlying Event

Perturbative QCD Non-perturbative QCD

➤ The flexibility of these tools comes at a cost of a poor formal accuracy that causes systematic 
uncertainties entering thousands of papers from the LHC

Pythia

Herwig

Sherpa

Focus of 
this talk

More in Peter 
Skand’s talk on 

Wednesday 
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SMC as limiting factor in HEP: Jet Measurements

Why controlling the formal accuracy of parton showers
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ATLAS
-1 = 13 TeV, 80 fbs

µµ → Z+jet, Z
 = 0.4R tkAnti-

PFlow+JES
| < 0.8jetη|

Here: Pythia8 vs Sherpa2

[2007.02654]

Dominant systematic for the Jet
Energy Scales Uncertainty?
Difference between PS!
)Enters thousands of experimental
LHC papers!
(e.g. dominant systematic in mt:
�tot ⇡ 600 MeV, �JES ⇡ 400 MeV)

Silvia Ferrario Ravasio — April 6th, 2022 Accurate Monte Carlo generators for precision collider physics 6/23

Any jet physics analysis (  papers!!) at colliders 
requires the jet energy scale calibration

𝒪(1k)

[CMS, 
1910.08819] 

[ATLAS, 2007.02654] 

Parton shower (and its interplay with hadronisation) 
leading source of systematic uncertainty of JES

JES largest 
uncertainty in top-
mass extractions
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SMC as limiting factor in HEP: BSM searches
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Z → q–q H → gg

simulation / truth

Difference in the azimuthal
angle between the two 
hardest emissions  

Nonphysical 
quark/gluon 
differences in 
common dipole 
showers

Unless you are highly 
confident in the 
information you have 
about the markets, 
you may be better off 
ignoring it altogether

Harry Markowitz (1990 
Nobel Prize in Economics)Plot from F. Dreyer within PanScales
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Z → q–q H → gg

simulation / truth

Difference in the azimuthal
angle between the two 
hardest emissions  

Nonphysical 
quark/gluon 
differences in 
common dipole 
showers

Unless you are highly 
confident in the 
information you have 
about the markets, 
you may be better off 
ignoring it altogether

Harry Markowitz (1990 
Nobel Prize in Economics)Plot from F. Dreyer within PanScales[Plot by Frederic Dreyer]

Unphysical differences in the 
radiation pattern from quark and 

gluon jets induced by parton showers 
jeopardizes Machine Learning 
applications for boosted objects 

tagging, limiting new physics searches

Unless you are highly confident in the information you have 
about the markets, you may be better off ignoring it 
altogether  
Harry Markowitz (1990  Nobel Prize in Economics)  
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What should a Parton Shower achieve?
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energy
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PanScales 
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➤ Parton showers evolve collider events from 
 to   

➤ During this evolution, large logarithms 
 will arise. 

➤ Logarithmic accuracy to assess showers 
                                  

  

E.g.  and , 

:  
Next-to-Leading Logarithms are 

Q ≈ 𝒪(TeV) Λ ≈ 1GeV

L = log Q/Λ

Σ(log O < L) = exp( LgLL(αsL)

leading logs

+ gNLL(αsL)

next-to LL

+ …)

O =
p⊥,Z

mZ
p⊥,Z ≈ 1 GeV

|αsL | = 0.55
𝒪(1)
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Herwig7 Angular-Orderd parton shower [Marchesini, Webber ’88;  
Gieseke, Stephens, Webber hep-ph/0310083]

➤Each parton produced in the hard scattering showers independently

qq̄

g

p̃q

qq̄

g

https://arxiv.org/abs/hep-ph/0310083
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➤Each parton produced in the hard scattering showers independently

qq̄

g

Emitting 
parton

Colour 
partner

p̃q

Herwig7 Angular-Orderd parton shower [Marchesini, Webber ’88;  
Gieseke, Stephens, Webber hep-ph/0310083]

https://arxiv.org/abs/hep-ph/0310083


ZPW2024Silvia Ferrario Ravasio 9

➤Each parton produced in the hard scattering showers independently

qq̄

g

Emitting 
parton

Colour 
partner

Dipole midpoint 
maximum emission 
angle

p̃q

Herwig7 Angular-Orderd parton shower [Marchesini, Webber ’88;  
Gieseke, Stephens, Webber hep-ph/0310083]

https://arxiv.org/abs/hep-ph/0310083
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➤Each parton produced in the hard scattering showers independently

qq̄

g

Emitting 
parton

Colour 
partner

Dipole midpoint 
maximum emission 
angle

k1 ∼ z1p̃q + k⊥,1
p̃q

Add  with a probability 
given by  the Altarelli-Parisi 
collinear splitting function

k1

Herwig7 Angular-Orderd parton shower [Marchesini, Webber ’88;  
Gieseke, Stephens, Webber hep-ph/0310083]

https://arxiv.org/abs/hep-ph/0310083
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➤Each parton produced in the hard scattering showers independently

qq̄

g

Emitting 
parton

Colour 
partner

Dipole midpoint 
maximum emission 
angle

k1 ∼ z1p̃q + k⊥,1
p̃q

k1 ∼ z2((1 − z1)p̃q − k⊥,1) + k⊥2

Iterate considering smaller 
emissions angles

Herwig7 Angular-Orderd parton shower [Marchesini, Webber ’88;  
Gieseke, Stephens, Webber hep-ph/0310083]

https://arxiv.org/abs/hep-ph/0310083
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➤Each parton produced in the hard scattering showers independently

qq̄

g

Emitting 
parton

Colour 
partner

Dipole midpoint 
maximum emission 
angle

k1 ∼ z1p̃q + k⊥,1
p̃q

k1 ∼ z2((1 − z1)p̃q − k⊥,1) + k⊥2

It is straighforward to include QED [since v 7.0 1512.01178],  Electro-Weak [Masoumnia, 
Richardson, 2108.10817; available since v 7.3 2312.05175], Dark sectors [Lee, 
Masouminia, Seymour, Yang, 2312.13125; will be available in v 7.4]

Herwig7 Angular-Orderd generalised shower

https://arxiv.org/abs/1512.01178
https://arxiv.org/abs/2108.10817
https://arxiv.org/abs/2312.05175
https://arxiv.org/abs/2312.13125
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➤ Angular-ordering = algorithmic implementation of the QCD coherent branching formalism, 
used for NLL calcultions for global observables (event shapes, many kinematic distributions 
e.g. )                         [Marchesini, Webber ’88; Gieseke, Stephens, Webber hep-ph/0310083] 

