Higgs Precision at the HL-LHC and the FCC

Michele Selvaggi CERN

Zurich Pheno Workshop 2024

The Higgs sector

Z = - 4 Fm Fm $+i\psi \psi \psi + h.c.$ + $\bar{\psi}_i \psi_i \psi_i \phi + h.c.$ + $D_{\mu}\phi l^2 - V(\phi)$ gauge couplings:

 $2M_W^2$

v

$$\mathcal{L}_{H-f} = -\sum_{f} \frac{m_f}{v} \bar{f} f H$$

fermion couplings

H

- Where we are (LHC Run II)
 - Where we will be (Run III HL-LHC)...
- Higgs measurements at the FCC-ee:
 - Production and decays
 - Higgs couplings
 - Higgs properties (mass, width)
- Higgs measurements at the FCC-hh:
 - rates at 100 TeV vs 14 TeV
 - threshold vs boosted production
 - Single/double Higgs measurements

Outline

Higgs Production and decay at the LHC

production

ggF ~ 87%

VBF ~ 7%

-H

ď

VH ~ 4%

decay

Clean decay modes:

$$\chi\chi$$

ZZ* \rightarrow 4I

Present state of affairs

Higgs mass

ATLAS and CMS 7 TeV, 8 TeV and 13 TeV	-+ Total Stat. Syst. Tot. Stat. Syst.
ATLAS <i>H</i> →γγ Run 1	126.02 ± 0.51 (± 0.43 ± 0.27) GeV
CMS <i>H</i> →γγ Run 1	124.70 ± 0.34 (± 0.31 ± 0.15) GeV
ATLAS $H \rightarrow 4I$ Run 1	124.51 ± 0.52 (± 0.52 ± 0.04) GeV
CMS $H \rightarrow 4I$ Run 1	125.59 ± 0.45 (± 0.42 ± 0.17) GeV
ATLAS-CMS yy Run 1	125.07 ± 0.29 (± 0.25 ± 0.14) GeV
ATLAS-CMS 4I Run 1	125.15 ± 0.40 (± 0.37 ± 0.15) GeV
ATLAS-CMS Comb. Run 1	125.09 ± 0.24 (± 0.21 ± 0.15) GeV
ATLAS <i>Η</i> →γγ Run 2	125.11 ± 0.42 (± 0.21 ± 0.36) GeV
ATLAS $H \rightarrow 4I$ Run 2	124.88 ± 0.37 (± 0.37 ± 0.05) GeV
CMS $H \rightarrow 41$ Run 2	125.26 ± 0.21 (± 0.20 ± 0.08) GeV
La angle ang	126 128 130 132 m _H GeV

Higgs couplings in Run 2

Today ~ $150 \text{ fb}^{-1}/\text{exp}$.

- κ_t, κ_b ~10%
- κ_μ ~20%
- κ_{Ζγ} ~40%

Gauge-Higgs: 🔽 III generation: 🔽 II: next?

Higgs mass and width

 $\Gamma_{\rm H} = 4.1 \pm 3.7$ (stat) MeV $\sigma(\Gamma_{\rm H}) \sim \Gamma_{\rm H}$ ~100%

 $m_H = 125.04 \pm 0.12$ (stat.) ± 0.05 (syst.) GeV σ(m_H) ~ 100 MeV ~ 0.1%

Higgs self-coupling(s)

μ_{HH} < 3 Ι < κ_λ < 6

@95% CL

 $\kappa_{2V} = 0$ excluded

Timeline

accessed only 5% of the LHC dataset

Differentials $(d\sigma/dp_T)$

From discovery \rightarrow precision total rates \rightarrow differential measurements

350 p₇1 [GeV]

2nd generation at HL-LHC

H→µµ

H→cc

 \rightarrow tracker upgrades

low mat. budget superior vertex detectors

Higgs at HL-LHC

Higgs couplings ~ few %

Need to go beyond the LHC precision measurements:

δκ_X < 1% ?

- Invisible decays

di-Higgs evidence (4σ) self-coupling $\delta \kappa_{\lambda} \sim 50\%$

Model independence, Higgs width Light couplings (charm, muon)

- Self-coupling(s)
- **BSM Higgs**

Timeline (HL-LHC)

100% of the LHC dataset

- abundant decay modes to few % level
- fully differentials in production
- partial II generation
- $\delta m_H \sim 30 \text{ MeV}$ and $\delta \Gamma_H / \Gamma_H \sim 25\%$
- evidence for HH production -
- direct Higgs BSM reach: x1.5-2 -

FCC-ee program

Exquisite luminosity allows for ultimate precision:

- 100K Z bosons / second Ο
 - LEP dataset in 1 minutes
- 10k W boson / hour Ο
- 2k Higgs bosons / day Ο
- 3k tops / day Ο

15 (20?) years of operations

	Z pole	? H pole ?	ww	ZH	ttbar
√ s [GeV]	88 - 91 - 94	125	157 - 161	240	350 - 365
Lumi / IP [10 ³⁴ cm² s ⁻¹]	182	80	19.4	7.3	1.33
Int. lumi / 4IP [ab ⁻¹ / yr]	87	38	9.3	3.5	0.65
N _{years}	4	5	2	3	5
N _{events}	8 Tera	8 K	300 M	2 M	2 M

Physics processes

- - s-channel ~ 1/s
 - t-channel ~ log s


```
large rates ( > le6 )
clean exp. environment (no UE, Pile-up, low event rate - trigger less)
                 Large S/B (no QCD background)
                  Energy, momentum constraints
```

```
Physics background are "small" in e<sup>+</sup>e<sup>-</sup>
```


10⁻¹⁰ at hadron colliders

FCC-ee offers ideal environment for Higgs physics

Higgs at the FCC-ee

- production mechanisms •
 - Higgs-strahlung •
 - VBF •

L = 10 ab⁻¹ L = 3 ab⁻¹
4IP

$$ZH = 2\times 10^{6}$$
 $ZH = 5\times 10^{5}$
 $VBF = 4\times 10^{4}$ $VBF = 10^{5}$

Note on systematic uncertainties vs pp

- integrated lumi ~ 0.01%
- tagging efficiency, BES < 1%
- TH < 1% (no PDFs, QCD corrections are small)

FCC-ee recoil method

Precise knowledge of center of mass allows for:

- tag the Z by reconstructing pair of leptons
- reconstruct the the recoil mass

$$m_{\rm recoil}^2 = s - 2\sqrt{s}E_{\rm di-lepton} + m_{\rm di-lepton}^2$$

Higgs recoil mass measurement \rightarrow ZH production cross section:

- I0⁶ Higgs produced @ FCC-ee
 - rate ~ $g_Z ^2 \rightarrow \delta g_Z / g_Z \sim 0.2 \%$
- Then measure $ZH \rightarrow ZZZ$
 - rate ~ $g_Z 4 / \Gamma_H \rightarrow \delta \Gamma_H / \Gamma_H ~ 1 \%$
- Then measure $ZH \rightarrow ZXX$
 - rate ~ $g_Z^2 g_X^2 / \Gamma_H \rightarrow \delta g_X / g_X \sim 1\%$

Provides absolute and model independent measurement of g_Z coupling in e+e-

FCC-ee detectors

CLD

- Well established design ٠
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker; ٠
- CALICE-like calorimetry; ٠
- Large coil, muon system ٠
- Engineering still needed for operation with ٠ continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations ٠
 - $\sigma_p/p, \sigma_E/E$
 - PID ($\mathcal{O}(10 \text{ ps})$ timing and/or RICH)?

