

Searches for BSM Physics at FCC

Dr Sarah Williams, on behalf of the FCC collaboration

Introduction

https://home.cern/science/accelerators/future-circular-collider

- I am going to attempt to summarise prospects for BSM searches at FCC.
- This includes:
 - Direct searches for new particles.
 - Indirect searches through precision SM tests.
- For more detailed overviews of the status of various FCC physics studies (and their detector implications) see the slides at the <u>London FCC</u> <u>week</u>.

FCC= ultimate energy frontier machine

Thanks to the numerous collaborators whose slides/schematics have been used in these slides [©]

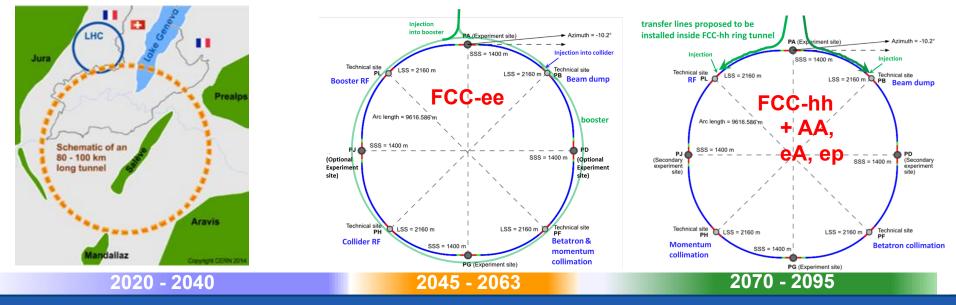
Disclaimer

	Monday, 8 January			•	Tuesday, 9 January		
9:00 → 09:40	Reception & Welcome	(§ 40m	9 KOL-F-117	9:00 → 09:40	Stefan Weinzierl - Add a mass and make your life more complicated Speaker: Stefan Weinzierl	(§ 40m	9 KOL-F-117
9:40 → 10:20	Claudia Cornella - BSM in the third generation Speaker: Claudia Cornella	(§ 40m	♥ KOL-F-117	9:40 → 10:20	zuerich5.pdf Stefano Frixione - On Simulations at e+e- Colliders Speaker: Stefano Frixione (INFN)	© 40m	♥ KOL-F-117
0:20 → 11:00	Marc Riembau - Positiveness and collider phenomenology Speaker: Mr Marc Riembau (CERN) Riembau_2	③ 40m	♥ KOL-F-117	0:20 → 10:50	Coffee Break	() 30m	9 KOL-F-117
1:00 → 11:30	Coffee Break	() 30m	9 KOL-F-117	0:50 → 11:30	Joe Davighi - The Flavour of BSM: from LHC to future experiments Speaker: Joseph Enea Davighi P ZPW_Davi	() 40m	♥ KOL-F-117
1:30 → 12:10	Silvia Ferrario Ravasio - Developments in Monte Carlo Event Generators Speaker: Silvia Ferrario Ravasio (CERN) P Ferrario_Z	3 40m	9 KOL-F-117	1:30 → 12:10	Rebeca Gonzalez Suarez - The FCC project overview Speaker: Rebeca Gonzalez Suarez (Uppsala University (SE)) 2 ZPW2024	() 40m	9 KOL-F-117
2:10 → 12:50	Andrea Wulzer - Muon Colliders Speaker: Andrea Wulzer (IFAE and ICREA – Barcelona, Spain) Patalk_wulzer	(§ 40m	♥ KOL-F-117	2:10 → 13:40 3:40 → 14:20	Lunch Jernej Kamenik - Flavour changing Z and Higgs decays at FCC-ee		9 KOL-F-117 9 KOL-F-117
2:50 → 14:20	Lunch	() 1h 30m	9 KOL-F-117	4:20 → 15:00		© 40m	9 KOL-F-1
4:20 → 15:00	Juan Rojo - Proton Structure from the LHC to Future Colliders Speaker: Dr Juan Rojo (VU Amsterdam and Nikhef) Projo-zpw20	𝔇 40m	9 KOL-F-117		programme Speaker: Matthew Philip Mccullough (CERN) WEDNESDAY, 10 JANUARY		
5:00 → 152 0	Christoph Paus - Electroweak Precision Measurements at the FCC Speaker: Christoph Paus (Massachusetts Inst. of Technology (US))	(§ 40m	9 KOL-F-117		Sarah Williams - BSM searches at FCC (Speaker: Sarah Louise Williams (University of Cambridge (GB))	040m	-117 🕑 💌
5:40 → 16:10	Coffee Break	() 30m	9 KOL-F-117		David Sutherland - Future Signatures of a Non-decoupling Higgs sector Speaker: David Sutherland	③ 40m	♥ KOL-F-117
_		0 3011	T ROLLET	0:20 → 10:50	Coffee Break	③ 30m	• KOL-F-117
6:10 → 16:80	Michele Selvaggi - Higgs Precision at HL-LHC and FCC Speaker: Michele Selvaggi (CERN)	(§ 40m	9 KOL-F-117		Peter Skands - Recent Developments in VINCIA and PYTHIA Speaker: Prof. Peter Skands (Monash University (AU))	(§ 40m	9 KOL-F-117
6:50 → 17:30	Ilaria Brivio - SMEFT vs HEFT for new physics searches at the LHC	(§ 40m	9 KOL-F-117		Pier Monni - QCD challenges at the FCC-ee Speaker: Pier Francesco Monni (CERN)	(§ 40m	♥ KOL-F-117
	Speaker: Ilaria Brivio (University & INFN Bologna)			2:10 → 13:40	Lunch	() 1h 30m	9 KOL-F-117

There are a lot of FCC talks at this workshop (this is a good thing)!

I apologies that there will be some overlap/interplay with other talks (I have tried to minimize).

