Flavour at FCC-ee Jernej F. Kamenik

Univerza v Ljubljani

9/1/2024

Flavour changing Z and Higgs decays at FCC-ee Jernej F. Kamenik

collaboration with A. Korajac, M. Szewc, M. Tammaro, J. Zupan 2306.17520

Univerza v Ljubljani

9/1/2024

Flavour is one of most puzzling aspects of SM

Symmetric,
quantized
$$\mathcal{L}_{\nu \text{SM}} = \mathcal{L}_{\text{gauge}}(A_a, \psi_i) + D_{\mu}\phi^{\dagger}D^{\mu}\phi - V_{\text{eff}}(\phi, A_a, \psi_i)$$

Flavour is one of most puzzling aspects of SM

- Flavour is one of most puzzling aspects of SM
 - ad hoc, many parameters, peculiar patterns

figure by W. Altmannshofer

 strong suppression of (most) flavor changing processes within SM - unexplained!

- Flavour is one of most puzzling aspects of SM
 - strong suppression of flavor changing processes within SM - unexplained!
 - allows to probe deep UV dynamics

- Flavour is one of most puzzling aspects of SM
 - strong suppression of flavor changing processes within SM - unexplained!
 - allows to probe deep UV dynamics

Flavour Physics @ FCC(-ee)

- Planned high-pT & high statistics experiments at FCC-ee would record O(10¹³) Z boson, O(10⁶) Higgs decays
 - clean e+e- collisions, boosted decay products Flavour factory
 - allows to go beyond ultimate precision of LHCb and Belle II

Working po	pint 2	Lumi. / IP $[10^{34} \text{ cm}^{-1}]$	$^{-2}.\mathrm{s}^{-1}]$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Physics goal			
$\overline{Z \text{ first pha}}$	ase	100		20	$b ab^{-1}$	/year		2	
Z second phase		200			52 ab^{-1} /year			2	150 ab^{-1}
=	Particle production (10^9)		B^0	B^-	B_s^0	Λ_b	$c\overline{c}$	$\tau^- \tau^+$	
-	Belle II		27.5	27.5	n/a	n/a	65	45	
_		FCC-ee	400	400	100	100	800	220	

CHAPTER 7

 Decay mode	$B^0 \rightarrow K^*(892)e^+e^-$	$B^0 \rightarrow K^*(892)\tau^+\tau^-$	$B(B^0) \rightarrow \mu^+\mu^-$		· · · · · ·	FCC-ee
Belle II	$\frac{1}{2000} \sim 2000$	~ 10	$\frac{D_{s}(D) - \gamma \mu - \mu}{n/a}$	8 100	ļ	
LHCb Run I	150	-	\sim 15 (–)	<u>0</u> 80 -	•	
LHCh Ungrade	~ 5000	_	$\sim 500 (50)$	è a	, 1	

Flavour Physics @ FCC(-ee)

- Planned high-pT & high statistics experiments at FCC-ee would record O(10¹³) Z boson, O(10⁶) Higgs decays
 - clean e⁺e⁻ collisions, boosted decay products Flavour factory
 - allows to go beyond ultimate precision of LHCb and Belle II
 - CKM ($|V_{cb}| \& |V_{ub}|$) determination, rare decays of c- and b-hadrons (b \rightarrow s $\tau^+\tau^-$, vv) and CP violation in the heavy-quark sector (γ , a_{SL})
 - tau lepton properties (mass, lifetime) and rare decays
 - ...(many avenues remain unexplored)

Competitive Flavour Probes with SM bosons?

- Planned high-pT & high statistics experiments at FCC-ee would record O(10¹³) Z boson, O(10⁶) Higgs decays
- Recent advances in jet physics and statistics

Bedeschi et al., 2202.03285

- novel analysis techniques exploiting solvable probabilistic models for complicated events (tractable likelihoods vs. of cut & count)
- Novel tests of flavor conversion in and beyond SM

 FCC-ee with clean environment & excellent vertexing would allow for efficient charm & even strace quark flavor tagging

• One can contemplate $Z/h \rightarrow qq'$ decay searches

• While FCNCs forbidden at tree-level in SM, they are generated at 1-loop, e.g. $\mathcal{B}(Z \to bs) = (4.2 \pm 0.7) \times 10^{-8},$

