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Motivation

The LHC and future colliders will provide many precision measurements.

Of particular interest are processes involving heavy particles (Higgs,
top-quark, Z/W -bosons)

Precision calculations at high energies rely on perturbation theory and
here in particular on Feynman integrals.

This talk: Feynman integrals with internal masses.
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Loops and Legs

Rule of thumb in massless theories: The complexity of a Feynman
integral increases as the number of loops or the number of legs increases.

More accurately: The complexity of a Feynman integral increases as the
number of loops or the number of kinematic variables increases.

Adding a mass increases the number of kinematic variables and hence
increases the complexity of a Feynman integral.
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Physics is about numbers

What is the numerical precision we are aiming for?

For a physical observable we usually only need a few digits for the
highest term in perturbation theory.

For amplitudes we may need quadruple precision in singular limits
(soft/collinear).

For master integrals / special functions we may want
O(100)−O(1000) digits to use PSLQ.
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Hierarchies

There might be a hierarchy in the kinematic variables the Feynman integral
depends on:

x1 ≪ x2

We would like to have stable numerical evaluations.

Example: Møller scattering: e−e− → e−e−

|t| ≪ s ≪ m2
Z .¸
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Options

From many scales / automated to fewer scales / fast evaluations:

Purely numerical: Sector decomposition, numerical integration in loop
momentum space.

Semi-numerical: Unitarity methods, numerical integration of a differential
equation, AMFlow

Semi-analytical: Expansion in a small parameter

Analytical: Reduction to standarised special functions

This talk: The method of differential equations
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Section 1

Differential equations
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Setting the stage

Feynman integrals are regulated with the dimensional regularisation
parameter ε.

Feynman integrals depend on kinematic variables

x1,x2, . . . .

Integration-by-parts allows us to reduce Feynman integrals to master
integrals

I1, I2, . . . .

Integration-by-parts allows us to derive a differential equation for the
master integrals with differential one-forms

ω1,ω2, . . . .
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Notation

NF = NFibre: Number of master integrals,
master integrals denoted by I = (I1, ..., INF ).

NB = NBase: Number of kinematic variables,
kinematic variables denoted by x = (x1, ...,xNB).

NL = NLetters: Number of letters,
differential one-forms denoted by ω = (ω1, ...,ωNL).
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The method of differential equations

We want to calculate I (ε,x) as a Laurent series in ε.
1 Find a differential equation with respect to the kinematic variables for the

Feynman integral (always possible).

[d +A(ε,x)] I = 0.

(Kotikov ’90, Remiddi ’97, Gehrmann and Remiddi ’99)

2 Transform the differential equation into an ε-factorised form (bottle neck).

[d + εA(x)] I = 0.

(Henn ’13)

3 Solve the latter differential equation with appropriate boundary conditions
(always possible).
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Example for an ε-factorised form

A(x) = C1ω1 +C2ω2

with differential one-forms

ω1 =
dx
x
, ω2 =

dx
x −1

,

and matrices

C1 =


2 0 0 0 0 0
0 0 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 1 1 0
1 −1 0 0 0 2

 , C2 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 2 0 −1 −1 0
0 0 0 0 0 −2

 .
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Motivation

If the differential equation is not in ε-form, we might have

dx
x
,

dx
x2 ,

dx
x3 ,

dx
x −1

,
dx

(x −1)2 ,
dx

(x −1)3 .

If the differential equation is in ε-form, this reduces to

dx
x
,

dx
x −1

.
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Vector bundles

Fibre spanned by the master integrals I = (I1, ..., INF ).
(The master integrals I1(x), . . . , INF (x) can be viewed as local sections, and for each x they define a

basis of the vector space in the fibre.)

Base space with coordinates x = (x1, ...,xNB) corresponding to kinematic
variables.

Connection defined by the matrix A with differential one-forms
ω = (ω1, ...,ωNL).

Transformations on this vector bundle:

a change of basis in the fibre,

a coordinate transformation on the base manifold.
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Transformations

Change the basis of the master integrals

I′ = UI,

where U(ε,x) is a NF ×NF -matrix. The new connection matrix is

A′ = UAU−1 +UdU−1.

