Higgs Precision at the HL-LHC and the FCC

Michele Selvaggi **CERN**

Zurich Pheno Workshop 2024

The Higgs sector

 $L = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$ $+ i \overline{\psi} \overline{\psi} \psi + 4.c.$
+ $\overline{\psi}_i y_{ij} \psi_i \phi + 4.c.$ $+$ $\frac{1}{r}\phi l^2 - V(\phi)$

fermion couplings

gauge couplings:

 $\frac{H}{1}$

$$
\mathcal{L}_{H-f}=-\sum_f\frac{m_f}{v}\bar{f}fH
$$

Outline

- Where we are (LHC Run II)
	- Where we will be (Run III HL-LHC)...
- Higgs measurements at the FCC-ee:
	- Production and decays
	- Higgs couplings
	- Higgs properties (mass, width)
- Higgs measurements at the FCC-hh:
	- rates at 100 TeV vs 14 TeV
		- threshold vs boosted production
	- Single/double Higgs measurements

Higgs Production and decay at the LHC

production

mmm r

decay

Clean decay modes:

$$
ZZ^*\rightarrow 4I
$$

Present state of affairs

$\overline{\mathbf{C}}$

Higgs couplings in Run 2

 T oday ~ 150 fb -1 /exp.

-
- $K_{t, K_{b}}$ ~10%
- \cdot K_µ ~20%
- K_{ZV} ~40%

Gauge-Higgs: ✅ III generation: V II: next?

Higgs mass and width

 $\Gamma_H = 4.1 \pm 3.7$ (stat) MeV σ(Γ $_H$) ~ Γ $_H$

 $m_H = 125.04 \pm 0.12$ (stat.) \pm 0.05 (syst.) GeV $σ(m_H) ~ 100 MeV$ \sim 100% \sim 0.1%

Higgs self-coupling(s)

 $1 < K_{\lambda} < 6$

 μ _{HH} < 3

@95% CL $K_{2V} = 0$ excluded

Timeline

accessed only **5%** of the LHC dataset

Differentials (dσ/dpT)

From discovery \rightarrow precision total rates \rightarrow differential measurements

2nd generation at HL-LHC

 $H \rightarrow \mu\mu$

also Zɣ …

 $H \rightarrow c\overline{c}$

 \rightarrow tracker upgrades

low mat. budget superior vertex detectors

Higgs at HL-LHC

Need to go beyond the LHC precision measurements:

 δ Kx < 1% ?

-
-
- Invisible decays
- Self-coupling(s)
- BSM Higgs

Higgs couplings ~ few % di-Higgs evidence (4σ) self-coupling $\delta \kappa_A \sim 50\%$

Model independence, Higgs width Light couplings (charm, muon)

Timeline (HL-LHC)

100% of the LHC dataset

- abundant decay modes to few % level
- fully differentials in production
- partial II generation
- δ m_H ~ 30 MeV and $\delta\Gamma_H/\Gamma_H$ ~ 25%
- evidence for HH production
- direct Higgs BSM reach: x1.5-2

FCC-ee program

Exquisite luminosity allows for ultimate precision:

- 100K Z bosons / second \bigcirc
	- LEP dataset in 1 minutes
- 10k W boson / hour \bigcirc
- 2k Higgs bosons / day \bigcirc
- 3k tops / day \bigcirc

15 (20?) years of operations

Physics processes • Physics background are "small" in eter-

• S-channel ~ 1/s

- - s-channel \sim $1/s$
	- \cdot t-channel \sim log s

S/B **10-2 at e+e- 10-10 at hadron colliders**

FCC-ee offers ideal environment for Higgs physics


```
large rates (> le6)
clean exp. environment (no UE, Pile-up, low event rate - trigger less)
                Large S/B (no QCD background)
                 Energy, momentum constraints
```