- A bit less established design
 - But still ~15y history
- Si vtx detector; ultra light drift chamber w powerful PID; compact, light coil;
- Monolithic dual readout calorimeter;
 - Possibly augmented by crystal ECAL
- Muon system ٠
- Very active community ٠
 - campaigns, ...

Prototype designs, test beam

Noble Liquid ECAL based

- A design in its infancy
- Si vtx det., ultra light drift chamber (or Si) ٠
- High granularity Noble Liquid ECAL as core
 - Pb/W+LAr (or denser W+LKr)
- CALICE-like or TileCal-like HCAL; ٠
- Coil inside same cryostat as LAr, outside ECAL ٠
- Muon system. ٠
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

Z(II)H cross-section and mass measurements

ToDo: HZZ (all decay) study \rightarrow reach target of 1% on $\Gamma_{\rm H}$

using µµ channel

tracking system	∆m _н (MeV) stat.only	Δm _н (MeV stat + sy
IDEA 2T	3.49	4.27
Perfect	2.67	3.44
IDEA 3T	2.89	3.97
CLD 2T	4.56	5.32

- Why measure Higgs mass:
 - input for the EW precision fit
 - O(10 MeV) need for permil precision of g_Z , g_W , g_{Z_V}
 - $O(\Gamma_H = 4 \text{ MeV})$ to measure electron Yukawa

 $\delta m_H \sim 2.9 \text{ MeV} (\text{stat}) + 1.9 (\text{syst})$

Electron Yukawa

- s-channel production with beam monochromatisation at $\sqrt{s} = 125$ GeV
 - ISR+FSR leads to 40% + with beam spread ~ $\Gamma_{\rm H}$ another 45% (σ ~ 280 ab⁻¹)
 - plus potentially uncertainty on the Higgs mass
 - state-of-the-art ~ 2σ with 5 years and 4 IPs
 - potentially improve with exclusive $ee \rightarrow gg(cc)$

Higgs to hadrons at the FCC-ee

Charm-tagging

Light tracker, first measurement layer close to IP:

- excellent b/c-tagging performance •
 - crucial to measure and to isolate • clean $H \rightarrow bb/cc/gg$ samples

relies on particle ID identify Kaons

2nd generation (c,s) at FCC-ee

High purity with Flavour tagger

strange Yukawa: 2σ evidence Strategy 2D fit δк (%) δμ (%) decay 0.15* 0.3 bb (m_{vis}, m_{recoil}) 0.8 0.4

only using Z(vv) final state

FCC-ee vs. Other facilities

Collider	HL-LHC	ILC ₂₅₀	CLIC ₃₈₀	LEP3 ₂₄₀	$CEPC_{250}$		FCC-ee ₂₄₀	0+365
Lumi (ab ⁻¹)	3	2	1	3	5	5_{240}	$+1.5_{365}$	+ HL-LHC
Years	25	15	8	6	7	3	+4	
$\delta\Gamma_{\rm H}/\Gamma_{\rm H}$ (%)	SM	3.6	4.7	3.6	2.8	2.7	1.3	1.1
$\delta g_{\mathrm{HZZ}}/g_{\mathrm{HZZ}}$ (%)	1.5	0.3	0.60	0.32	0.25	0.2	0.17	0.16
$\delta g_{ m HWW}/g_{ m HWW}$ (%)	1.7	1.7	1.0	1.7	1.4	1.3	0.43	0.40
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.8	1.3	1.3	0.61	0.56
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	2.3	4.4	2.3	2.2	1.7	1.21	1.18
$\delta g_{ m Hgg}/g_{ m Hgg}$ (%)	2.5	2.2	2.6	2.1	1.5	1.6	1.01	0.90
$\delta g_{\mathrm{HTT}}/g_{\mathrm{HTT}}$ (%)	1.9	1.9	3.1	1.9	1.5	1.4	0.74	0.67
<i>δg</i> _н μμ/ <i>g</i> _н μμ (%)	4.3	14.1	n.a.	12	8.7	10.1	9.0	3.8
$\delta g_{\rm H} \gamma \gamma / g_{\rm H} \gamma \gamma$ (%)	1.8	6.4	n.a.	6.1	3.7	4.8	3.9	1.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	-	_	_	_	_	_	3.1
BR _{EXO} (%)	SM	< 1.7	< 2.1	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0

of magnitude

• both energy points ($\sqrt{s}=240$ GeV and $\sqrt{s}=365$ GeV) are important

For abundant decay modes, FCC-ee improves upon HL-LHC by almost one order

This is only with 2 IPs !!

Timeline (FCC-ee)

- $\delta K_{g,b,c,Z,W} < 1\%$
- electron Yukawa?
- δΓ_H ~ 1%, δm_H ~ 3 MeV

- evidence for strange Yukawa? (full II generation Yukawa)

Machine specs and detector requirements

	parameter		unit	LHC	HL-LHC	HE-LHC	FCC-hh
	E_{cm}		TeV	14	14	27	100
	circumference		km	26.7	26.7	26.7	97.8
	peak $\mathcal{L} \times 10^{34}$		$\rm cm^{-2} s^{-1}$	1	5	25	30
	bunch spacing		ns	25	25	25	25
	number of bunches			2808	2808	2808	10600
	goal $\int \mathcal{L}$		ab^{-1}	0.3	3	10	30
	σ_{inel}		mbarn	85	85	91	108
	σ_{tot}		mbarn	111	111	126	153
	BC rate		MHz	31.6	31.6	31.6	32.5
	peak pp collision rate		GHz	0.85	4.25	22.8	32.4
	peak av. PU events/BC			27	135	721	997
	rms luminous region σ_z		mm	45	57	57	49
	line PU density		mm^{-1}	0.2	0.9	5	8.1
	time PU density		ps^{-1}	0.1	0.28	1.51	2.43
	$dN_{ch}/d\eta _{\eta=0}$			7	7	8	9.6
	charged tracks per collision N_{ch}			95	95	108	130
	Rate of charged tracks		GHz	76	380	2500	4160
	$< p_T >$		GeV/c	0.6	0.6	0.7	0.76
Number	of pp collisions		10^{16}	2.6	26	91	324
Charged	part. flux at 2.5 cm est.(FLUKA)	G	$Hz cm^{-2}$	0.1	0.7	2.7	8.4 (12)
1 MeV-n	eq fluence at 2.5 cm est.(FLUKA)	1($^{16} \mathrm{cm}^{-2}$	0.4	3.9	16.8	84.3 (60)
Total ionising dose at 2.5 cm est.(FLUKA)		MGy	1.3	13	54	270 (400)	
$dE/d\eta _{\eta=5}$		GeV	316	316	427	765	
$dP/d\eta _{\eta}$	=5		kW	0.04	0.2	1.0	4.0

High granularity and precision timing needed to reduce occupancy levels and for pile-up rejection

lumi & pile-up

\rightarrow x6 HL-LHC

LHC: 30 PU events/bc HL-LHC: 140 PU events/bc FCC-hh: 1000 PU events/bc

but also x10 integrated luminosity w.r.t to HL-LHC

SM physics processes@ 100 TeV

Rate of increase from 14 TeV to 100 TeV:

- ggHxI5
- HH x40
- ttH x55
- tt x30

- Total pp cross-section and Minimum bias multiplicity show a modest increase from 14 TeV to 100 TeV
 - \rightarrow Levels of pile-up will scale basically as the instantaneous luminosity. (1000PU vs 200 PU)
- Cross-section for relevant processes shows a significant increase.
 - \rightarrow interesting physics sticks out more !

reduction of x10-20 statistical uncertainties

Reach at high energies (III)

How does the rate of a given process (e.g. single Higgs production) scale from 14 TeV to 100 TeV

10⁴

cross-section (
$$\sqrt{s} = 100 \text{ TeV}$$
)
cross-section ($\sqrt{s} = 14 \text{ TeV}$)

100 TeV vs 14 TeV PDF Luminosities, NNPDF2.3 NNLO

 $\approx L_1 / L_2 \approx (s_2 / s_1)^a \approx (100 / 14)^{2a}$

	σ(100)/σ(14)
ggH	15
нн	40
ttH	55
Н (р _т > I TeV)	400

Very large rate increase by increasing center of mass energy

NB: this improvement only comes from the cross-section (neglects integrated luminosity)

Coupling measurements at ee vs hh

At pp colliders we can only measure:

 $\sigma_{\text{prod}} BR(i) = \sigma_{\text{prod}} \Gamma_i / \Gamma_H$

 \rightarrow we do not know the total width

In order to perform global fits, we have to make model-dependent assumptions

Instead, by performing measurements of ratios of BRs at hadron colliders:

 $BR(H \rightarrow XX) / BR(H \rightarrow ZZ) \approx g_X^2 / g_Z^2$

We can "convert" **relative measurements into absolute** via gz thanks to e⁺e⁻ measurement

→ synergy between lepton and hadron colliders

$x_{min} \sim M^2 / s$

Higgs at large pt

- ٠

 - VBF/VH at large
 - Even rare decay modes can be accessed at large pt
- Opportunity to measure the Higgs in a new dynamical ۲ regime
 - Higgs pT spectrum highly sensitive to new physics.

- highly granular sub-detectors: •
 - Tracker pixel: 10 μ m @ 2cm $\rightarrow \sigma_{\eta x \varphi} \approx 5$ mrad
 - Calorimeters: 2 cm @ 2m $\rightarrow \sigma_{\eta x \varphi} \approx 10$ mrad
- good energy/pT resolution at large pT:

 $\sigma_{\rm p} / {\rm p} = 2\% @ {\rm I TeV}$ ٠

The FCC-hh detector

Fwd ECAL: LAr/Cu σ_E/E ~30%/√E ⊕ I % lat. segm: ΔηΔφ≈ 0.01 long. segm: 6 layers

Single Higgs production @FCC-hh

	σ(13 TeV)	σ(100 TeV)	σ(100)/σ(13)
ggH (N ³ LO)	49 pb	803 pb	16
VBF (N ² LO)	3.8 pb	69 pb	16
VH (N ² LO)	2.3 pb	27 pb	11
ttH (N ² LO)	0.5 pb	34 pb	55

	N_{100}	N_{100}/N_8	N_{100}/N_{14}
$gg \to H$	16×10^9	4×10^4	110
VBF	1.6×10^9	5×10^4	120
WH	3.2×10^8	2×10^4	65
ZH	2.2×10^8	3×10^4	85
$t ar{t} H$	$7.6 imes 10^8$	$3 imes 10^5$	420
		Î	Î

Factor: 1/100 1/10

Large statistics in various Higgs decay modes allow:

- for % level precision in statistically limited rare channels ($\mu\mu$, Z χ)
- - higher S/B
 - smaller (relative) impact of systematic uncertainties

$N_{100} = \sigma_{100 \text{TeV}} \times 20 \text{ab}^{-1}$
$N_8 = \sigma_{8 \text{ TeV}} \times 20 \text{ fb}^{-1}$
$N_{14} = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1}$

reduction in stat. unc.

• in systematics limited channels, to isolate cleaner samples in regions (e.g. @large Higgs pT) with :

Why measuring Higgs @100TeV?

- 100 TeV provides unique and complementary measurements to ee colliders:
 - Higgs self-coupling
 - top Yukawa
 - Higgs \rightarrow invisible
 - rare decays (BR($\mu\mu$), BR(Z γ), ratios, ..) measurements will be statistically limited at FCC-ee

Need to improve

	HL-LHC	FCC-ee
δГн / Гн (%)	SM	1.3
δg _{HZZ} / g _{HZZ} (%)	1.5	0.17
δgнww / gнww (%)	1.7	0.43
δg _{Hbb} / g _{Hbb} (%)	3.7	0.61
δg _{Hcc} / g _{Hcc} (%)	~70	1.21
δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01
δg _{Hττ} / g _{Hττ} (%)	1.9	0.74
δg _{Hµµ} / g _{Hµµ} (%)	4.3	9.0
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9
δg _{Htt} / g _{Htt} (%)	3.4	—
δg _{HZγ} / g _{HZγ} (%)	9.8	—
δgннн / gннн (%)	50	40
BR _{exo} (95%CL)	$BR_{inv} < 2.5\%$	< 1%

Large rates for rare modes and HH production at FCC-hh

 \rightarrow complementary to e⁺e⁻

Top Yukawa (production)

- production ratio $\sigma(ttH)/\sigma(ttZ) \approx y_t^2 y_b^2/g_{ttZ}^2$
- measure $\sigma(ttH)/\sigma(ttZ)$ in $H/Z \rightarrow bb$ mode in the boosted regime, in the semi-leptonic channel
- perform simultaneous fit of double Z and H peak
- (lumi, scales, pdfs, efficiency) uncertainties cancel out in ratio
- assuming g_{ttZ} and κ_b known to 1% (from FCC-ee),

 \rightarrow measure y_t to 1%

Higgs decays (signal strenth)

- study sensitivity as a function of minimum p_T(H) requirement in the γγ, ZZ(4I), μμ and Z(II)γ channels
- low p_T(H): large statistics and high syst. unc.
- large $p_T(H)$: small statistics and small syst. unc.
- O(I-2%) precision on BR achievable up to very high pT (means 0.5-1% on the couplings)

- 1% lumi + theory uncertainty
- p_T dependent object efficiency:
 - $\delta \epsilon (e/\gamma) = 0.5 (I)\%$ at $p_T \rightarrow \infty$
 - $\delta \epsilon(\mu) = 0.25 \ (0.5)\%$ at $p_T \rightarrow \infty$

Ratios of BR($H \rightarrow XX$) / BR($H \rightarrow ZZ$)

- measure ratios of BRs to cancel correlated sources of systematics:
 - luminosity
 - object efficiencies
 - production cross-section (theory)
- Becomes absolute precision measurement in particular if combined with $H \rightarrow ZZ$ measurement from • e⁺e⁻ (at 0.2%)

Higgs self-coupling

 Very small cross-section due to negative interference with box diagram

- HL-LHC projections : $\delta k_{\lambda /} k_{\lambda} \approx 50\%$
- Expect large improvement at FCC-hh:
 - $\sigma(100 \text{ TeV})/\sigma(14 \text{ TeV}) \approx 40 \text{ (and } \text{Lx}10)$
 - x400 in event yields and x20 in precision
- main channels studied:
 - bbyy (most sensitive discussed here)
 - $bb\tau\tau$
 - bbZZ(4I)
 - bbbb

Self-coupling at the FCC-hh

@68% CL	scenario I	scenario II	scenario III
bbyy	3.8	5.9	10.0
bbττ	9.8	12.2	13.8
bbbb	22.3	27.1	32.0
comb.	3.4	5.1	7.8

- Combined precision:
 - 3.5-8% for SM (3% stat. only) •
 - 10-20% for $\lambda_3 = 1.5^* \lambda_3^{SM}$

Expected precision:

Higgs Self-coupling and constraints on models with 1st order EWPT

- Strong 1st order electroweak phase transition baryon asymmetry in our universe
- Can be achieved with extension of SM + singlet

Direct detection of extra Higgs states

Strong 1st order electroweak phase transition (and CP violation) needed to explain large observed

Parameter space scan for a singlet model extension of the Standard Model. The points indicate a first order phase transition.