➤ Some freedom in the actual implementation (in the soft limit we need to reproduce the 
original kinematic map by Marchesini and Webber to preserve the NLL accuracy) 
                                                    [Bewick, SFR, Richardson, Seymour; 1904.11866, 2107.04051]

p⊥,Z

Log Accuracy of the  Angular-Orderd parton shower

https://arxiv.org/abs/hep-ph/0310083
https://arxiv.org/abs/1904.11866
https://arxiv.org/abs/2107.04051
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➤ Angular-ordering = algorithmic implementation of the QCD coherent branching formalism, 
used for NLL calcultions for global observables (event shapes, many kinematic distributions 
e.g. )                         [Marchesini, Webber ’88; Gieseke, Stephens, Webber hep-ph/0310083] 

➤ Some freedom in the actual implementation (in the soft limit we need to reproduce the 
original kinematic map by Marchesini and Webber to preserve the NLL accuracy) 
                                                    [Bewick, SFR, Richardson, Seymour; 1904.11866, 2107.04051]
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2 (+1) recoil schemes to 
model FSR since v 7.2

 of the Z at LHCp⊥

2 recoil schemes since v 7.3 

2 recoil schemes 
that achieve NLL 
accuracy for global 
event shapes 
(difference can be used 
to estimate shower 
uncertainties)

Log Accuracy of the  Angular-Orderd parton shower

https://arxiv.org/abs/hep-ph/0310083
https://arxiv.org/abs/1904.11866
https://arxiv.org/abs/2107.04051
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Logarithmic accuracy beyond QCD
➤ The angular-ordering of QCD emissions ensures that also the soft limit is correct, and 

hence NLL accuracy is achieved 
➤ For QED and EW, the parton branching formalism ensures only collinear (and soft-

collinear) logs are resummed: only LL accuracy is expected
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๏ QCD: ,             

๏ QED: ,      (DL = double logs)

αs ∼ 0.1 αsL = 𝒪(1) Σ = exp(LgLL(αsL) + gNLL(αsL) + …)

αem ∼ 0.01 αemL2 = 𝒪(1) Σ = fDL(αemL2) + αem fNDL(αemL2) + …

➤ The angular-ordering of QCD emissions ensures that also the soft limit is correct, and 
hence NLL accuracy is achieved 

➤ For QED and EW, the parton branching formalism ensures only collinear (and soft-
collinear) logs are resummed: only LL accuracy is expected

Logarithmic accuracy beyond QCD

Only colliner ones are included, not soft ones: few % 
mistake for processes without QCD; necessary (but not 
sufficient) for the FCC-ee 
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➤ The angular-ordering of QCD emissions ensures that also the soft limit is correct, and 
hence NLL accuracy is achieved 

➤ For QED and EW, the parton branching formalism ensures only collinear (and soft-
collinear) logs are resummed: only LL accuracy is expected

Logarithmic accuracy beyond QCD

➤SHERPA: soft QED logs implemented with the YFS formalism [Krauss, Price, Schönherr, 
2203.10948]; one-loop virtual EW Sudakov Logs [Bothmann, Napoletano 2006.14635 ] 

➤PYTHIA (and VINCIA): see P. Skand’s talk!

QED and EW logs in other SMC tools

๏ QCD: ,             

๏ QED: ,      (DL = double logs)

αs ∼ 0.1 αsL = 𝒪(1) Σ = exp(LgLL(αsL) + gNLL(αsL) + …)

αem ∼ 0.01 αemL2 = 𝒪(1) Σ = fDL(αemL2) + αem fNDL(αemL2) + …

https://arxiv.org/abs/2203.10948
https://arxiv.org/abs/2006.14635
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Parton Showers in a nutshell

θ1

θ′2

θ2

θ3

E
z1E

z1z2E

z1z2z3E

θ1>θ2>θ3

θ1>θ′2

Angular-ordered shower (Herwig)

➤ Achieve NLL for many observables  
                                 [Marchesini, Webber ’88]

BUT

➤ Matching with fixed-order calculations beyond 
NLO is painful (and not available) 

➤ Non-global logarithms are not correctly 
described [Banfi, Corcella, Dagupta hep-ph/
0612282 ]

https://arxiv.org/abs/hep-ph/0612282
https://arxiv.org/abs/hep-ph/0612282
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Parton Showers in a nutshell

θ1

θ′2

θ2

θ3

E
z1E

z1z2E

z1z2z3E

θ1>θ2>θ3

θ1>θ′2

Angular-ordered shower (Herwig)

➤ Achieve NLL for many observables  
                                 [Marchesini, Webber ’88]

≈ →

➤ Dipole showers are the more popular alternative to 
angular-ordered showers 
                                 [Gustafson, Pettersson ’88]

Dipole shower (Pythia, Sherpa, Herwig)

BUT

➤ Matching with fixed-order calculations beyond 
NLO is painful (and not available) 

➤ Non-global logarithms are not correctly 
described [Banfi, Corcella, Dagupta hep-ph/
0612282 ]

➤ Matching beyond NLO and multi-jet merging 
much simpler as hardest emissions come first 

➤ Azimuthal dependendece of soft emission 
necessary for non-global logs

BUT THEY ARE NOT YET (N)NLL! 

https://arxiv.org/abs/hep-ph/0612282
https://arxiv.org/abs/hep-ph/0612282
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1805.09327 Dasgupta, Dreyer, Hamilton, Monni, Salam

What is the the logarithmic accuracy of “standard” dipole showers

q
q̄

1
2

The  or  recoilq q̄

1st emission

Angles are measured in the 
dipole-frame: 1st emission 
recoils ⃗kt1 → ⃗kt1 − ⃗kt2

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

Emission of a soft-collinear gluon , from a  final-state, where  is soft-collinear as wellg2 qq̄g1 g1

Who takes the  
recoil of the new 

emission?

k⊥

https://arxiv.org/abs/1805.09327
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1805.09327 Dasgupta, Dreyer, Hamilton, Monni, Salam