Higgs at the FCC-ee

- production mechanisms
	- Higgs-strahlung
	- VBF

$$
L = 10 \text{ ab}^{-1}
$$

L = 3 ab⁻¹
2H = 2x10⁶
2H = 5x10⁵
105
105
2H = 4x10⁴
2H = 5x10⁵

Note on systematic uncertainties vs pp

- integrated lumi ~ 0.01%
- tagging efficiency, BES < 1%
- TH < 1% (no PDFs, QCD corrections are small)

FCC-ee recoil method

Provides absolute and **model independent** measurement of gz coupling in e+e-

- tag the Z by reconstructing pair of leptons
- reconstruct the the recoil mass

$$
m_{\text{recoil}}^2 = s - 2\sqrt{s}E_{\text{di-lepton}} + m_{\text{di-lepton}}^2
$$

Precise knowledge of center of mass allows for:

Higgs recoil mass measurement \rightarrow ZH production cross section:

- 10⁶ Higgs produced @ FCC-ee
	- rate \sim gz $2 \rightarrow \delta g_Z/g_Z \sim 0.2$ %
- Then measure $ZH \rightarrow ZZZ$
	- rate \sim gz⁴/ Γ_H \rightarrow $\delta\Gamma_H$ / Γ_H \sim 1%
- Then measure $ZH \rightarrow ZXX$
	- rate \sim gz² gx²/ Γ_H \rightarrow δ gx/gx \sim 1%

FCC-ee detectors

CLD

- Well established design ٠
	- ILC -> CLIC detector -> CLD
- Full Si vtx + tracker; ٠
- **CALICE-like calorimetry;** ٠
- Large coil, muon system ٠
- Engineering still needed for operation with ٠ continuous beam (no power pulsing)
	- Cooling of Si-sensors & calorimeters
- Possible detector optimizations ٠
	- $\sigma_{\rm p}/p$, $\sigma_{\rm E}/E$
	- PID ($O(10 \text{ ps})$ timing and/or RICH)?

- A bit less established design
	- But still ~15y history
- Si vtx detector; ultra light drift chamber w powerful PID; compact, light coil;
- Monolithic dual readout calorimeter;
	- Possibly augmented by crystal ECAL
- Muon system \bullet
- Very active community ٠
	- campaigns, ...

Prototype designs, test beam

Noble Liquid ECAL based

- A design in its infancy
- Si vtx det., ultra light drift chamber (or Si) \bullet
- High granularity Noble Liquid ECAL as core
	- Pb/W+LAr (or denser W+LKr)
- **CALICE-like or TileCal-like HCAL;** ٠
- Coil inside same cryostat as LAr, outside ECAL ٠
- Muon system. \bullet
- Very active Noble Liquid R&D team
	- Readout electrodes, feed-throughs, electronics, light cryostat, ...
	- Software & performance studies

Z(ll)H cross-section and mass measurements

- Why measure Higgs mass:
	- input for the EW precision fit
	- O(10 MeV) need for permil precision of gz, gw, gzy
	- $O(\Gamma_H = 4 \text{ MeV})$ to measure electron Yukawa

 δ m $_H$ ~ 2.9 MeV (stat) + 1.9 (syst)

ToDo: HZZ (all decay) study \rightarrow reach target of 1% on Γ_H

using µµ channel

- s-channel production with beam monochromatisation at \sqrt{s} = 125 GeV
	- ISR+FSR leads to 40% + with beam spread $\sim \Gamma_H$ another 45% (σ ~ 280 ab⁻¹)
		- plus potentially uncertainty on the Higgs mass
		- state-of-the-art ~ 2σ with 5 years and 4 IPs
			- potentially improve with exclusive ee→gg(cc)

Electron Yukawa

Higgs to hadrons at the FCC-ee

Light tracker, first measurement layer close to IP:

- excellent b/c-tagging performance
	- crucial to measure and to isolate clean H→bb/cc/gg samples

relies on particle ID identify Kaons

High purity with Flavour tagger

2D fit (mvis , mrecoil) Strategy **decay δμ (%) δκ (%)** bb 0.3 0.15* **strange Yukawa: 2σ evidence**

only using $Z(vv)$ final state

2nd generation (c,s) at FCC-ee

FCC-ee vs. Other facilities

For abundant decay modes , FCC-ee improves upon HL-LHC by almost one order

of magnitude

• both energy points (√s=240 GeV and √s=365 GeV) are important

This is only with 2 IPs !!