Summary of Higgs direct measurements

Observable	Parameter	Precision (stat.)	Precision (stat.+syst.+lumi.)
$\mu = \sigma(H) \times B(H \to \gamma \gamma)$	δμ/μ	0.1%	1.45%
$\mu = \sigma(H) \times B(H \to \mu\mu)$	$\delta \mu / \mu$	0.28%	1.22%
$\mu = \sigma(H) \times B(H \rightarrow 4\mu)$	$\delta \mu / \mu$	0.18%	1.85%
$\mu = \sigma(H) \times B(H \to \gamma \mu \mu)$	$\delta \mu / \mu$	0.55%	1.61%
$\mu = \sigma(HH) \times B(H \to \gamma\gamma) B(H \to b\bar{b})$	δλ/λ	5%	7.0%
$R = B(H \rightarrow \mu\mu)/B(H \rightarrow 4\mu)$	$\delta R/R$	0.33%	1.3%
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2e2\mu)$	$\delta R/R$	0.17%	0.8%
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2\mu)$	$\delta R/R$	0.29%	1.38%
$R = B(H \rightarrow \mu\mu\gamma)/B(H \rightarrow \underline{A}\mu)$	$\delta R/R$	0.58%	1.82%
$R = \sigma(t\bar{t}H) \times B(H \to b\bar{b}) / \sigma(t\bar{t}Z) \times B(Z \to b\bar{b})$	$\delta R/R$	1.05%	1.9%
$B(H \rightarrow invisible)$	<i>B@</i> 95%CL	1×10-4	2.5×10-4

$$\begin{array}{l}
\delta R/R \\
R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2e2\mu) \\
R = B(H \rightarrow \mu \mu)/B(H \rightarrow 4\mu) \\
R = B(H \rightarrow \mu \mu \gamma)/B(H \rightarrow \mu \mu) \\
R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2\mu)
\end{array}$$

- Percent level precision on couplings if HZZ coupling known from FCC-ee (to 0.2%)

	HE-LHC	LE-FCC	FCC-hh
L)	1.7%	1.5%	0.8%
	3.6%	2.9%	1.3%
	8.4%	6%	1.8%
	3.5 %	2.8%	1.4%

• Percent level precision on $\sigma \times BR$ in most rare decay channels achievable only at 100 TeV

Summary direct measurements

	HL-LHC	FCC-ee	FCC-hh
δГн / Гн (%)	SM	1.3	tbd
δg _{HZZ} / g _{HZZ} (%)	1.5	0.17	tbd
δднww / днww (%)	1.7	0.43	tbd
δд _{ньь} / д _{ньь} (%)	3.7	0.61	tbd
δg _{Hcc} / g _{Hcc} (%)	~70	1.21	tbd
δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01	tbd
δgнττ / gнττ (%)	1.9	0.74	tbd
δg _{Hµµ} / g _{Hµµ} (%)	4.3	9.0	0.65 (*)
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9	0.4 (*)
δg _{Htt} / g _{Htt} (%)	3.4		0.95 (**)
δg _{HZγ} / g _{HZγ} (%)	9.8		0.91 (*)
δдннн / дннн (%)	50	~30 (indirect)	5
BR _{exo} (95%CL)	BR _{inv} < 2.5%	< 1%	BR _{inv} < 0.025%

* From BR ratios wrt B(H \rightarrow 4I) @ FCC-ee

** From $pp \rightarrow ttH / pp \rightarrow ttZ$, using B(H \rightarrow bb) and ttZ EW coupling @ FCC-ee

Conclusions & outlook

- The integrated FCC program allows for ultimate precision in the Higgs sector
 - Among all proposed future facilities, it is the natural next step for Higgs (and BSM) exploration
- The FCC-ee will produce I-2 millions Higgs in a clean environment (low systematics):
 - allows for model independent measurement of Higgs couplings
 - exquisite precision in "abundant" Higgs decay channels (<1%)
 - Hints of strange Yukawa and electron Yukawa might be possible
- The FCC-hh will produce 20B Higgs and 30M Higgs pairs
 - In synergy with the FCC-ee will provide percent level precision on most Higgs couplings
 - very rare decays $(H \rightarrow \mu \mu, Z \chi)$
 - ttH (with ttZ from FCC-ee)
 - <5% on the Higgs self-coupling
- Still much to be done:
 - CP, Width at FCC-ee

FCC Higgs/Top group

Exp: MS, J. Eysermans TH: Gauthier Durieux, Jorge De Bras, Christophe Grojeam

FCC-PED-PhysicsGroup-Higgs@cern.ch

FCC-ee detector modeling

- Detector simulation baseline:
 - IDEA with Delphes
 - full track covariance reconstruction
 - particle ID (timing, charged energy loss)
 - jet tagging using Weaver/Particle NET
 - Flavors: g/b/c/s/light/tau
- Recent updates:
 - "Realistic" electron description
 - including brem recovery
 - smaller beampipe
 - ECAL crystal for better ele/photon performance
- Samples:
 - Wizard3+ Pythia6
 - Pythia8

http://fcc-physics-events.web.cern.ch/fcc-physics-events/FCCee/winter2023/Delphesevents_IDEA.php

FCC-ee Higgs couplings (part II)

WW fusion added value

- vvH \rightarrow vvbb ~ $g_{VV}^2 g_b^2 / \Gamma_H$
 - vvbb / (ZH(bb) ZH(WW) ~ g_Z^4 / $\Gamma_H = R$
 - $\Gamma_{\rm H}$ precision at 1%
- Then do vvH \rightarrow vvWW ~ gw⁴ / $\Gamma_{\rm H}$
 - R / vvWW ~ g_W^4 / g_Z^4
 - gw precision to few permil

Running at the top does not simply add statistics it exploits complementary production mode to improve constraints

BR expected precision with 2 IPs

\sqrt{s} (GeV)	240		365	
Luminosity (ab^{-1})	C H	<u>,</u>	1.	5
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu \bar{\nu}$ H	ΗZ	$\nu \bar{\nu}$ H
$\rm H \rightarrow any$	± 0.5		± 0.9	
$\mathrm{H} \rightarrow \mathrm{b}\bar{\mathrm{b}}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \to c \bar c$	± 2.2		± 6.5	± 10
$\mathrm{H} \to \mathrm{gg}$	± 1.9		± 3.5	± 4.5
${\rm H} \rightarrow {\rm W}^+ {\rm W}^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} \to \mathrm{ZZ}$	± 4.4		± 12	± 10
${\rm H} \to \tau \tau$	± 0.9		± 1.8	± 8
$H \to \gamma \gamma$	± 9.0		± 18	± 22
$H \to \mu^+ \mu^-$	± 19		± 40	
${\rm H} \rightarrow {\rm invis}.$	< 0.3		< 0.6	