What is the the logarithmic accuracy of “standard” dipole showers

q
q̄

1
2

The  or  recoilq q̄

1st emission

Angles are measured in the 
dipole-frame: 1st emission 
recoils ⃗kt1 → ⃗kt1 − ⃗kt2

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

Double strong ordering: ,  the recoil is not an 
issue in this limit and the 1st emission is independent from the 2nd: LL is OK!

|η1 − η2 | ≫ 1, ln kt,1/kt,2 ≫ 1

Emission of a soft-collinear gluon , from a  final-state, where  is soft-collinear as wellg2 qq̄g1 g1

Who takes the  
recoil of the new 

emission?

k⊥

https://arxiv.org/abs/1805.09327
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1805.09327 Dasgupta, Dreyer, Hamilton, Monni, Salam

What is the the logarithmic accuracy of “standard” dipole showers

q
q̄

1
2

The  or  recoilq q̄

1st emission

Angles are measured in the 
dipole-frame: 1st emission 
recoils ⃗kt1 → ⃗kt1 − ⃗kt2

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

Single strong ordering:  but ,  the 1st emission is 
affected by the 2nd: NLL is not OK!

|η1 − η2 | ≫ 1 kt,1 ∼ kt,2

Emission of a soft-collinear gluon , from a  final-state, where  is soft-collinear as wellg2 qq̄g1 g1

Who takes the  
recoil of the new 

emission?

k⊥

https://arxiv.org/abs/1805.09327
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Building a NLL shower
Angles are measured in the event frame

PanLocal( )0 < β < 1

Evolution variable: v ∼ k⊥e−β|y|

, so the 
recoil is negligible
k⊥2 ≪ k⊥1

Deductor by Nagy & Soper 0912.4534 follows a 
similar approach (with )β = 1

2002.11114 Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

https://arxiv.org/abs/0912.4534
https://arxiv.org/abs/2002.11114
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Building a NLL shower

PanGlobal( )0 ≤ β < 1

Recoil:  is redistributed among all the 
partons in the event (mainly the hardest)

k⊥

2002.11114 Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez

PanLocal( )0 < β < 1

Evolution variable: v ∼ k⊥e−β|y|

, so the 
recoil is negligible
k⊥2 ≪ k⊥1

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

Angles are measured in the event frame

Deductor by Nagy & Soper 0912.4534 follows a 
similar approach (with )β = 1

Forshaw, Holguin, and Plätzer 2003.06400, and 
Alaric by Herren et al. 2208.06057 follow a similar 

approach 

https://arxiv.org/abs/2002.11114
https://arxiv.org/abs/0912.4534
https://arxiv.org/abs/2003.06400
https://arxiv.org/abs/2208.06057
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Building a NLL shower

PanGlobal( )0 ≤ β < 1

Recoil:  is redistributed among all the 
partons in the event (mainly the hardest)

k⊥

2002.11114 Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez

PanLocal( )0 < β < 1

Evolution variable: v ∼ k⊥e−β|y|

, so the 
recoil is negligible
k⊥2 ≪ k⊥1

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

ln kt

⌘
g1

g2

g3

q̄ q

g3 g2g1

Angles are measured in the event frame

Conversely by the PanScales showers, Deductor, Alaric 
and FHP,  colour parter  recoiler 

 

≠

Deductor by Nagy & Soper 0912.4534 follows a 
similar approach (with )β = 1

Emitter: 
pi → (1 − ak)p̃i

Emission: 
pk = ak p̃i + bkn̄i+k⊥

Colour partner: p̃j

n̄i ≠ p̃j

Forshaw, Holguin, and Plätzer 2003.06400, and 
Alaric by Herren et al. 2208.06057 follow a similar 

approach 

https://arxiv.org/abs/2002.11114
https://arxiv.org/abs/0912.4534
https://arxiv.org/abs/2003.06400
https://arxiv.org/abs/2208.06057
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Comparison with data

Data
PanGlobal(0)
PanLocal(0.5)
Pythia8 local
Vincia
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DIS broadeing at Q=58 GeV

Code available from 
https://gitlab.com/

panscales/

e+e– thrust at =91 GeVs

Code available from https://
gitlab.com/shoeche/pyalaric 

PanScales for DIS and VBF 
2305.08645, van Beekveld, SFR

https://gitlab.com/panscales/panscales-0.X,
https://gitlab.com/panscales/panscales-0.X,
https://arxiv.org/abs/2305.08645
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Azimuthal angle between leading jets (DY)

NLL showers

LL showers

PanScales for 
colour singlet: 

2207.09467, van 
Beekveld, SFR, 

Hamilton, Salam 
Soto Ontoso, Soyez, 

Verheyen:

pp →mℓℓ = 500 GeV

NLL/LL discrepancies at 
larger scales

Δϕ12

⃗pJ1
T

⃗pJ2
T

Z
Δϕ12

https://arxiv.org/abs/2207.09467
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➡Start with a POWHEG NLO generator for the process with an 
extra jet 

➡Use NNLL’ resummation for a transverse observable to 
regulate the unresolved limit and achieve NNLO accuracy for 
the inclusive distributions  

➡ It can handle colour-singlet and  
: Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi, 2012.14267 
: Mazzitelli, Ratti, Wiesemann, Zanderighi,  2302.01645  

➡ Exploration on how to include EW corrections just begun 
NNLO QCD and NLO EW for , Lindert, Lombardi, 
Wiesemann, Zanderighi, Zanoli  2208.12660  

pp → pp → QQ̄
tt̄
bb̄

pp → WZ

28

 MINNLO [Monni, Nason, Re, Wiesemann, Zanderighi,  1908.06987]

NLO matching ~  control on inclusive observables 
%-level precision requires at least NNLO matching

𝒪(20%)

NNLO matching

https://arxiv.org/abs/2012.14267
https://arxiv.org/abs/2302.01645
https://arxiv.org/abs/2208.12660
https://arxiv.org/abs/1908.06987
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 @ 13 TeV pp → tt̄

 @ 13 TeV pp → ZW

 MINNLO [Monni, Nason, Re, Wiesemann, Zanderighi,  1908.06987]

NNLO matching
NLO matching ~  control on inclusive observables 
%-level precision requires at least NNLO matching

𝒪(20%)