Timeline (FCC-ee)

- δ K_{g,b,c,Z,W} < 1%
-
- electron Yukawa?
- $\delta\Gamma_H$ ~ 1%, δm_H ~ 3 MeV

- evidence for strange Yukawa? (full II generation Yukawa)

Machine specs and detector requirements

 dE

lumi & pile-up

\rightarrow x6 HL-LHC

High granularity and precision timing needed to reduce occupancy levels and for pile-up rejection

LHC: 30 PU events/bc HL-LHC: 140 PU events/bc FCC-hh: 1000 PU events/bc

but also x10 integrated luminosity w.r.t to HL-LHC

- ggH x15
- HH x40
- \cdot ttH \times 55
- tt x30
- **Total pp cross-section and Minimum bias** multiplicity show a modest increase from 14 TeV to 100 TeV
	- \rightarrow Levels of pile-up will scale basically as the instantaneous luminosity. (1000PU vs 200 PU)
- Cross-section for relevant processes shows a significant increase.
	- \rightarrow interesting physics sticks out more !

SM physics processes@ 100 TeV

Rate of increase from 14 TeV to 100 TeV:

reduction of **x10-20** statistical uncertainties

How does the rate of a **given process** (e.g. single Higgs production) scale from 14 TeV to 100 TeV

 $10⁴$

 \approx L₁ / L₂ \approx (s₂ / s₁)^a \approx (100 /14)^{2a}

$$
\frac{\text{cross-section (} \sqrt{s} = 100 \text{ TeV})}{\text{cross-section (} \sqrt{s} = 14 \text{ TeV})}
$$

100 TeV vs 14 TeV PDF Luminosities, NNPDF2.3 NNLO

Reach at high energies (III)

NB: this improvement only comes from the cross-section (neglects integrated luminosity)

Very large rate increase by increasing center of mass energy

Coupling measurements at ee vs hh

At pp colliders we can only measure:

 σ_{prod} BR(i) = σ_{prod} Γ_i / Γ_H

 \rightarrow we do not know the total width

Instead, by performing measurements of ratios of BRs at hadron colliders:

BR(H→XX) / BR(H→ZZ) ≈ gx^2 / gz^2

We can "convert" **relative measurements into absolute** via gz thanks to e⁺e- measurement

 \rightarrow synergy between lepton and hadron colliders

In order to perform global fits, we have to make **model-dependent assumptions**

-
-

x_{min} ~ M² / s

Higgs at large pT

- highly granular sub-detectors:
	- Tracker pixel:10 μ m @ 2cm \rightarrow $\sigma_{\eta \times \phi} \approx$ 5 mrad
	- Calorimeters: 2 cm @ 2m \rightarrow $\sigma_{\eta \times \phi} \approx 10$ mrad
- good energy/ p_T resolution at large p_T :

 \cdot σ_{p} / p = 2% ω I TeV

- Huge rates at large p_T :
	-
	- VBF/VH at large
	- Even rare decay modes can be accessed at large p_T
- Opportunity to measure the Higgs **in a new dynamical regime**
	- Higgs p_T spectrum highly sensitive to new physics.

The FCC-hh detector

Fwd ECAL: LAr/Cu $\sigma_{E}/E \sim 30\% / \sqrt{E} \oplus 1 \%$ lat. segm: ΔηΔϕ≈ 0.01 long. segm: 6 layers

Single Higgs production @FCC-hh

- for **% level precision in statistically limited** rare channels (μμ, Zɣ)
- - higher S/B
	- smaller (relative) impact of systematic uncertainties

 $N_{100} = \sigma_{100 \text{ TeV}} \times 20 \text{ ab}^{-1}$ $N_8 = \sigma_{8\text{TeV}} \times 20 \text{ fb}^{-1}$ $N_{14} = \sigma_{14}T_{eV} \times 3 ab^{-1}$

Factor: 1/100 1/10

Large statistics in various Higgs decay modes allow:

reduction in stat. unc.