For 4 IPs, expect: x 1.7 luminosity / statistics x 1.3 in expected precision

Abundant statistics and high precision for: bb/cc/gg/WW Limited for:

- rare decays $\mu\mu$, $\gamma\gamma$, $Z\gamma$
- HH

Higgs mass/cross-section measurements

- Why measure Higgs mass:
 - input for the EW precision fit
 - O(10 MeV) need for permil precision of gz, gw, gzy
 - $O(\Gamma_H = 4 \text{ MeV})$ to measure electron Yukawa

Event selection (common with sec):	2 1.8 1.8
	1.6
 at least 2 leptons 	1.4
 tight m_z selection [86,96] GeV 	1.2
 p(μμ) > 20.70 GeV 	
• measurement differential in θ	0.8
	0.6
Sustamatica	0.4
systematics:	0.2
 Beam energy spread ~ 2e-03 (~200 MeV) 	12
• C.O.M energy ~ 2e-05 (~2 MeV)	
 Lepton scale ~ 2e-05 	`

• ISR ~ t.b.d

Jan Eysermans

$$\sin^2 \theta_W = \left(1 - \frac{M_W^2}{M_Z^2}\right) = \frac{A^2}{1 - \Delta r}$$

 $\Delta r \sim \ln(m_H)$ $\Delta r \sim m_t^2$ $\Delta r \sim new physics?$

in situ from $ee \rightarrow ff\gamma$ events

Higgs mass measurement (detector sensitivity)

- sensitivity dominated by the $Z(\mu\mu)$ final state
 - superior momentum resolution, driven by tracking Ο
- track momentum resolution limits sensitivity if > beam energy spread (BES = 0.182% at 240 GeV, i.e 222 MeV)
 - multiple-scattering limit < BES
 - for CLD ~ 30% above
 - **transparent** tracker is key

usir	using µµ channel				
tracking system	∆m _н (MeV) stat.only	∆m _н (MeV) stat + syst			
IDEA 2T	3.49	4.27			
Perfect	2.67	3.44			
IDEA 3T	2.89	3.97			
CLD 2T	4.56	5.32			

~100 MeV in ATLAS/CMS

Fit configuration	$\mu^+\mu^-$ channel	e^+e^- channel	$\operatorname{combination}$
Nominal	3.49 (4.27)	4.38 (4.72)	2.67(3.28)
Inclusive	4.11 (4.79)	5.26(5.73)	3.19 (3.89)
Degradation electron resolution $(*)$	3.49(4.27)	5.09(5.70)	2.82(3.66)
Magnetic field 3T	2.89(3.79)	3.59(4.38)	2.20 (3.27)
CLD 2T (silicon tracker)	4.56 (5.32)	4.93(5.48)	3.26(3.99)
BES 6% uncertainty	3.49 (4.35)	4.38 (5.00)	2.67(3.42)
Disable BES	1.92(3.15)	2.52(3.46)	1.50(2.70)
Ideal resolution	2.67(3.44)	3.29 (3.94)	2.02(2.96)
Freeze backgrounds	3.49 (4.27)	4.38 (4.72)	2.67(3.27)
Remove backgrounds	2.86(3.69)	3.26(3.47)	2.11 (2.64)

Higgs self-coupling

%-level precision only at the FCC-hh

@68% CL	scenario I	scenario II	scenario III
bbyy	3.8	5.9	10.0
bbττ	9.8	12.2	13.8
bbbb	22.3	27.1	32.0
comb.	3.4	5.1	7.8

New effort started (new channel/extended parameter space/ revisited detector performance)

Salerno, Portales

FCC-ee:

from radiative corrections to ZH/VBF single H production (√s=240, 365 GeV)

• state of the art fit to self-coupling precision:

- \circ 19% κ_λ alone vs 33% full (EFT projected) with 2IPs
- \circ 14% κ_λ alone vs 24% full (EFT projected) with 4IPs

Higgs to invisible

- Higgs could be a portal to dark matter or other new physics
- In the SM B(H \rightarrow inv) ~ 10⁻³ •
- Use recoil method to reconstruct the Higgs •
 - potential to improve 1 order of magnitude compared to LHC
- Event selection:
 - Split events into exactly 2e, 2μ and 0 e+ μ (bb/qq) •
 - Reconstruct Z from 2 leptons or M_{vis}
 - Reconstruct M_{miss} from all visible particles
 - Use distribution of M_{miss} in likelihood fit •

~ 100% sensitivity on SM BR($H \rightarrow inv$)

Mehta, Rompotis

 $e^{,\mu},q$ $^{+}, \mu^{+}, \bar{q}$

Higgs to hadrons (Z(VV))

- ee \rightarrow ZH \rightarrow vv j j
 - j = b, c, s, g

Final States	Cross-section [pb]	BR(H)	BR(Z)	Expected Yields
signal				
Z(u u)H(uu/dd)	0.201868		0.2	
$Z(\nu\nu)H(bb)$	0.201868	0.571	0.2	$1.34\cdot 10^5$
$Z(\nu\nu)H(cc)$	0.201868	0.0291	0.2	$6.68\cdot 10^3$
Z(u u)H(ss)	0.201868	$2.50\cdot 10^{-4}$	0.2	55
Z(u u)H(gg)	0.201868	0.0853	0.2	$1.89\cdot 10^4$
Z(u u)H(au au)	0.201868	0.0626	0.2	$1.45\cdot 10^4$
background				
ZZ	1.35899	-	-	$6.79\cdot 10^6$
WW	16.4385	-	-	$8.22\cdot 10^7$
Z	52.6539	-	-	$2.63\cdot 10^8$
$Z(\nu\nu)H(WW)$	0.201868		0.2	$4.97\cdot 10^4$
$Z(\nu\nu)H(ZZ)$	0.201868		0.2	$6.10\cdot 10^3$
Z(qar q)H	0.201868			$6.82\cdot 10^5$

- Strategy:
 - Event preselection
 - lepton veto (orthogonalise)
 - build bb/cc/ss/gg orthogonal enriched categories using max sum of jet scores

Del Vecchio, Gouskos, MS

FCCAnalyses: FCC-ee Simulation (Delphes)

Higgs to hadrons (Z(LL)) <u>G. Marchiori (Friday)</u>

- ee \rightarrow ZH \rightarrow IIjj
 - j = b, c, s, g
- Event pre-selection:
 - build recoil mass

one $Z(\ell \ell)$ candidate $m_{\ell\ell}$ in 81–101 GeV $|\cos\theta_{\ell\ell}| < 0.8$ $m_{\rm recoil}$ in 120–140 GeV m_{jj} in 100–140 GeV $p_{\rm miss} < 30 {
m ~GeV}$ no leptons with p > 25 GeV $d_{23} > 2, d_{34} > 1.5, d_{45} > 1.0$

- Final selection and signal extraction:
 - multi-score BDT using jet tagger output to maximise purity in
 - bb/cc/ss/gg/other final states
 - simultaneous un-binned fit on m_{recoil} on 4/5 signal strength modifiers POIs

Marchiori, Maloizel

Results @10 ab⁻¹

Z(→LL)H(→qq)	bb	CC	SS	gg
δμ/μ (%)	0.6	3.5	290	1.5

51

Higgs to hadrons (Z(VV))

- ee \rightarrow ZH \rightarrow vv j j
 - j = b, c, s, g

- Strategy (continued):
 - for each signal category (bb/cc/ss/gg)
 - define LP/MP/HP categories based on $s(j_1) + s(j_2)$
 - perform a 2D (m_{jj}, m_{recoil}) template fit on each of the 3x4 categories

~ strange Yukawa to 50% precision seems possible ...

can the fully hadronic (4j) channel help?