➡Start with a POWHEG NLO generator for the process with an 
extra jet 

➡Use NNLL’ resummation for a transverse observable to 
regulate the unresolved limit and achieve NNLO accuracy for 
the inclusive distributions  

➡ It can handle colour-singlet and  
: Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi, 2012.14267 
: Mazzitelli, Ratti, Wiesemann, Zanderighi,  2302.01645  

➡ Exploration on how to include EW corrections just begun 
NNLO QCD and NLO EW for , Lindert, Lombardi, 
Wiesemann, Zanderighi, Zanoli  2208.12660  

pp → pp → QQ̄
tt̄
bb̄

pp → WZ

https://arxiv.org/abs/1908.06987
https://arxiv.org/abs/2012.14267
https://arxiv.org/abs/2302.01645
https://arxiv.org/abs/2208.12660


Silvia Ferrario Ravasio ZPW2024 30

NNLO matching

➡ Fully differential NNLO calculation using N-jettiness 
➡ Slice the phase space, the separation between 0(1) and 1(2) jets 

is determined by the NNLL’ (NLL’) resummation of  

         
➡ Variant (2): transverse-momentum of the colour singlet plus 

1-jettiness [Alioli, Bauer, Broggio, Gavardi, Kallweit, Lim, Nagar, 
Napolitano, Rottoli, 2102.08390]  

➡ Variant (2): jet veto (for both the 0 and 1 jet case)[Gavardi, Lim, 
Alioli, Tackmann, 2308.11577] 
 

τcut
0 (τcut

1 )

 GENEVA [Alioli, Bauer, Berggren, Tackmann, Walsh  1311.0286 ]

https://arxiv.org/abs/2102.08390
https://arxiv.org/abs/2308.11577
https://arxiv.org/abs/1311.0286
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NNLO matching

➡ Fully differential NNLO calculation using N-jettiness 
➡ Slice the phase space, the separation between 0(1) and 1(2) jets 

is determined by the NNLL’ (NLL’) resummation of  

         
➡ Variant (2): transverse-momentum of the colour singlet plus 

1-jettiness [Alioli, Bauer, Broggio, Gavardi, Kallweit, Lim, Nagar, 
Napolitano, Rottoli, 2102.08390]  

➡ Variant (3): jet veto (for both the 0 and 1 jet case)[Gavardi, Lim, 
Alioli, Tackmann, 2308.11577] 
 

τcut
0 (τcut

1 )

 GENEVA [Alioli, Bauer, Berggren, Tackmann, Walsh  1311.0286 ]

https://arxiv.org/abs/2102.08390
https://arxiv.org/abs/2308.11577
https://arxiv.org/abs/1311.0286
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➤ Proof of concept explored for  @ 
NLO 

➤ some matching schemes supplement shower 
with pure , e.g. MC@NLO: 
Shower log accuracy easy to maintain 
(not necessarily easy to implement, ongoing 
efforts in Alaric, see e.g. 2307.00728 ) 

➤ in other schemes, first emission is generated by 
an external program (POWHEG BOX, 
MiNNLO, Geneva, etc.): 
Shower log accuracy subtle to maintain 

➤ NB: concern is not just kinematic mismatch, 
but also any mismatch in partitioning functions

e+e− → 2 jets

𝒪(αs)

32

log 1/θ

log kt

Lund plane

HEG contour
shower contour

double  
counting

Matching and Logarithmic Accuracy Hamilton, Karlberg, Salam, Scyboz, Verheyen, 2301.09645

https://arxiv.org/abs/2307.00728
https://arxiv.org/abs/2301.09645


Figure 9: Thrust (left), Cambridge ln y23 (middle) and SoftDrop ln kt/Q (right) distri-

butions, unmatched (red) and matched (blue). They are obtained with a LL shower (our

PanScales implementation of the Pythia 8 shower (PSPythia 8, top row)) and two NLL

showers: PanGlobal with �ps = 0 (middle row) and PanLocal �ps =
1
2 (bottom row). The

last row also shows the impact of HEG-style matching without the veto discussed in sec-

tion 3.3. Dotted lines show xhard variation, while dashed lines show xr variations.

The top row of Fig. 9 shows results for our implementation of the Pythia 8 shower.

Recall that since this shower is LL rather than NLL we do not include the scale compen-

sation terms of Eq. (5.1) when varying the renormalisation scale (neither in the shower

– 25 –

NLO matching & 
log-accuracy

➤ Done correctly, NLO matching augments 
accuracy of shower from NLL to  
NLL + NNDL (for event shapes), and it is 
a prerequisite for NNLL accuracy 

➤ Done wrongly, it breaks exponentiation 
structure of shower (impact depends on 
observable) 

➤ example with significant impact is 
SoftDrop transverse momentum  
(i.e. jet substructure)

33

unmatched

wrongly-matched

correctly matched

for standard dipole showers with observables such as the thrust. Below, when we summarise

matched shower results together with their logarithmic accuracy, we will use the notation

NLL, to remind the reader that the formal NLL accuracy has been lost. One subtlety,

however, is that the di↵erence between Eqs. (3.6b) and (3.4b) is always of relative order

↵s. This has the consequence that in numerical NLL tests with ↵s ! 0 for fixed ↵sL, this

di↵erence would mimic a NNLL term, i.e. NLL accuracy would appear to be preserved

despite the presence of spurious super-leading logarithms.

There are, nevertheless, observables that see a larger relative e↵ect. One example

is the invariant mass or transverse momentum of the first SoftDrop splitting when using

�SD = 0 [47, 48]. The special characteristic of this observable is that it is not a standard

global event shape, and its resummation does not have double-logarithmic terms, i.e. it

starts from g2 in Eq. (1.1). In the fixed-coupling approximation that we have e↵ectively

used in this section, the SD cross section has the following single-logarithmic structure,

⌃SD(L) = e↵̄cL , (3.12)

where c is a constant that depends on SoftDrop’s zcut parameter, which we take to be

small. Using the same strategy as above, one can explore how Eq. (3.12) is modified in

HEG/shower combinations with a hard-collinear mismatch. Keeping �ps = 0 for simplicity,

one finds

⌃SD(L) = e↵̄cL�↵̄� + e�↵̄L
2
(1� e�↵̄�) , (3.13)

where the coe�cient � that parameterises the impact of the HEG/shower contour mis-

match now depends on zcut. As with Eq. (3.11), this generates spurious ↵n
sL

2n�2 terms. If

we examine the derivative of ⌃SD (as we will do below in our phenomenology plots),

@L⌃SD(L) = ↵̄c e↵̄cL�↵̄�
� 2↵̄Le�↵̄L

2
(1� e�↵̄�) , (3.14)

we observe that there is a region, L ⇠ 1/
p
↵s, where the second term is suppressed relative

to the first only by
p
↵s. Thus in this region, the impact of the HEG/shower mismatch is

parametrically larger than the relative O (↵s) correction seen in Eq. (3.6b).