• in systematics limited channels, to isolate cleaner samples in regions (e.g. @large Higgs p_T) with :

Why measuring Higgs @100TeV?

- 100 TeV provides **unique and complementary measurements** to ee colliders:
	- Higgs **self-coupling**
	- **top Yukawa**
	- **Higgs → invisible**
	- **rare decays** (BR(μμ), BR(Zɣ), ratios, ..) measurements will be **statistically limited** at FCC-ee

Need to improve

Large rates for rare modes and HH production at FCC-hh

 \rightarrow complementary to e^+e^-

Top Yukawa (production)

- production ratio $\sigma(\text{ttH})/\sigma(\text{ttZ}) \approx y_t^2 y_b^2/g_{ttZ}^2$
- measure **σ(ttH)/σ(ttZ)** in **H/Z→bb** mode in the boosted regime, in the **semi-leptonic** channel
- perform **simultaneous fit of double Z and H peak**
- (lumi, scales, pdfs, efficiency) **uncertainties cancel out** in ratio
- assuming **gttZ** and **κb** known to 1% (from FCC-ee),

 \rightarrow measure y_t to 1%

Higgs decays (signal strenth)

- study sensitivity as a function of minimum $p_T(H)$ requirement in the **ɣɣ, ZZ(4l), μμ and Z(ll)ɣ** channels
- \cdot **low** $p_T(H)$: **large statistics** and **high syst**. unc.
- large $p_T(H)$: small statistics and small syst. unc.
- **O(1-2%) precision on BR** achievable up to very high p_T (means 0.5-1% on the couplings)

- 1% lumi + theory uncertainty
- pT dependent object efficiency:
	- $\delta \epsilon(e/\gamma) = 0.5$ (1)% at $p_T \rightarrow \infty$
	- $\delta \epsilon(\mu) = 0.25$ (0.5)% at $p_T \rightarrow \infty$

Ratios of $BR(H\rightarrow XX)$ / $BR(H\rightarrow ZZ)$

- measure **ratios of BRs** to cancel correlated sources of systematics:
	- luminosity
	- object efficiencies
	- production cross-section (theory)
- Becomes **absolute precision** measurement in particular if combined with **H→ZZ** measurement from $e^+e^-($ at 0.2%)

Higgs self-coupling

• Very small cross-section due to negative interference with box diagram

- HL-LHC projections : δk_{λ} / $k_{\lambda} \approx 50\%$
- Expect large improvement at FCC-hh:
	- $\sigma(100 \text{ TeV})/\sigma(14 \text{ TeV}) \approx 40$ (and Lx10)
	- x400 in event yields and x20 in precision
- main channels studied:
	- bbɣɣ (most sensitive discussed here)
	- bb $\tau\tau$
	- \cdot bbZZ(4l)
	- bbbb

Self-coupling at the FCC-hh

- Combined precision:
	- 3.5-8%for SM (3% stat. only)
	- **10-20%** for $\lambda_3 = 1.5$ * λ_3 SM

• Expected precision:

Higgs Self-coupling and constraints on models with 1st order EWPT

- baryon asymmetry in our universe
- Can be achieved with extension of $SM +$ singlet

Direct detection of extra Higgs states

Strong 1st order electroweak phase transition (and CP violation) needed to explain large observed

Parameter space scan for a singlet model extension of the Standard Model. The points indicate a first order phase transition.