Z(-

Achievable precision:

γν)H(→dd)	bb	CC	SS	gg
δμ/μ (%)	0.3	2.1	100	0.8

*|BR_{H→ss}|<1.3

2x better compared to the 2L channel All-had channel: effort started

Particle ID

- Particle Id for **strange** jet identification:
 - ToF at low momenta
 - dN/dX at high momenta
- Possible to measure strange Yukawa at FCC-ee ?

$H \rightarrow jj$ (detector requirements)

Maximise physics output in Higgs physics:

PID

• Hadronic resolution critical for all $H \rightarrow jj$ Powerful PID (K/π) essential for strange Yukawa

Higgs to light and FCNCs at the FCC-ee

cf. Michele Tammaro

Decay	SM prediction	exp. bound	indir. constr.
$\mathcal{B}(h o bs)$	$(8.9 \pm 1.5) \cdot 10^{-8}$	0.16	$2 imes 10^{-3}$ \star
$\mathcal{B}(h ightarrow bd)$	$(3.8\pm0.6)\cdot10^{-9}$	0.16	10^{-3} *
$\mathcal{B}(h ightarrow cu)$	$(2.7\pm0.5)\cdot10^{-20}$	0.16	$2 imes 10^{-2}$ \star
$\mathcal{B}(Z o bs)$	$(4.2 \pm 0.7) \cdot 10^{-8}$	$2.9\times10^{-3}{\rm Im}$	$6 imes 10^{-8}$ $ullet$
$\mathcal{B}(Z o bd)$	$(1.8\pm0.3)\cdot10^{-9}$	$2.9 imes 10^{-3}$.	$6 imes 10^{-8}$ $ullet$
$\mathcal{B}(Z \to cu)$	$(1.4 \pm 0.2) \cdot 10^{-18}$	$2.9 imes 10^{-3}$.	4×10^{-7} \bullet

Light quarks and FCNCs BRs in the SM

BR(H→uu) = 1.2e-07 $BR(H \rightarrow dd) = 5.5e-07$ $BR(H\rightarrow bs) = 8.9e-08$ BR(H→bd) = 3.8e-09 $BR(H\rightarrow sd) = 1.9e-15$ BR(H→cu) =2.7e-20

improve by 3 orders of magnitude over LHC direct bounds

BR(Hbs) < 4.5e-04 @95% CL BR(Hbd) < 3.3e-04 @95% CL BR(Hcu) < 3.0e-04 @95% CL BR(Hsd) < 9.5e-04 @95% CL

Restricting the results to the Collinear Mass range: 100 to 150 GeV

		TauTau	MuTau	ETau	HTauTau
Z→QQ	Signal	2741	1875	1917	6533
	Bg	1142	939	1060	3141
Z→MuMu	Signal	456	203	214	873
	Bg	63	66	55	184
Z→EE	Signal	440	206	201	847
	Bg	71	57	62	190

Assuming only stat uncertainty on the signal (no bg uncertainty, no syst): ~>~8253 events in 5ab-1 \rightarrow 1.1% uncertainty on $\Delta(\sigma_{ZH}^* Br(H \rightarrow \tau \tau))$. Assuming 10ab-1, 0.78%.

Cepeda

Conclusions & outlook

FCC-ee parameters		Z	ww	ZH	ttbar
√s	GeV	88 - 94	157.2 - 162.5	240	350-365
Inst. Lumi / IP	10 ³⁴ cm ² s ⁻¹	182	19.4	7.3	1.33
Integrated lumi / 4IP	ab⁻¹ / yr	87	9.3	3.5	0.65
N bunches/beam	-	10 000	880	248	36
bunch spacing	ns	30	340	1 200	8 400
L*	m	2.2	2.2	2.2	2.2
crossing angle	mrad	30	30	30	30
vertex size (x)	μm	5.96	14.7	9.87	27.3
vertex size (y)	nm	23.8	46.5	25.4	48.8
vertex size (z)	mm	0.4	0.97	0.65	1.33
vertex size (t)	ps	36.3	18.9	14.1	6.5
Beam energy spread	%	0.132	0.154	0.185	0.221

Machine specs and detector requirements

	parameter		unit	LHC	HL-LHC	HE-LHC	FCC-hh
	E_{cm}		TeV	14	14	27	100
	circumference		km	26.7	26.7	26.7	97.8
	peak $\mathcal{L} \times 10^{34}$		$\rm cm^{-2} s^{-1}$	1	5	25	30
	bunch spacing		ns	25	25	25	25
	number of bunches			2808	2808	2808	10600
	goal $\int \mathcal{L}$		ab^{-1}	0.3	3	10	30
	σ_{inel}		mbarn	85	85	91	108
	σ_{tot}		mbarn	111	111	126	153
	BC rate		MHz	31.6	31.6	31.6	32.5
	peak pp collision rate		GHz	0.85	4.25	22.8	32.4
	peak av. PU events/BC			27	135	721	997
	rms luminous region σ_z		mm	45	57	57	49
	line PU density		mm^{-1}	0.2	0.9	5	8.1
	time PU density		ps^{-1}	0.1	0.28	1.51	2.43
	$dN_{ch}/d\eta _{\eta=0}$			7	7	8	9.6
	charged tracks per collision N_{ch}			95	95	108	130
	Rate of charged tracks		GHz	76	380	2500	4160
	$< p_T >$		GeV/c	0.6	0.6	0.7	0.76
Number	of pp collisions		10^{16}	2.6	26	91	324
Charged	part. flux at 2.5 cm est.(FLUKA)	G	$Hz cm^{-2}$	0.1	0.7	2.7	8.4 (12)
1 MeV-n	eq fluence at 2.5 cm est.(FLUKA)	1($^{16} \mathrm{cm}^{-2}$	0.4	3.9	16.8	84.3 (60)
Total ion	ising dose at 2.5 cm est.(FLUKA)		MGy	1.3	13	54	270 (400)
$dE/d\eta _{\eta}$	=5		GeV	316	316	427	765
$dP/d\eta _{\eta}$	=5		kW	0.04	0.2	1.0	4.0

High granularity and precision timing needed to reduce occupancy levels and for pile-up rejection

lumi & pile-up

\rightarrow x6 HL-LHC

LHC: 30 PU events/bc HL-LHC: 140 PU events/bc FCC-hh: 1000 PU events/bc

but also x10 integrated luminosity w.r.t to HL-LHC

Reach at high energies (I)

To compute reach, we assume we need to observe given number of events:

The FCC-hh detector

Fwd ECAL: LAr/Cu σ_E/E ~30%/√E ⊕ I % lat. segm: ΔηΔφ≈ 0.01 long. segm: 6 layers

60

Higgs physics at future hadron colliders

• Large Higgs production rates:

- push to %-level Higgs self-coupling measurement •

• Large dynamic range for H production (in p_T^H , m(H+X), ...):

- emerging from precision studies (e.g. decay BRs) at Q~m_H

• High energy reach:

- direct probes of BSM extensions of Higgs sector (e.g. SUSY) •
- Higgs decays of heavy resonances •
- •

access (very) rare decay modes (eg. 2nd gen,), complementary to ee colliders

new opportunities for reduction of syst. uncertainties (TH and EXP) develop indirect sensitivity to BSM effects at large Q^2 , complementary to that

Higgs probes of the nature of EW phase transition (strong 1st order? crossover?)