3.2 Additional subtleties for gluon splitting

The purpose of this section is to discuss an issue that can arise even when we have a

HEG/shower combination whose kinematic contours (for a fixed value of the evolution

variable) are aligned not just in the soft-collinear region, but for any single-emission phase-

space point that is soft and/or collinear. The issue is connected with the fact that the

g ! gg splitting function

1

2!
Pgg(⇣) = CA

✓
⇣

1� ⇣
+

1� ⇣

⇣
+ ⇣(1� ⇣)

◆
, (3.15)

has two soft divergences, one for ⇣ ! 0 and the other for ⇣ ! 1. This is a consequence of

the inherent symmetry ⇣ $ (1 � ⇣), which stems from the fact that g ! gg corresponds

to splitting to two identical particles (hence also the 1/2! factor). However, dipole showers

break this symmetry, through the concept of an emitting particle (the “emitter”) and a

– 12 –

spurious term from wrong matching

Hamilton, Karlberg, 
Salam, Scyboz, 

Verheyen, 2301.09645

https://arxiv.org/abs/2301.09645
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Soft emission — i.e. inclusion of double-soft current + associated virtual corrections 
➤ NB: Vincia and Sherpa groups have also explored inclusion of the double-soft current; part 

of novelty here is doing so to get the log-accuracy benefit.

34

SFR, Hamilton, Karlberg, 
Salam, Scyboz, Soyez, 

2307.11142
Towards NNLL accuracy

This maintains NLL accuracy and further achieve 

➤ NNDL accuracy for [subjet] multiplicities, i.e. terms , ,  
➤ Next-to-Single-Log (NSL) accuracy for non-global logarithms, e.g. energy in a slice, all terms 

 and  (at leading- ) 

NB: done using PanGlobal, so far just in 

αn
s L2n αn

s L2n−1 αn
s L2n−2

αn
s Ln αn

s Ln−1 Nc

e+e− → qq̄

(Few) % precision in exclusive observables requires at least NNLL accuracy

https://arxiv.org/abs/2307.11142
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NSL Pheno outlook

➤ Energy flow in slice 
between two 1 TeV jets 

➤ First time non-global obs is 
known at NSL (at leading 

) including the full  
dependence  

➤ Double-soft reduces 
uncertainty band

Nc nf
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4

FIG. 3. Determinations of ⌃(ps)
nsl /⌃sl for the transverse en-

ergy in a slice. Left: parton showers without double-soft cor-
rections illustrating NSL di↵erences between them. Middle:
with double-soft corrections but nreal

f = 0 (cf. text for de-
tails), for comparison with the Gnole NSL code. Right: with
full double-soft corrections, showing NSL agreement between
the three PanGlobal showers.

is expected to be zero if the parton shower is NNDL ac-
curate. The original showers, without double-soft correc-
tions (left), clearly di↵er from each other and from zero,
by up to ⇠ 100%. With double-soft corrections turned on
(right), all three PanGlobal variants are consistent with
zero, i.e. with NNDL accuracy, to within ⇠ 1%.

Next we turn to the study of non-global logarithms at
leading colour. These were recently calculated at NSL ac-
curacy [45, 46, 48], ↵n

sL
n�1, and are available in the cor-

responding “Gnole” code [46]. We again consider e
+
e
�

events, and sum the transverse energies (Et) of particles
with |y| < 1, where y is the rapidity with respect to an
axis determined by clustering the event to two jets with
the Cambridge algorithm [74]. The fraction of events
where the sum is below some Et,max is denoted by ⌃ and
for a given shower we define

⌃(ps)
nsl = lim

↵s!0

⌃(ps)
� ⌃sl

↵s

����
fixed ↵sL

, L ⌘ ln
Et,max

Q
. (8)

Fig. 3 (left) shows ⌃(ps)
nsl /⌃sl for our three PanGlobal vari-

ants without double-soft corrections. As expected, they
di↵er.

Fig. 3 (middle) compares our PGsdf
�=0 shower with

double-soft corrections to the NSL Gnole code, show-
ing good agreement, within < 1%. Gnole has nf = 0
in the real contribution and counterterm, but keeps the
full nf = 5 in the running of the coupling and inclusive
Kcmw (“nreal

f = 0”). Among our showers it is relatively

straightforward to make the same choice with PGsdf
�=0, in

particular because �K = 0. Also, Gnole uses the thrust
axis, while we use the jet axis; this is beyond NSL as the
two axes coincide for hard three-parton events.

Fig. 3 (right) shows the results from our three Pan-
Global showers with complete (full-nf ) double-soft cor-
rections included. They agree with each other to within

FIG. 4. Distribution of energy in a slice |y| < 0.5 for the
PanGlobal shower without double-soft corrections (left) and
with them (right). The bands represent renormalisation scale
variation, with NLO scale-compensation enabled only for the
results with double-soft corrections.

1% of the NSL contribution, providing a powerful test of
the consistency of the full combination of the double-soft
matrix element and �K across the variants. That plot
also provides the first NSL calculation of non-global log-
arithms to include the full nf dependence. An extended
selection of results and comparisons is provided in § 3 of
Ref. [60].

We close with a brief examination of the phenomeno-
logical implications of the advances presented here. We
consider e+e� ! Z

⇤
! jets at Q = 2TeV. This choice is

intended to help gauge the size of non-global e↵ects at the
energies being probed today at the LHC. Fig. 4 shows re-
sults for the distribution of energy flow in a rapidity slice,
defined with respect to the 2-jet axis, without double-soft
corrections (left) and with them, i.e. at NSL accuracy
(right). It uses the NODS colour scheme, which while
not full-Nc accurate for non-global logarithms, numeri-
cally coincides with the full-Nc SL results of Refs. [38–
40], to within their percent-level numerical accuracy [73].
With a central scale choice (solid lines), the impact of the
NSL corrections is modest. This is consistent with the
observation from Fig. 3 that the NLL PanGlobal showers
are numerically not so far from NSL accurate. However,
the NSL double-soft corrections do bring a substantial
reduction in the renormalisation scale uncertainty, from
about 10% to just a few percent. Conclusions are similar
for H⇤

! gg.