- While FCNCs forbidden at tree-level in SM, they are generated at 1loop
- BSM Z & Higgs FCNCs are induced in models of VL fermions, multi-Higgs models

$$\mathcal{L} \supset g_{sb}^L(\bar{s}_L\gamma_\mu b_L)Z^\mu + g_{sb}^R(\bar{s}_R\gamma_\mu b_R)Z^\mu + y_{sb}(\bar{s}_L b_R)h + y_{bs}(\bar{b}_L s_R)h + \text{h.c.},$$

• Example: VL D-quark

 $-\mathcal{L}_{\rm int} \supset y_d^{ij} \bar{q}_L^i H d_R^j + y_u^{ij} \bar{q}_L^i \tilde{H} u_R^j + y_D^i \bar{q}_L^i H D_R + M_D \bar{D}_L D_R + \text{h.c.} ,$

- While FCNCs forbidden at tree-level in SM, they are generated at 1loop
- BSM Z & Higgs FCNCs are induced in models of VL fermions, multi-Higgs models

$$\mathcal{L} \supset g_{sb}^L(\bar{s}_L\gamma_\mu b_L)Z^\mu + g_{sb}^R(\bar{s}_R\gamma_\mu b_R)Z^\mu + y_{sb}(\bar{s}_L b_R)h + y_{bs}(\bar{b}_L s_R)h + \text{h.c.},$$

• Example: integrating out VL D-quark

$$\mathcal{L}_{VLQ}^{D} \supset \frac{g}{2c_{W}} X_{ij}^{d} (\bar{d}^{i} \gamma^{\mu} P_{L} d^{j}) Z_{\mu} - X_{ij}^{d} \frac{m_{j}}{v} (\bar{d}^{i} P_{R} d^{j}) h + \text{h.c.},$$

$$\Rightarrow \quad g_{sb}^{L} = \frac{g}{2c_{W}} (X_{23}^{d} + X_{32}^{d*}), \quad g_{sb}^{R} = 0,$$

$$y_{sb} = -X_{23}^{d} m_{b} / v, \quad y_{bs} = -X_{32}^{d} m_{s} / v$$

- While FCNCs forbidden at tree-level in SM, they are generated at 1loop
- BSM Z & Higgs FCNCs are induced in models of VL fermions, multi-Higgs models

$$\mathcal{L} \supset g_{sb}^L(\bar{s}_L\gamma_\mu b_L)Z^\mu + g_{sb}^R(\bar{s}_R\gamma_\mu b_R)Z^\mu + y_{sb}(\bar{s}_L b_R)h + y_{bs}(\bar{b}_L s_R)h + \text{h.c.},$$

• Example: type III THDM

- At present Z/h FCNCs mostly constrained by low energy observables
 - Rare (semi)leptonic B & D decays

- At present Z/h FCNCs mostly constrained by low energy observables
 - Rare (semi)leptonic B & D decays

$$-\mathcal{H}_{WET} = \frac{4G_F}{\sqrt{2}} \frac{\alpha_{em}}{4\pi} V_{\ell b}^* V_{ls} \sum_{\ell} \left(C_9 \mathcal{O}_9 + C_9' \mathcal{O}_9' + C_{10} \mathcal{O}_{10} + C_{l0} \mathcal{O}_{10} + C_{\nu} \mathcal{O}_{\nu} + C_{\nu}' \mathcal{O}_{\nu}' + \dots \right)$$

$$\delta C_{9,\ell\ell}^{(\prime)} = \mathcal{N} g_{sb}^{L(R)} g_{Z\ell\ell,vec} \simeq 6.04 \times 10^3 g_{sb}^{L(R)}, \qquad 1.0$$

$$\delta C_{10,\ell\ell}^{(\prime)} = \mathcal{N} g_{sb}^{L(R)} g_{Z\ell\ell,ax} \simeq -5.67 \times 10^4 g_{sb}^{L(R)}, \qquad 0.5$$

$$g_{Z\ell\ell,vec} = g(T_\ell^3 - 2Q_\ell s_W^2)/(2c_W) \\ g_{Z\ell\ell,ax} = -gT_\ell^3/(2c_W) \\ \mathcal{N} = \sqrt{2\pi}/(G_F \alpha_{em} V_{tb} V_{ts}^* m_Z^2)$$