Summary of Higgs direct measurements

$$
\begin{array}{|c|}\n\hline\n\hline\n\delta R/R \\
\hline\nR = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2e2\mu) \\
R = B(H \rightarrow \mu \mu)/B(H \rightarrow 4\mu) \\
R = B(H \rightarrow \mu \mu \gamma)/B(H \rightarrow \mu \mu) \\
R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2\mu)\n\end{array}
$$

• **Percent level precision on σ x BR** in most rare decay channels achievable only at 100 TeV

-
- **Percent level precision on couplings** if HZZ coupling known from FCC-ee (to 0.2%)

Summary direct measurements

* From BR ratios wrt B(H→4l) @ FCC-ee

** From pp→ttH / pp→ttZ, using B(H→bb) and ttZ EW coupling @ FCC-ee 41

Conclusions & outlook

- The integrated FCC program allows for ultimate precision in the Higgs sector
	- Among all proposed future facilities, it is the natural next step for Higgs (and BSM) exploration
- The FCC-ee will produce 1-2 millions Higgs in a clean environment (low systematics):
	- allows for model independent measurement of Higgs couplings
	- exquisite precision in "abundant" Higgs decay channels (<1%)
		- Hints of strange Yukawa and electron Yukawa might be possible
- The FCC-hh will produce 20B Higgs and 30M Higgs pairs
	- In synergy with the FCC-ee will provide percent level precision on most Higgs couplings
		- very rare decays $(H \rightarrow \mu\mu, Z\chi)$
		- ttH (with ttZ from FCC-ee)
	- <5% on the Higgs self-coupling
- Still much to be done:
	- CP, Width at FCC-ee

FCC Higgs/Top group

Exp: MS, J. Eysermans TH: Gauthier Durieux, Jorge De Bras, Christophe Grojeam

FCC-PED-PhysicsGroup-Higgs@cern.ch

- Detector simulation baseline:
	- IDEA with Delphes
		- full track covariance reconstruction
		- particle ID (timing, charged energy loss)
		- jet tagging using Weaver/Particle NET
			- Flavors: g/b/c/s/light/tau
- Recent updates:
	- "Realistic" electron description
		- including brem recovery
	- smaller beampipe
	- ECAL crystal for better ele/photon performance
- Samples:
	- Wizard3+ Pythia6
	- Pythia8

http://fcc-physics-events.web.cern.ch/fcc-physics-events/FCCee/winter2023/Delphesevents_IDEA.php

FCC-ee detector modeling

FCC-ee Higgs couplings (part II)

Running at the top does not simply add statistics it exploits complementary production mode to improve constraints

WW fusion added value

- vvH \rightarrow vvbb \sim gw² g_b² / Γ_H
	- vvbb / (ZH(bb) ZH(WW) \sim gz⁴ / Γ_H = R
		- Γ_H precision at 1%
- Then do vvH \rightarrow vvWW ~ gw^4 / Γ_H
	- R / vvWW \sim gw⁴ / gz⁴
		- gw precision to few permil

For 4 IPs, expect: x 1.7 luminosity / statistics x 1.3 in expected precision

BR expected precision with 2 IPs

Abundant statistics and high precision for: • bb/cc/gg/WW Limited for:

- rare decays μμ,ɣɣ, Zɣ
- HH

- Why measure Higgs mass:
	- input for the EW precision fit
	- O(10 MeV) need for permil precision of gz, gw, gzy
	- $O(\Gamma_H = 4 \text{ MeV})$ to measure electron Yukawa

Higgs mass/cross-section measurements

 \cdot ISR \sim t.b.d

Jan Eysermans

$$
\sin^2 \theta_W = \left(1 - \frac{M_W^2}{M_Z^2}\right) = \frac{A^2}{1 - \Delta r}
$$

 $\Delta r \sim \ln(m_H)$ $\Delta r \sim m_t^2$ $\Delta r \sim$ new physics?

in situ from ee \rightarrow ffy events

Higgs mass measurement (detector sensitivity)

- sensitivity dominated by the $Z(\mu\mu)$ final state
	- superior momentum resolution, driven by tracking \circ
- track momentum resolution limits sensitivity if > beam energy spread (BES = 0.182% at 240 GeV, i.e 222 MeV)
	- \circ multiple-scattering limit \leq BES
		- for $CLD \sim 30\%$ above
			- transparent tracker is key

~100 MeV in ATLAS/CMS

Higgs self-coupling

%-level precision only at the FCC-hh

from radiative corrections to ZH/VBF single H production $(\sqrt{s} = 240, 365 \text{ GeV})$

FCC-ee:

• state of the art fit to self-coupling precision:

- 19% κλ alone vs 33% full (EFT projected) with 2IPs
- 14% κλ alone vs 24% full (EFT projected) with 4IPs

New effort started (new channel/extended parameter space/ revisited detector performance)

Salerno, Portales

Higgs to invisible

- Higgs could be a portal to dark matter or other new physics
- In the SM B(H \rightarrow inv) \sim 10-3
- Use recoil method to reconstruct the Higgs
	- potential to improve 1 order of magnitude compared to LHC
- Event selection:
	- Split events into exactly 2e, 2µ and 0 e+µ (bb/qq)
	- Reconstruct Z from 2 leptons or M_{vis}
	- Reconstruct M_{miss} from all visible particles
	- Use distribution of M_{miss} in likelihood fit

\sim 100% sensitivity on SM BR(H \rightarrow inv)

Mehta, Rompotis

 e^- , μ^- , q $,\mu^+, \bar{q}$

Higgs to hadrons (Z(νν))

- ee \rightarrow ZH \rightarrow vv j j
	- $j = b, c, s, g$

- Strategy:
	- Event preselection
		- lepton veto (orthogonalise)
	- build bb/cc/ss/gg orthogonal enriched categories using max sum of jet scores

Del Vecchio, Gouskos, MS

FCCAnalyses: FCC-ee Simulation (Delphes)

51

- ee \rightarrow ZH \rightarrow II j j
	- \cdot j = b, c, s, g
- Event pre-selection:
	- build recoil mass

one $Z(\ell\ell)$ candidate $m_{\ell\ell}$ in 81-101 GeV $|\cos \theta_{\ell\ell}| < 0.8$ m_{recoil} in 120–140 GeV m_{jj} in 100–140 GeV $p_{\rm miss} < 30~{\rm GeV}$ no leptons with $p > 25$ GeV $d_{23} > 2, d_{34} > 1.5, d_{45} > 1.0$

- Final selection and signal extraction:
	- multi-score BDT using jet tagger output to maximise purity in
		- bb/cc/ss/gg/other final states
	- simultaneous un-binned fit on m_{recoil} on 4/5 signal strength modifiers POIs

Results @10 ab⁻¹

Higgs to hadrons (Z(LL)) Marchiori, Maloizel G. Marchiori (Friday)

Higgs to hadrons (Z(νν))

- ee \rightarrow ZH \rightarrow vv j j
	- \cdot j = b, c, s, g

- Strategy (continued):
	- for each signal category (bb/cc/ss/gg)
		- define LP/MP/HP categories based on $s(i_1) + s(i_2)$
	- perform a $2D$ (m_{jj}, m_{recoil}) template fit on each of the 3x4 categories

Achievable precision:

* | $BR_{H \rightarrow ss}$ | <1.3

2x better compared to the 2L channel All-had channel: effort started

~ strange Yukawa to 50% precision seems possible …

 Z

can the fully hadronic (4j) channel help?

Particle ID

- Particle Id for **strange** jet identification:
	- ToF at low momenta
	- dN/dX at high momenta
- Possible to measure strange Yukawa at FCC-ee ?

H→jj (detector requirements)

Maximise physics output in Higgs physics:

-
-

• **Hadronic resolution** critical for all H→jj • Powerful **PID** (K/ᴨ) essential for **strange Yukawa**

PID

Higgs to light and FCNCs at the FCC-ee

cf. Michele Tammaro

 $BR(H\rightarrow uu) = 1.2e-07$ $BR(H\rightarrow dd) = 5.5e-07$ $BR(H\rightarrow bs) = 8.9e-08$ $BR(H\rightarrow bd) = 3.8e-09$ $BR(H\rightarrow sd) = 1.9e-15$ $BR(H\rightarrow cu) = 2.7e-20$

Light quarks and FCNCs BRs in the SM improve by 3 orders of magnitude over LHC direct bounds

 $BR(Hbs) < 4.5e-04$ @95% CL BR(Hbd) < 3.3e-04 @95% CL BR(Hcu) < 3.0e-04 @95% CL $BR(Hsd) < 9.5e-04$ @95% CL

Restricting the results to the Collinear Mass range: 100 to 150 GeV

Assuming only stat uncertainty on the signal (no bg uncertainty, no syst): ~>~8253 events in 5ab-1 \rightarrow 1.1% uncertainty on $\Delta(\sigma_{ZH}^*Br(H\rightarrow \tau\tau))$. Assuming 10ab-1, 0.78%.