The results here provide the first demonstration that
it is possible to augment parton-shower accuracy be-
yond NDL/NLL. Specifically, our inclusion of real and
virtual double-soft e↵ects has simultaneously brought
NNDL/NSL accuracy for two phenomenologically impor-
tant classes of observable: multiplicities, and energy flows
as relevant for isolation. It has also enabled the first
leading-colour, full-nf predictions for NSL non-global
logarithms. Overall, our methods and results represent a
significant step towards a broader future goal of general
NNLL accuracy in parton showers.

S.F.R., Hamilton, Karlberg, 
Salam, Scyboz, Soyez 

2307.11142 

αCMW
s (kt; xR) = αs(xRkt)(1 +

αs(xRkt)
2π

(KCMW+ΔK(Φ))+2αs(xRkt)b0(1 − z)ln xR)Uncertainty here is estimated 
varying the renormalisation scale

https://arxiv.org/abs/2307.11142
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Summary and Conclusions 
➤ NLL shower are about to become the new standard  

➤ benefits of LL → NLL include reduced uncertainties (reliable estimate uncertainties) 

➤ for realistic applications we also need massive quarks (Deductor and Alaric already 
include them), at least NLO matching, and tuning 

➤ Higher log accuracy is one of the next frontiers 

➤ double-soft (+ virtual) corrections: NNDL multiplicity and NSL non-global logarithms 

➤ Percent precision requires at least NNLO matching 

➤ NLO+NLL matching is in place only for simple processes, ongoing work for generic 
processes  

➤ The way is long, but not too long, for NNLO+(N)NLL matching

36
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Backup
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Soft emission — i.e. inclusion of double-soft current + associated virtual 
corrections 

➤ any pair of soft emissions with commensurate energy and angles 
should be produced with the correct [double-soft] matrix element  

➤ probability for any single soft emission should be NLO accurate 
➤ NB: Vincia and Sherpa groups have also explored inclusion of the 

double-soft current; part of novelty here is doing so to get the log-
accuracy benefit.

38

SFR, Hamilton, Karlberg, 
Salam, Scyboz, Soyez, 

2307.11142
Towards NNLL accuracy

This should maintain NLL accuracy and further achieve 

➤ NNDL accuracy for [subjet] multiplicities, i.e. terms , ,  

➤ Next-to-Single-Log (NSL) accuracy for non-global logarithms, e.g. energy in a slice, all terms  
and  (at leading- ) 

NB: done using PanGlobal, so far just in 

αn
s L2n αn

s L2n−1 αn
s L2n−2

αn
s Ln

αn
s Ln−1 Nc

e+e− → qq̄

(Few) % precision in exclusive observables requires at least NNLL accuracy

https://arxiv.org/abs/2307.11142


Silvia Ferrario Ravasio ZPW2024

➤ a given two-emission configuration can 
come from several shower histories 

➤ accept a given emission with exact 
double-soft  divided by shower’s 
effective double-soft matrix element 
summed over the histories h that could 
have produced that configuration

M(DS)
exact

39
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.

NLL shower, the splitting probability was given by

dPn!n+1

d ln v
=

X

{ı̃,|̃}2dip

Z
d⌘̄

d�

2⇡

↵s(kt)

⇡

✓
1 +

↵s(kt)Kcmw

2⇡

◆

⇥ [f(⌘̄)akPı̃!ik(ak) + f(�⌘̄)bkP|̃!jk(bk)] . (2)

Here Pı̃!ik(ak) is a leading-order DGLAP splitting func-
tion, ⌘̄ = 1

2 ln ak/bk + const., with the constant arranged
so that ⌘̄ = 0 when the emission bisects the dipole in
the event centre-of-mass frame, and f(⌘̄) = 1/(1 + e

�2⌘̄)
is a partitioning function. Additionally, the MS cou-
pling, ↵s(kt), uses at least 2-loop running, and Kcmw =�
67/18� ⇡

2
/6

�
CA � 5/9nf [61].

In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|

2

P
h |Mshower,h|

2
. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F

(12)
ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
(12)
shower > F

(12)
ds , then we swap the colour connection

with probability

Pswap =
F

(12)
shower � F

(12)
ds

F
(12)
shower

. (4)

We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.

NLL shower, the splitting probability was given by
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Here Pı̃!ik(ak) is a leading-order DGLAP splitting func-
tion, ⌘̄ = 1

2 ln ak/bk + const., with the constant arranged
so that ⌘̄ = 0 when the emission bisects the dipole in
the event centre-of-mass frame, and f(⌘̄) = 1/(1 + e

�2⌘̄)
is a partitioning function. Additionally, the MS cou-
pling, ↵s(kt), uses at least 2-loop running, and Kcmw =�
67/18� ⇡

2
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�
CA � 5/9nf [61].

In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|

2

P
h |Mshower,h|

2
. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F

(12)
ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
(12)
shower > F

(12)
ds , then we swap the colour connection

with probability

Pswap =
F
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shower � F

(12)
ds

F
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. (4)

We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the

2

a

b

...

1 2

1̃

1 2

... ...
1̃

1 2

... ...
2̃

1 2

... ...
2̃

FIG. 1. Top: one shower history that produced a proximate
{1, 2} soft pair. Bottom: other histories that could have led to
the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.

NLL shower, the splitting probability was given by
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Here Pı̃!ik(ak) is a leading-order DGLAP splitting func-
tion, ⌘̄ = 1

2 ln ak/bk + const., with the constant arranged
so that ⌘̄ = 0 when the emission bisects the dipole in
the event centre-of-mass frame, and f(⌘̄) = 1/(1 + e

�2⌘̄)
is a partitioning function. Additionally, the MS cou-
pling, ↵s(kt), uses at least 2-loop running, and Kcmw =�
67/18� ⇡
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In moving towards higher accuracy, the two relevant
elements are the analogues of the real and virtual correc-
tions in a fixed-order calculation. We focus first on the
real term, where we require the shower to generate the
correct double-soft matrix element when two particles are
produced at commensurate angles and (small) energies,
while well-separated from all other particles.