- At present Z/h FCNCs mostly constrained by low energy observables
 - Rare (semi)leptonic B & D decays
 - Neutral meson oscillations

- Main strategy: apply orthogonal b/s or c/u taggers
 - Categorize events by # of jets
 - construct explicit probabilistic model for events (example with only b-tags)

$$\bar{N}_{(n_b,n_s)} = \sum_{f} p(n_b,n_s|f,\nu)\bar{N}_{f}(\nu)$$

$$\bar{N}_{f} = \mathcal{B}(Z/h \to f)N_{Z/h}\mathcal{A}$$

$$\epsilon^{b}_{\beta;\text{Med}} = \{0.007, 0.0001, 0.003, 0.80\},$$

$$g \qquad s \qquad c \qquad b$$

• infer the rate through tractable likelihood maximization (profiling)

- Main strategy: apply orthogonal b/s or c/u taggers
 - construct explicit probabilistic model for events (example with only b-tags)

- Main strategy: apply orthogonal b/s or c/u taggers
 - construct explicit probabilistic model for events (example with b- & s-tags)

$$\begin{split} \bar{N}_{(n_{b},n_{s})} &= \sum_{f} p(n_{b},n_{s}|f,\nu)\bar{N}_{f}(\nu) \\ \bar{N}_{f} &= \mathcal{B}(Z/h \to f)N_{Z/h}\mathcal{A} \\ g & s & c & b \\ \epsilon^{b}_{\beta;\mathrm{Med}} &= \{0.007, \ 0.0001, \ 0.003, \ 0.80\}, \\ \epsilon^{s}_{\beta;\mathrm{Loose}} &= \{0.20, \ 0.90, \ 0.10, \ 0.01\}, \\ \epsilon^{s}_{\beta;\mathrm{Med}} &= \{0.09, \ 0.80, \ 0.06, \ 0.004\} \\ \epsilon^{b}_{\beta;\mathrm{Loose}} &= \{0.02, \ 0.001, \ 0.02, \ 0.90\} \end{split}$$

 construct explicit probabilistic model for events (example with b⁻ & s-tags)

Sensitivity reach statistics dominated!

• Possible improvements with dedicated light-quark tagging?

- Current direct constraint from bound on Higgs width
- At FCC-ee direct Higgs measurements complementary & competitive with meson mixing constraints!

- Z FCNCs
 - Their effects already observed/measured indirectly in $b \rightarrow s \ ll$ transitions can on-shell measurements compete?

Conclusions

- FCC-ee could be a powerful and competitive probe of flavour physics post-2030
 - Effort underway to understand exp. precision with which rare decays of c- and b-hadrons and CP violation in heavy-quark sector & LFV processes could be measured
 - Flavour Physics defines shared (vertexing, tracking, calorimetry) and specific (hadronic PID) detector requirements
 - In the coming phase important interplay of physics performance with detector concepts
 - On theory side: go beyond benchmark modes fill in possible gaps

Conclusions

- Recent advances in jet tagging allow for high-energy colliders such as the prospective FCC-ee to place phenomenologically relevant bounds on rare Z and Higgs decays involving flavored jets
- Introduction of "orthogonal" sets of taggers for multi-class classification & explicit likelihood models
 - Bounds on *h/Z* FCNCs at FCC-ee complementary to meson mixing, rare meson decays
 - In case of anomalies observed at low energies, could help disentangle possible UV sources
 - Probing SM Z-FCNCs would possibly require detector-level improvements

Conclusions

- Recent advances in jet tagging allow for high-energy colliders such as the prospective FCC-ee to place phenomenologically relevant bounds on rare Z and Higgs decays involving flavored jets
- Introduction of "orthogonal" sets of taggers for multi-class classification & explicit likelihood models
 - Bounds on *h/Z* FCNCs at FCC-ee complementary to meson mixing, rare meson decays
 - Related applications to W decays:
 - Prospects for direct $|V_{tx}|$ extraction at HL-LHC

D. Faroughy et al., 2209.01222

• Extraction of $|V_{cb}|$ from W decays (at FCC-ee)

M.-H. Schune, FCC PE Workshop 2020