Perform a coordinate transformation on the base manifold:

x ′
i = fi (x) , 1 ≤ i ≤ NB.

The connection transforms as

A =
NB

∑
i=1

Aidxi ⇒ A′ =
NB

∑
i,j=1

Ai
∂xi

∂x ′
j

dx ′
j .
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Remarks

A change of the basis of the master integrals is like a gauge
transformation:

A′ = UAU−1 +UdU−1.

A coordinate transformation is like in general relativity:

A =
NB

∑
i=1

Aidxi ⇒ A′ =
NB

∑
i,j=1

Ai
∂xi

∂x ′
j

dx ′
j .
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Change the basis of the master integrals

A change of the basis of master integrals is done to transform the
system of differential equations into an ε-factorised form.

Conjecture: Such a transformation always exists.

Heuristic method for finding such a transformation: Analysing the
maximal cut.
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Coordinate transformation on the base manifold

The transformation to an ε-factorised form may introduce algebraic or
transcendental functions.

A coordinate transformation may lead to a nicer form.
Examples:

Square roots:

x =
(1− x ′)2

x ′
, x ′ =

1
2

(
2+ x −

√
x (4+ x)

)
⇒ dx√

x (4+ x)
= −dx ′

x ′

Elliptic case:

x =−9
η(τ)4 η(6τ)8

η(3τ)4 η(2τ)8 , τ =
ψ2(x)
ψ1(x)

⇒
(

π
ψ1(x)

)2 12dx
x (x +1)(x +9)

= 2πi dτ
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Iterated integrals

Definition
For ω1, ..., ωk differential 1-forms on a manifold B and γ : [0,1]→ B a path,
write for the pull-back of ωj to the interval [0,1]

fj (λ)dλ = γ∗ωj .

The iterated integral is defined by

Iγ (ω1, ...,ωk ;λ) =

λ∫
0

dλ1f1 (λ1)

λ1∫
0

dλ2f2 (λ2) ...

λk−1∫
0

dλk fk (λk) .

Chen ’77
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Translation to physics

Manifold B: kinematic space, coordinates are
the kinematic variables.

γ(0): Boundary point

γ(1): Point,where we would like to evaluate the
integral.

x1

x2

γ(0)

γ(1)
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Multiple polylogarithms

Consider differential one-forms on C∪{∞} (the Riemann sphere) of the form

ωmpl (zj) =
dλ

λ− zj
.

Definition (Multiple polylogarithms)

G(z1, ...,zk ;λ) =

λ∫
0

dλ1

λ1 − z1

λ1∫
0

dλ2

λ2 − z2
...

λk−1∫
0

dλk

λk − zk
, zk ̸= 0
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Shuffle product and trailing zeros

Let U be a domain. Assume that by suitable coordinate transformation all
ωj are holomorphic in U\{0} and have at most a simple pole at z = 0.

The iterated integrals have then at most logarithmic singularities lnn(z) as
z → 0.

Iterated integrals obey the shuffle product.

Using the shuffle product, we may make these logarithms explicit. The
remaining functions are then regular as z → 0.
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Strategy

Find a transformation to an ε-factorised form.

Choose as boundary point the closest singular point.

Find a coordinate transformation such that all differential one-forms
have at most a simple pole at the boundary point.

Use the shuffle product to make the logarithms explicit.
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Remark

Consider Iγ(ω,ω,ω,ω,ω,ω;λ), where ω = d lnP8 (λ) and P8 is a degree
eight polynomial P8 ∈ R[λ].
This iterated integral can be expressed as a linear combination of
86 = 262144 multiple polylogarithms with (in general) complex arguments
(the roots of P8).
This is highly inefficient and gets worth at higher weight.

Better to treat ω as a single integration kernel.
(If all roots are roots of unity, this yields cyclotomic harmonic
polylogarithms)
Ablinger, Blümlein, Schneider, ’11

Z

Z

Z

N

e
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Caveats of iterated integrals

In general, an individual iterated integral is not homotopy invariant.
The linear combination making up a Feynman integral is, since the
connection A is flat (integrable).