Our approach is illustrated in Fig. 1. Consider the
case where a dipole ab first emits a soft gluon 1̃, followed
by a splitting of the dipole 1̃b whereby a new particle
2 is emitted, and 1̃ becomes 1 after recoil. When the
branching from Eq. (1) produces a particle 2 from the
1̃b dipole, if p1.p2 < p2.pb, we select the {1, 2} pair as
the one whose double-soft e↵ective matrix element needs
correcting. To evaluate the double-soft correction to this
configuration, we first identify all shower histories that
could have produced the same nearby {1, 2} pair. This
includes the history actually followed by the shower, as
well as the case where 2 was emitted from the a1̃ dipole,
and two extra configurations where the shower produced
a particle 2̃ before 1, i.e. where, in the second splitting,
gluon 1 was radiated with 2 taking the recoil.

Each history h is associated with an e↵ective squared
shower matrix element |Mshower,h|

2, reflecting the proba-
bility that the shower, starting from the ab system, would
produce the {1, 2} pair in that order and colour configu-
ration (we address the question of the flavour configura-

tion below). |Mshower,h|
2 is evaluated in the double-soft

limit ([60], § 2 a). In principle, emission 2 should be ac-
cepted with probability

Paccept =
|Mds|

2

P
h |Mshower,h|

2
. (3)

where |Mds|
2 is the known double-soft matrix element

for emitting the {1, 2} soft pair from the ab dipole [62–
64]. In practice, however, there are regions where the
shower underestimates the true matrix element, leading
to Paccept > 1. Nevertheless, we find that Paccept al-
ways remains smaller than some finite value ⌦. We there-
fore enhance the splitting probability Eq. (2) by an over-
head factor ⌦, and accept the emission with probability
Paccept/⌦.
The numerator and denominator in Eq. (3) are evalu-

ated in the same double-soft limit, defined by rescaling
p1 ! �p1, p2 ! �p2 and taking the limit � ! 0. This
ensures that Paccept = 1 when 1 and 2 are well separated,
thus not a↵ecting regions where the shower was already
correct.
The acceptance procedure is su�cient to ensure the

proper generation of the {1, 2} kinematics, but not the
relative weights of the a12b and a21b colour connec-
tions, which is crucial to reproduce the pattern of sub-
sequent much softer radiation from the {a, 1, 2, b} sys-
tem, as required for NSL accuracy. To address this prob-

lem, we evaluate F
(12)
shower, the fraction of the shower ef-

fective double-soft matrix element associated with the
a12b colour connection, and similarly F

(12)
ds for the full

double-soft matrix element, in its large-Nc limit [63, 64].
If the shower has generated the a12b colour connection

and F
(12)
shower > F

(12)
ds , then we swap the colour connection

with probability

Pswap =
F

(12)
shower � F

(12)
ds

F
(12)
shower

. (4)

We apply a similar procedure when the shower generates
the a21b connection. In practice, we precede the colour
swap with an analogous procedure for adjusting the rela-
tive weights of gg and qq̄ flavours for the {1, 2} pair. An
alternative would have been to apply Paccept separately
for each colour ordering and flavour combination, how-
ever when we investigated that option for the PanGlobal
class of showers, we encountered regions of phase space
where the acceptance probability was unbounded. Illus-
trative plots of the shower matrix element and corrections
are given in the supplemental material [60], § 2 b.
Next, we address the question of virtual corrections.

When 1̃ is produced in the deep soft-collinear region of
the ab dipole, i.e. ✓a1̃ ⌧ ✓ab or ✓1̃b ⌧ ✓ab, the inclusion
of Kcmw in Eq. (2) already accounts for second order
contributions to the branching probability in the soft-
collinear region, as required for NLL accuracy for global
event shapes. However, in general, Kcmw alone is not
su�cient when ✓a1 ⇠ ✓1b ⇠ ✓ab, notably because of the
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the same configuration of momenta, also taken into account
in correcting the branching. The dashed parton is emitted
second in the showering history.
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2. Virtual corrections for soft emissions
With our double soft acceptance we have .  
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FIG. 6. Left: Plot of the NLO �K correction, Eq. (6), for three variants of the PanGlobal shower, as a function of the
rapidity ⌘̄1 of a soft emission from a back-to-back dipole. Kcmw is given for reference. Centre/right: impact of di↵erent parts of
the double-soft correction on the NSL contributions for the transverse energy in a slice, showing the di↵erence between PG�=0

(centre) or PG�= 1
2
(right) and a reference NSL-accurate shower.

start with the upper left panel, which shows the q̄g1g2q channel, where the particle labelled 1 is always the one with
larger transverse momentum, and the order of the particles corresponds to the order of the colour connections. Of
particular interest is the region of negative �y21, i.e. where the rapidity ordering is opposite to the colour ordering.
In this region the true double-soft matrix element is strongly suppressed, as one would expect. However, the shower’s
suppression is parametrically stronger. The pattern is similar in the top-right panel for the opposite q̄g2g1q colour
ordering at positive �y21. Had we attempted to correct the shower for each colour-channel separately, there would
have been regions where the acceptance probability in Eq. (3) would have become arbitrarily large. Instead the
approach of Eq. (4) ensures that we only have to make an occasional swap of the colour ordering. The lower panels
show the analogous curves for double-soft quark production.

c. �K and evaluation of its impact

Recall that for a soft emission probability (from a q̄q dipole) as given in Eq. (2), NSL accuracy requires an extra
(1+�K↵s/2⇡) correction factor. Fig. 6 (left) shows the size of the �K contribution, Eq. (6), for our three PanGlobal
shower variants. It is plotted as a function of the rapidity, ⌘̄1 of the soft emission, in the case of a back-to-back parent
dipole. The shower with the largest correction is PG�= 1

2
, but for the configuration shown here, that correction

remains relatively modest, at most a factor of about (1 + ↵s) for ⌘̄1 = 0. The correction for PG�=0 is much smaller.
The PGsdf

�=0 variant has the property that �K is identically zero, a consequence of the fact that the shower’s second
emission probability is independent of the rapidity of the first emission, causing the two terms in Eq. (6) to exactly
cancel.