Conclusions & outlook

Machine specs and detector requirements

 dE

lumi & pile-up

\rightarrow x6 HL-LHC

High granularity and precision timing needed to reduce occupancy levels and for pile-up rejection

LHC: 30 PU events/bc HL-LHC: 140 PU events/bc FCC-hh: 1000 PU events/bc

but also x10 integrated luminosity w.r.t to HL-LHC

59

Reach at high energies (I)

To compute reach, we assume we need to observe given number of events:

The FCC-hh detector

Fwd ECAL: LAr/Cu $\sigma_{E}/E \sim 30\% / \sqrt{E} \oplus 1 \%$ lat. segm: ΔηΔϕ≈ 0.01 long. segm: 6 layers

- direct probes of BSM extensions of Higgs sector (e.g. SUSY)
- Higgs decays of heavy resonances
-

access (very) rare decay modes (eg. 2nd gen,), complementary to ee colliders

new opportunities for reduction of syst. uncertainties (TH and EXP) • develop indirect sensitivity to BSM effects at large \mathbb{Q}^2 , complementary to that

• Higgs probes of the nature of EW phase transition (strong 1^{st} order? crossover?)

Higgs physics at future hadron colliders

• Large Higgs production rates:

-
- push to %-level Higgs self-coupling measurement

• Large dynamic range for H production (in p_T ^H, m(H+X), ...):

-
- emerging from precision studies (*e.g. decay BRs*) at Q~m_H

• High energy reach:

Higgs decays: $\gamma x - \overline{Z} \overline{Z} - \overline{Z} \overline{X} - \mu \mu$

- **1% systematics on (production x luminosity)**, meant as a reference target. Assumes good **FCC-ee**.
- **e/μ/γ efficiency systematics** (shown on the right). In situ calibration, with the immense available statistics in possibly new clean channels $(Z \rightarrow \mu\mu\gamma)$, will most likely reduce the uncertainties.
- All final states considered here rely on reconstruction of m_H to within few GeV.
	- (~ infinite statistics)
	- **Impact of pile-up**: hard to estimate with today's analyses. → **Focus on high-p_T objects** will help to decrease relative impact of pile-up
		- Following **scenarios** are considered:
			- $\delta_{\text{stat}} \rightarrow$ stat. only (I) (signal + bkg) δ_{stat} , δ_{eff} \rightarrow stat. + syst. (II)
			- δ_{stat} , δ_{eff} , $\delta_{\text{prod}} = 1\%$ \rightarrow stat. + syst. + prod (III)

theoretical progress over the next years, and reduction of PDF+a_s uncertainties with HL-LHC +

• **backgrounds** (physics and instrumental) to be **determined with great precision from sidebands**

H→invisible

- Measure it from $H + X$ at **large** $p_T(H)$
- Fit the E_Tmiss spectrum
- Constrain background p_T spectrum from $Z \rightarrow VV$ to the % level using NNLO QCD/EW to relate to measured Z, W and γ spectra (low stat)
- Estimate $Z \rightarrow VV$ (W \rightarrow lv) from $Z \rightarrow$ ee/μμ (W \rightarrow lv) control regions (high stat).