Higgs decays: $\chi\chi$ - ZZ - Z\chi - $\mu\mu$

- 1% systematics on (production x luminosity), meant as a reference target. Assumes good FCC-ee.
- statistics in possibly new clean channels $(Z \rightarrow \mu \mu \chi)$, will most likely reduce the uncertainties.
- All final states considered here rely on reconstruction of m_H to within few GeV.
 - (~ infinite statistics)
 - Impact of pile-up: hard to estimate with today's analyses. \rightarrow Focus on high-p_T objects will help to decrease relative impact of pile-up
 - Following scenarios are considered:
 - δ_{stat} δ_{stat} , δ_{eff} → stat. + syst. (II)
 - δ_{stat} , δ_{eff} , $\delta_{\text{prod}} = 1\% \rightarrow \text{stat.} + \text{syst.} + \text{prod}$ (III)

theoretical progress over the next years, and reduction of PDF+as uncertainties with HL-LHC +

 $e/\mu/\gamma$ efficiency systematics (shown on the right). In situ calibration, with the immense available

backgrounds (physics and instrumental) to be determined with great precision from sidebands

H→invisible

- Measure it from H + X at large $p_T(H)$
- Fit the E_T^{miss} spectrum
- Constrain background p_T spectrum from $Z \rightarrow vv$ to the % level using NNLO QCD/EW to relate to measured Z,W and γ spectra (low stat)
- Estimate $Z \rightarrow vv$ ($W \rightarrow lv$) from $Z \rightarrow ee/\mu\mu$ ($W \rightarrow lv$) control regions (high stat). •

Standalone 100 TeV Higgs measurements

assumptions on future measurements, additional ratio measurements:

$\sigma(WH[\rightarrow\gamma\gamma]) / \sigma(WZ[\rightarrow e^+e^-])$ $\sigma(WH[\rightarrow \tau\tau]) / \sigma(WZ[\rightarrow \tau\tau])$ $\sigma(WH[\rightarrow bb]) / \sigma(WZ[\rightarrow bb])$

p_T^{min}	$W[e]Z[\tau]$	W[e]H	$W[\ell]Z[\tau]$	$W[\ell]H[\tau\tau]$	$\delta R/R$
(GeV)	(pb)	(pb)	$ imes arepsilon_{ au} \mathrm{L}$	$ imes arepsilon_{ au}$ L	
100	2.1E-2	1.0E-1	1.3E5	3.8E4	5.9E-3
150	1.0E-2	6.3E-2	6.0E4	2.4E4	7.7E-3
200	5.6E-3	3.8E-2	3.4E4	1.4E4	1.0E-2
300	2.1E-3	1.6E-2	min	XX75 3 11	
400	9.8E-4	7.9E-3	p_T^{min}	w[e]+bb	w[e]Z[b
	$\begin{array}{c} p_T^{min} \\ ({\rm GeV}) \\ 100 \\ 150 \\ 200 \\ 300 \\ 400 \end{array}$	p_T^{min} W[e]Z[τ](GeV)(pb)1002.1E-21501.0E-22005.6E-33002.1E-34009.8E-4	p_T^{min} W[e]Z[τ]W[e]H(GeV)(pb)(pb)1002.1E-21.0E-11501.0E-26.3E-22005.6E-33.8E-23002.1E-31.6E-24009.8E-47.9E-3	$\begin{array}{ c c c c c c c } p_T^{min} & W[e]Z[\tau] & W[e]H & W[\ell]Z[\tau] \\ \hline & (GeV) & (pb) & (pb) & \times \varepsilon_{\tau} L \\ \hline & 100 & 2.1E-2 & 1.0E-1 & 1.3E5 \\ \hline & 150 & 1.0E-2 & 6.3E-2 & 6.0E4 \\ \hline & 200 & 5.6E-3 & 3.8E-2 & 3.4E4 \\ \hline & 300 & 2.1E-3 & 1.6E-2 \\ \hline & 400 & 9.8E-4 & 7.9E-3 & \hline & p_T^{min} \\ \hline & (CaV) \end{array}$	$\begin{array}{ c c c c c c } p_T^{min} & W[e]Z[\tau] & W[e]H & W[\ell]Z[\tau] & W[\ell]H[\tau\tau] \\ \hline (GeV) & (pb) & (pb) & \times \varepsilon_{\tau} L & \times \varepsilon_{\tau} L \\ \hline 100 & 2.1E-2 & 1.0E-1 & 1.3E5 & 3.8E4 \\ \hline 150 & 1.0E-2 & 6.3E-2 & 6.0E4 & 2.4E4 \\ \hline 200 & 5.6E-3 & 3.8E-2 & 3.4E4 & 1.4E4 \\ \hline 300 & 2.1E-3 & 1.6E-2 \\ \hline 400 & 9.8E-4 & 7.9E-3 & \hline p_T^{min} & W[e]+bb \\ \hline (CeV) & (nb) \end{array}$

p_T^{min}	W[e]Z[e]	W[e]H	$W[\ell]Z[e]$	$W[\ell]H[\gamma\gamma]$	$\delta R/K$
(GeV)	(pb)	(pb)	imes L	imes L	
100	2.1E-2	1.0E-1	1.3E6	1.4E4	8.5E-
150	1.0E-2	6.3E-2	6.0E5	8.7E3	1.1E-
200	5.6E-3	3.8E-2	3.4E5	5.2E3	1.4E-
300	2.1E-3	1.6E-2	1.3E5	2.2E3	2.1E-

also: $\sigma(Z[\nu\nu]H[\rightarrow\gamma\gamma]) / \sigma(Z[\nu\nu]Z[\rightarrow e^+e^-])$

• Following the principle of reducing as much as possible the impact of systematics

$$G_W = g_{HWW}^2 \times BR(H \to \gamma \gamma)$$

$$G_\tau = g_{HWW}^2 \times BR(H \to \tau \tau)$$

$$G_b = g_{HWW}^2 \times BR(H \to bb)$$

parton level study

p_T^{min}	W[e]+bb	W[e]Z[bb]	W[e]+bb	W[e]H	$W[\ell]$ bb	$W[\ell]Z[bb]$	$W[\ell]$ bb	W[ℓ]H[bb]	$\delta R/R$
(GeV)	(pb)	(pb)	(pb)	(pb)	$ imes arepsilon_b$ L				
	$m[bb] \in m_Z$		$m[bb] \in m_H$		$m[bb] \in m_Z$		$m[bb] \in m_H$		
200	3.3E-2	2.5E-2	2.3E-2	3.8E-2	9.9E5	7.5E4	6.9E5	6.6E5	2.5E-3
300	1.2E-2	9.2E-3	8.8E-3	1.6E-2	3.6E5	5.5E4	2.6E5	2.8E5	3.2E-3
400	5.5E-3	4.3E-3	4.1E-3	7.9E-3	1.7E5	2.6E5	1.2E5	1.4E5	4.5E-3
600	1.7E-3	1.4E-3	1.3E-3	2.6E-3	5.1E4	8.4E4	3.9E4	4.5E4	7.8E-3
800	6.8E-4	6.2E-4	5.0E-4	1.2E-3	2.0E4	3.7E4	1.5E4	2.1E4	1.1E-2
800	6.8E-4	6.2E-4	5.0E-4	1.2E-3	2.0E4	3.7E4	1.5E4	2.1E4	1