Fig. 6 (centre and right) illustrates the separate impact of the double-soft real matrix element and �K corrections
on the slice observable of Fig. 3, for PG�=0 (centre) and PG�= 1

2
(right). It shows the di↵erence in NSL contributions

between the PG� result and an NSL-accurate reference, which is taken to be the PGsdf
�=0 shower including the full

double-soft corrections. The red curve shows the di↵erence with no double soft corrections at all, illustrating e.g.
the fortuitous near agreement with the full NSL result for PG�= 1

2
. Turning on the real double-soft corrections (blue

curve) introduces a highly visible e↵ect, bringing the PG�=0 result in better agreement with the full NSL but causing
a significant departure from NSL in the PG�= 1

2
case. Including also the �K correction (green curve) results in

agreement with the NSL result for both showers. The sign of the �K e↵ect is consistent with the left-hand plot: �K

is always positive, and the resulting higher emission probability reduces the value of ⌃.
Finally, let us comment on the numerical accuracy of our results. For � = �0.35, we find ⌃nsl/⌃sl = 4.832± 0.004

(PGsdf
�=0), 4.817 ± 0.010 (PG�=0) and 4.787 ± 0.014 (PG�= 1

2
), where the quoted uncertainties are purely statistical,

as obtained from a cubic polynomial extrapolation ↵s ! 0. These numbers are roughly within 2� of each other.
Note however that for PG�= 1

2
, we found the convergence with ↵s to be slower, making the extraction numerically

more challenging. Accordingly, one should also keep in mind that this comes with additional systematic e↵ects. For
example, we observed that varying the set of ↵s values yields variations in ⌃nsl/⌃sl of the order of 0.01. We also
estimated the e↵ect of varying �K within its numerical uncertainty to be of order 0.005. In all cases, we see a
convincing agreement to within 1% relative to the size of the NSL correction.
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FIG. 3. Determinations of ⌃(ps)
nsl /⌃sl for the transverse en-

ergy in a slice. Left: parton showers without double-soft cor-
rections illustrating NSL di↵erences between them. Middle:
with double-soft corrections but nreal

f = 0 (cf. text for de-
tails), for comparison with the Gnole NSL code. Right: with
full double-soft corrections, showing NSL agreement between
the three PanGlobal showers.

is expected to be zero if the parton shower is NNDL ac-
curate. The original showers, without double-soft correc-
tions (left), clearly di↵er from each other and from zero,
by up to ⇠ 100%. With double-soft corrections turned on
(right), all three PanGlobal variants are consistent with
zero, i.e. with NNDL accuracy, to within ⇠ 1%.

Next we turn to the study of non-global logarithms at
leading colour. These were recently calculated at NSL ac-
curacy [45, 46, 48], ↵n

sL
n�1, and are available in the cor-

responding “Gnole” code [46]. We again consider e
+
e
�

events, and sum the transverse energies (Et) of particles
with |y| < 1, where y is the rapidity with respect to an
axis determined by clustering the event to two jets with
the Cambridge algorithm [74]. The fraction of events
where the sum is below some Et,max is denoted by ⌃ and
for a given shower we define

⌃(ps)
nsl = lim

↵s!0

⌃(ps)
� ⌃sl

↵s

����
fixed ↵sL

, L ⌘ ln
Et,max

Q
. (8)

Fig. 3 (left) shows ⌃(ps)
nsl /⌃sl for our three PanGlobal vari-

ants without double-soft corrections. As expected, they
di↵er.

Fig. 3 (middle) compares our PGsdf
�=0 shower with

double-soft corrections to the NSL Gnole code, show-
ing good agreement, within < 1%. Gnole has nf = 0
in the real contribution and counterterm, but keeps the
full nf = 5 in the running of the coupling and inclusive
Kcmw (“nreal

f = 0”). Among our showers it is relatively

straightforward to make the same choice with PGsdf
�=0, in

particular because �K = 0. Also, Gnole uses the thrust
axis, while we use the jet axis; this is beyond NSL as the
two axes coincide for hard three-parton events.

Fig. 3 (right) shows the results from our three Pan-
Global showers with complete (full-nf ) double-soft cor-
rections included. They agree with each other to within

FIG. 4. Distribution of energy in a slice |y| < 0.5 for the
PanGlobal shower without double-soft corrections (left) and
with them (right). The bands represent renormalisation scale
variation, with NLO scale-compensation enabled only for the
results with double-soft corrections.

1% of the NSL contribution, providing a powerful test of
the consistency of the full combination of the double-soft
matrix element and �K across the variants. That plot
also provides the first NSL calculation of non-global log-
arithms to include the full nf dependence. An extended
selection of results and comparisons is provided in § 3 of
Ref. [60].

We close with a brief examination of the phenomeno-
logical implications of the advances presented here. We
consider e+e� ! Z

⇤
! jets at Q = 2TeV. This choice is

intended to help gauge the size of non-global e↵ects at the
energies being probed today at the LHC. Fig. 4 shows re-
sults for the distribution of energy flow in a rapidity slice,
defined with respect to the 2-jet axis, without double-soft
corrections (left) and with them, i.e. at NSL accuracy
(right). It uses the NODS colour scheme, which while
not full-Nc accurate for non-global logarithms, numeri-
cally coincides with the full-Nc SL results of Refs. [38–
40], to within their percent-level numerical accuracy [73].
With a central scale choice (solid lines), the impact of the
NSL corrections is modest. This is consistent with the
observation from Fig. 3 that the NLL PanGlobal showers
are numerically not so far from NSL accurate. However,
the NSL double-soft corrections do bring a substantial
reduction in the renormalisation scale uncertainty, from
about 10% to just a few percent. Conclusions are similar
for H⇤

! gg.

The results here provide the first demonstration that
it is possible to augment parton-shower accuracy be-
yond NDL/NLL. Specifically, our inclusion of real and
virtual double-soft e↵ects has simultaneously brought
NNDL/NSL accuracy for two phenomenologically impor-
tant classes of observable: multiplicities, and energy flows
as relevant for isolation. It has also enabled the first
leading-colour, full-nf predictions for NSL non-global
logarithms. Overall, our methods and results represent a
significant step towards a broader future goal of general
NNLL accuracy in parton showers.
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