64

Standalone 100 TeV Higgs measurements

• Following the principle of **reducing** as much as possible **the impact of systematics**

$$
G_W = g_{HWW}^2 \times BR(H \to \gamma \gamma)
$$

\n
$$
G_{\tau} = g_{HWW}^2 \times BR(H \to \tau \tau)
$$

\n
$$
G_b = g_{HWW}^2 \times BR(H \to bb)
$$

assumptions on future measurements, additional **ratio measurements**:

$\sigma(WH[\rightarrow \gamma \gamma]) / \sigma(WZ[\rightarrow e^+e^-])$ $\sigma(WH[\rightarrow \tau \tau]) / \sigma(WZ[\rightarrow \tau \tau])$ $\sigma(WH[\rightarrow bb]) / \sigma(WZ[\rightarrow bb])$

also: $\sigma(Z[vv]H[\rightarrow \gamma \gamma]) / \sigma(Z[vv]Z[\rightarrow e^+e^-])$

parton level study

 $\delta G/G < 1\%$

Higgs pair production at the FCC-hh

Expected precision:

 ∂_{μ} $\delta_{\kappa_{\lambda}}$ $\!\!\!=\!\!\!$ $d\mu$ $\overline{d\kappa_\lambda}$ I SM \sim

where:

$$
\kappa_{\lambda} = \lambda_3 / \lambda_3^{\rm SM}
$$

$$
\mu = \sigma / \sigma_{\rm SM}
$$

• Channels: • bbɣɣ (golden channel) • b b $\tau\tau$ • bbbb \cdot bbZZ (4)

Self-coupling at the FCC-hh

• Defined 3 scenarios with various detector assumptions and systematics:

 10^{14}

 $\overline{6}$ 10¹³ \overline{F}

 10^{1}

 $10¹$

 10^{10}

 10^9

BDT

 10^8

 $10⁷$

 10°

 10^{4}

 10^3

• Channels: • bbɣɣ (golden channel) • b b $\tau\tau$ • bbbb \cdot bbZZ (4)

Self-coupling at the FCC-hh

• Defined 3 scenarios with various detector assumptions and systematics:

BSM sensitivity

Parameter space scan for a singlet model extension of the Standard Model. The points indicate a first order phase transition.

CAVEAT:

assumes all SM-like couplings except for trilinear

-
- δK_{λ} stat+syst $(K_{\lambda} = 1.7) \approx 15 \%$ • δK_{λ} stat+syst $(K_{\lambda} = 2.0) \approx 20 \%$
- δK_{λ} stat+syst $(K_{\lambda} = 1.5) \approx 10 \%$

$W_L W_L \rightarrow H H$

F. Bishara, R. Contino, J. Rojo

With c_V from FCC-ee, δ **_{C2V} < 1%**

Table 4.5: Constraints on the HWW coupling modifier κ_W at 68% CL, obtained for various cuts on the

- Sets constraints on **detector acceptance** (fwd jets at **η≈4**)
- Study **W+/-W+/- (same-sign)** channel
- **Large WZ** background at FCC-hh
- **3-4% precision on WLWL scattering** xsec. achievable with full dataset (only 3σ HL-LHC)
- Indirect measurement of HWW coupling possible, δ K_W /K_W \approx 2%

di-lepton pair invariant mass in the $W_L W_L \rightarrow HH$ process.

		$m_{l^+l^+}$ cut $ > 50$ GeV $ > 200$ GeV $ > 500$ GeV $ > 1000$ GeV
	$\kappa_W \in$ [0.98,1.05] [0.99,1.04] [0.99,1.03] [0.98,1.02]	

Vector Boson Scattering

Possible future colliders: FCC-hh

- Circumference = 100 km
- Need dipoles that generate $B = 16T$

In its high luminosity phase, FCC-hh produces **1000 PU interactions** per bunch crossing

8 GJ kinetic energy per beam

- Airbus A380 at 720 km/h
- 2000 kg TNT
- O(20) times LHC

- HL-LHC data-taking ends in 2035
- Build a 100 km tunnel
- If magnets are ready by \sim 2040 go for FCC-hh
- If not FCC-ee ~20 yrs
- then FCC-hh ~20 yrs

- 100 km tunnel ensures HEP field activities for \sim 60 yrs
- $FCC-ee \rightarrow FCC-hh \rightarrow FCC-xx (x=\mu)$
- Long term accelerator complex easier to fund on flat budget

The FCC project (rationale)

~1 espresso/year/person