If the differential one-forms ωk transform nicely under a group of
coordinate transformations, this does in general not imply that iterated
integrals transform nicely as well.
However, the vector space spanned by the master integrals does again.
Suggests to use different bases of master integrals in different kinematic
regions.
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Section 2

Examples

Elliptic curves

Curves of higher genus

Manifolds of higher dimension
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Subsection 1

Elliptic curves
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Beyond multiple polylogarithms

Not every Feynman integral can be expressed in terms of multiple
polylogarithms.

Starting from two-loops, we encounter more complicated functions.

The next-to-simplest Feynman integrals involve an elliptic curve.
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Elliptic curves

We do not have to go very far to encounter elliptic integrals in precision
calculations: The simplest example is the two-loop electorn self-energy in
QED:
There are three Feynman diagrams contributing to the two-loop electron self-energy in QED
with a single fermion:

All master integrals are (sub-) topologies of the kite graph:

One sub-topology is the sunrise graph with three equal non-zero masses:

(Sabry, ’62)
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Elliptic curves

Where is the elliptic curve?
For the sunrise it’s very simple: The second graph polynomial defines an
elliptic curve in Feynman parameter space:

−p2a1a2a3 +(a1 +a2 +a3)(a1a2 +a2a3 +a3a1)m2 = 0.

More general: If the maximal cut is of the form∫
dz

N(z)√
P (z)

,

where P(z) is a polynomial of degree 3 or 4. This gives the elliptic curve

y2 = P(z).
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q-expansions

Iterated integrals in the elliptic case are evaluated
with the help of their q-expansions, q = exp(2πiτ).
The q-series converge for |q|< 1.

By a modular transformation we may map τ to the
fundamental domain, resulting in

|q| ≤ e−π
√

3 ≈ 0.0043,

resulting in a fast converging series.
Re τ

Im τ

1
2

1−1
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q-expansions

Consider the equal mass sunrise
integral with x =−p2/m2.

Singularites at
x ∈ {−9,−1,0,∞}.

In the variable x we don’t expect
an expansion around one singular
point to converge beyond the next
singular point.

In the variable q the expansion
converges for all values x ∈ R
except the three other singular
points.

p

m

m

m

Re(p2)

Im(p2)

m2 9m2

x ∈ [0,∞[
x ∈ [−1 : 0]

x ∈ [−9 : −1]
x ∈]−∞,−9]

Re(q̄)

Im
(q̄
)

10.50−0.5−1

1

0.5

0

−0.5

−1
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Numerics

Physics is about numbers:

Iterated integrals of modular forms and elliptic multiple polylogarithms can
be evaluated numerically with arbitrary precision.

Implemented in GiNaC.
Walden, S.W, ’20

ginsh - GiNaC Interactive Shell (GiNaC V1.8.1)
__, _______ Copyright (C) 1999-2021 Johannes Gutenberg University Mainz,

(__) * | Germany. This is free software with ABSOLUTELY NO WARRANTY.
._) i N a C | You are welcome to redistribute it under certain conditions.

<-------------’ For details type ‘warranty;’.

Type ?? for a list of help topics.
> Digits=50;
50
> iterated_integral({Eisenstein_kernel(3,6,-3,1,1,2)},0.1);
0.23675657575197179243274817775862177623438999192840338805367
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Subsection 2

Curves of higher genus

Stefan Weinzierl (Uni Mainz) Add a mass January 9, 2024 34 / 46



Hyperelliptic curves

Definition
A hyperelliptic curve is an algebraic curve of genus g ≥ 2 whose defining
equation takes the form

y2 = P(z),

for some polynomial P(z) of degree (2g+1) or (2g+2).

They generalise elliptic curves, whose defining equation takes the same form
when g = 1.