 $\delta G/G < 1\%$

64

Higgs pair production at the FCC-hh

Expected precision:

 $\delta_{\kappa_{\lambda}} = \frac{\delta_{\mu}}{\frac{d\mu}{d\kappa_{\lambda}}}\Big|_{\rm SM}$

where:

$$\kappa_{\lambda} = \lambda_3 / \lambda_3^{\rm SM}$$
$$\mu = \sigma / \sigma_{\rm SM}$$

Self-coupling at the FCC-hh

•

		parameterisation	scenario I	scenario II	scenario III
FCC-hh Si	nulation (Delphes)	b-jet ID eff.	82-65%	80-63%	78-60%
,	— HH(κ _λ =1.00) x20	b-jet c mistag	15-3%	15-3%	15-3%
	Z+jets	b-jet l mistag	1 - 0.1%	1 - 0.1%	1 - 0.1%
	ttV single Higgs	τ -jet ID eff	80-70%	78-67%	75-65%
	top pair	τ -jet mistag (jet)	2-1%	2 - 1%	2 - 1%
		τ -jet mistag (ele)	0.1- $0.04%$	0.1- $0.04%$	0.1- $0.04%$
		γ ID eff.	90	90	90
		$ ext{jet} \rightarrow \gamma ext{ eff.}$	0.1	0.2	0.4
		$m_{\gamma\gamma}$ resolution [GeV]	1.2	1.8	2.9
		m_{bb} resolution [GeV]	10	15	20
لمعتولا					

BDT

2004.03505 [hep-ph]

- bbyy (golden channel)
- bbττ
- bbbb
- bbZZ(4I)

Defined 3 scenarios with various detector assumptions and systematics:

Self-coupling at the FCC-hh

Defined 3 scenarios with various detector assumptions and systematics:

parameterisation	scenario I	scenario II	scenario III
b-jet ID eff.	82-65%	80-63%	78-60%
b-jet c mistag	15-3%	15-3%	15-3%
b-jet l mistag	1 - 0.1%	1 - 0.1%	1-0.1%
τ -jet ID eff	80-70%	78-67%	75-65%
au-jet mistag (jet)	2-1%	2-1%	2-1%
τ -jet mistag (ele)	0.1-0.04%	0.1- $0.04%$	0.1- $0.04%$
γ ID eff.	90	90	90
jet $\rightarrow \gamma$ eff.	0.1	0.2	0.4
$m_{\gamma\gamma}$ resolution [GeV]	1.2	1.8	2.9
m_{bb} resolution [GeV]	10	15	20

2004.03505 [hep-ph]

- bbyy (golden channel)
- bbττ
- bbbb
- bbZZ(4I)

BSM sensitivity

Parameter space scan for a singlet model extension of the Standard Model. The points indicate a first order phase transition.

CAVEAT:

assumes all SM-like couplings except for trilinear

- $\delta \kappa_{\lambda}^{\text{stat+syst}}$ ($\kappa_{\lambda} = 2.0$) $\approx 20\%$
- $\delta \kappa_{\lambda}^{\text{stat+syst}} (\kappa_{\lambda} = 1.5) \approx 10\%$ • $\delta \kappa_{\lambda}^{\text{stat+syst}}$ ($\kappa_{\lambda} = 1.7$) $\approx 15\%$

68

$W_{L}W_{L} \rightarrow HH$

F. Bishara, R. Contino, J. Rojo

With c_v from FCC-ee, $\delta c_{2v} < 1\%$

Vector Boson Scattering

- Sets constraints on **detector acceptance** (fwd jets at $\eta \approx 4$)
- Study W+/-W+/- (same-sign) channel •
- Large WZ background at FCC-hh •
- 3-4% precision on W_LW_L scattering xsec. achievable with full dataset (only 3 σ HL-LHC) •
- Indirect measurement of HWW coupling possible, $\delta \kappa_W / \kappa_W \approx 2\%$ ٠

di-lepton pair invariant mass in the $\mathrm{W}_{\mathrm{L}}\mathrm{W}_{\mathrm{L}}\to\mathrm{HH}$ process.

$m_{l^+l^+}$ cut	$> 50~{ m GeV}$	$> 200~{\rm GeV}$	$> 500~{ m GeV}$	> 1000 GeV
$\kappa_W \in$	[0.98,1.05]	[0.99,1.04]	[0.99,1.03]	[0.98,1.02]

Table 4.5: Constraints on the HWW coupling modifier κ_W at 68% CL, obtained for various cuts on the

Possible future colliders: FCC-hh

- Circumference = 100 km
- Need dipoles that generate B = 16 T

8 GJ kinetic energy per beam

- Airbus A380 at 720 km/h
- 2000 kg TNT
- O(20) times LHC

	FCC-hh Initial	FCC-hh Ultimate	
Luminosity L [10 ³⁴ cm ⁻² s ⁻¹]	5	20-30	
Background events/bx	170 (34)	<1020 (204)	
Bunch distance ∆t [ns]	25	5 (5)	
Bunch charge N [10 ¹¹]	1 (0.2)	
Fract. of ring filled η _{fill} [%]	80		
Norm. emitt. [µm]	2.2(0.44)		
Max ξ for 2 IPs	0.01 (0.02)	0.03	
IP beta-function β [m]	1.1	0.3	
IP beam size σ [μ m]	6.8 (3)	3.5 (1.6)	
RMS bunch length σ_z [cm]	8		
Crossing angle [σ□]	12	Crab. Cav.	
Turn-around time [h]	5	4	

In its high luminosity phase, FCC-hh produces **I000 PU interactions** per bunch crossing

- HL-LHC data-taking ends in 2035
- Build a 100 km tunnel
- If magnets are ready by ~ 2040 go for FCC-hh
- If not FCC-ee ~20 yrs
- then FCC-hh ~20 yrs

- 100 km tunnel ensures HEP field activities for \sim 60 yrs \bullet
- FCC-ee \rightarrow FCC-hh \rightarrow FCC-xx (x= μ)
- Long term accelerator complex easier to fund on flat budget

The FCC project (rationale)

Domain	Cost in MCHF
Stage 1 - Civil Engineering	5,400
Stage 1 - Technical Infrastructure	2,200
Stage 1 - FCC-ee Machine and Injector Complex	4,000
Stage 2 - Civil Engineering complement	600
Stage 2 - Technical Infrastructure adaptation	2,800
Stage 2 - FCC-hh Machine and Injector complex	13,600
TOTAL construction cost for integral FCC project	28,600

~l espresso/year/person