We are interested in Feynman integrals, where the maximal cut takes the
form ∫

dz
N(z)√
P (z)
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Non-planar double boxes

Non-planar double boxes (with sufficient internal/external masses) provide
examples of higher-genus Feynman integrals.

In the loop momentum
representation one obtains a
genus 3 curve.
Georgoudis, Zhang, ’15

In the Baikov representation one
obtains a genus 2 curve.

Can we understand this?
Yes we can!
R. Marzucca, A. McLeod, B. Page, S.Pögel, S.W., ’23
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Extra involutions

The solution to this riddle: The higher genus curve has an extra
involution. In the simplest case, if P(z) is of the form

P (z) = Q
(
z2) =

(
z2 −α2

1

)
. . .

(
z2 −α2

g+1

)
the extra involution is given by e1 : z →−z.

The substitution w = z2 leads to a genus drop.
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Lorentz invariance

Why is there an extra involution?
For our example we can trace it back to discrete Lorentz transformations
(parity, time reversal):

In the Baikov representation everything is manifestly Lorentz invariant,
the Baikov variables are Lorentz invariants:

z = k2 −m2.

In the loop momentum representation we choose a frame, we choose a
parametrisation of the loop momenta, we choose an elimination order:
The full Lorentz symmetry is not required to be trivially realised, but may
manifest itself through extra symmetries of the curve.
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Examples

Top pair production at NNLO
(genus drop from 3 to 2)

t

t

Møller scattering at NNLO
(genus drop from 3 to 2)

Z

Z

Z
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Subsection 3

Manifolds of higher dimension
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Calabi-Yau manifolds

Calabi-Yau manifold are studied in mathematics.
A Calabi-Yau manifold of complex dimension n is a compact Kähler
manifold M with vanishing first Chern class.
An equivalent condition is that M has a Kähler metric with vanishing Ricci
curvature.
conjectured by Calabi, proven by Yau

The mirror map relates a Calabi-Yau manifold A to another Calabi-Yau
manifold B with Hodge numbers hp,q

B = hn−p,q
A .

Candelas, De La Ossa, Green, Parkes ’91

Calabi-Yau operators have a special local normal form.
M. Bogner ’13, D. van Straten ’17
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Fantastic Beasts and Where to Find Them

Bananas

Fishnets

Amoebas

Tardigrades

Paramecia

Aluffi, Marcolli, ’09, Bloch, Kerr, Vanhove, ’14
Bourjaily, McLeod, von Hippel, Wilhelm, ’18
Duhr, Klemm, Loebbert, Nega, Porkert, ’22
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Bananas

The l-loop banana integral with (equal) non-zero masses is related to a
Calabi-Yau (l −1)-fold.

An elliptic curve is a Calabi-Yau 1-fold, this is the geometry at two-loops.

The system of differential equations for the equal mass l-loop banana
integral can be transformed to an ε-factorised form.

Change of variables from x = p2/m2 to τ given by mirror map.
Transformation constructed from special local normal form of a Calabi-Yau
operator.
Pögel, Wang, S.W. ’22

Strong support for the conjecture that a transformation to an ε-factorised
differential equation exists for all Feynman integrals.
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Results: Six loops
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Expansion around y = 0 converges at six loops for |p2|> 49m2.
Agrees with results from pySecDec.

The geometry of this Feynman integral is a Calabi-Yau five-fold.
Pögel, Wang, S.W. ’22
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Examples

Electron self-energy in QED
(related to a Calabi-Yau 3-fold).

Dijet production at N3LO
(related to a Calabi-Yau 2-fold).

t t

Top pair production at N4LO
(related to a Calabi-Yau 3-fold)

t t t

Stefan Weinzierl (Uni Mainz) Add a mass January 9, 2024 45 / 46



Conclusions

Precision calculations with heavy particles lead to challenging Feynman
integrals early on in the perturbative expansion.

Method of differential equations is a powerfull tool for computing Feynman
integrals.

The differential one-forms are in a certain sense universal and geometric.

A better understanding of the relation to algebraic geometry may lead to
more efficient numerical evaluation algorithms and automatisation.
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