=> on some level: the entire FCC physics programme constitutes the most comprehensive BSM search we can perform!



Reminder: Integrated FCC programme

Taken from <u>slides</u> by M. Benedikt at FCC week.

Comprehensive long-term programme maximises physics opportunities at the intensity and energy frontier:

- 1. FCC-ee (Z, W, H, $t\bar{t}$) as high-luminosity Higgs, EW + top factory.
- FCC-hh (~ 100 TeV) to maximise reach at the energy frontier, with pp, AA and e-h options (FCC-eh).

Integrated FCC programme

Taken from slides by F. Gianotti at FCC week.

	√s	L /IP (cm ⁻² s ⁻¹)	Int L/IP/y (ab ⁻¹)	Comments
e⁺e⁻ FCC-ee	~90 GeV Z 160 WW 240 H ~365 top	182 x 10 ³⁴ 19.4 7.3 1.33	22 2.3 0.9 0.16	2-4 experiments Total ~ 15 years of operation
рр FCC-hh	100 TeV	5-30 x 10 ³⁴ 30	20-30	2+2 experiments Total ~ 25 years of operation
PbPb FCC-hh	√ <u>s_{NN}</u> = 39TeV	3 x 10 ²⁹	100 nb ⁻¹ /run	1 run = 1 month operation
<mark>ep</mark> Fcc-eh	3.5 TeV	1.5 10 ³⁴	2 ab ⁻¹	60 GeV e- from ERL Concurrent operation with pp for ~ 20 years
e-Pb Fcc-eh	$\sqrt{s_{eN}}$ = 2.2 TeV	0.5 10 ³⁴	1 fb ⁻¹	60 GeV e- from ERL Concurrent operation with PbPb

FCC-eh:

- Energy-frontier ep collisions providential imate supermicroscope to fully resolve hadron structure and empower physics potential of hadron colliders.
- Ver^{yo}precise measurements of Higgs/top and EW parameters in synergy with ee and hh.

FCC-ee:

- Ultra-precise measurements of EW/ Higgs + top sectors of SM -> indirect sensitivity to BSM.
- Unique flavour opportunities
- Direct sensitivity to feebly interacting particles (LLPs)

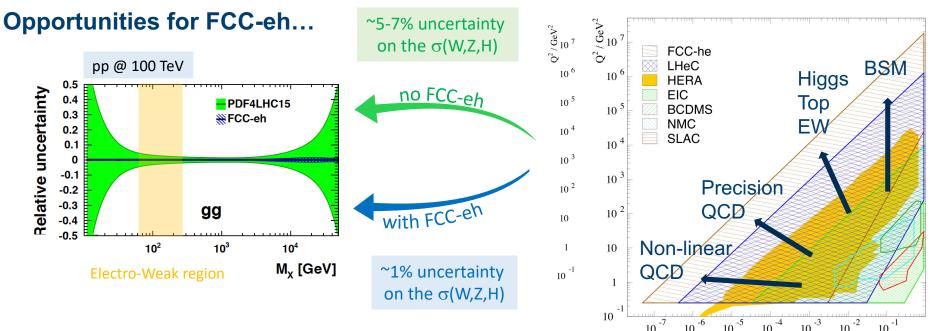

FCC-hh:

- High-statistics for rare Higgs decays and 5% Q* → jj measurement of Higgs self
 - interaction. $Z'_{TC2} \rightarrow t\bar{t}$
- Unprecedented direct $Z'_{SSM} \rightarrow t\bar{t}$
- sensitivity to BSM.

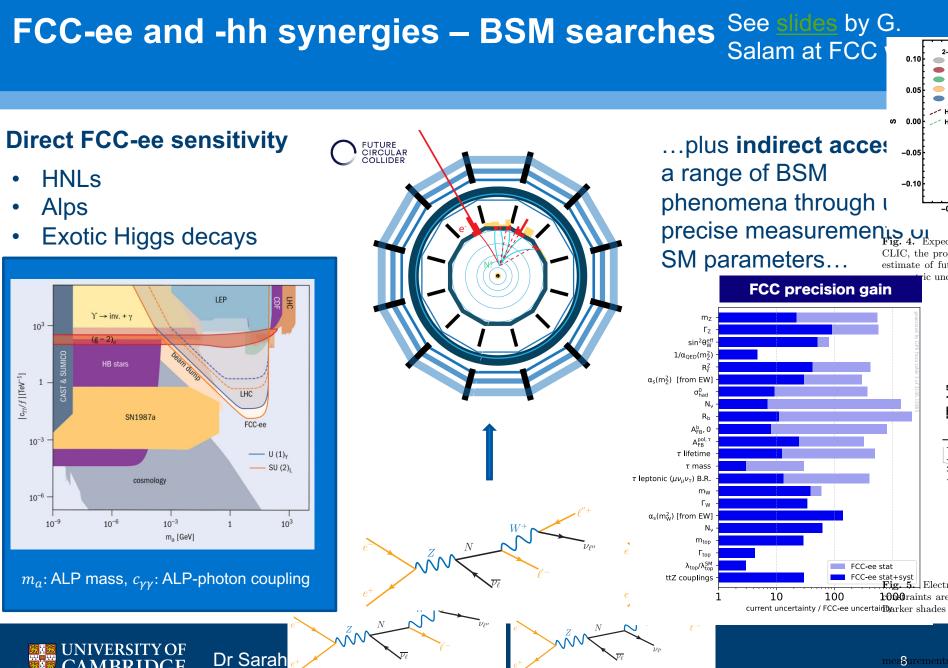
 $G_{RS} \rightarrow W^{+}W^{-}$

 $Z'_{SSM} \rightarrow l^+ l^-$

Synergies in the FCC programme

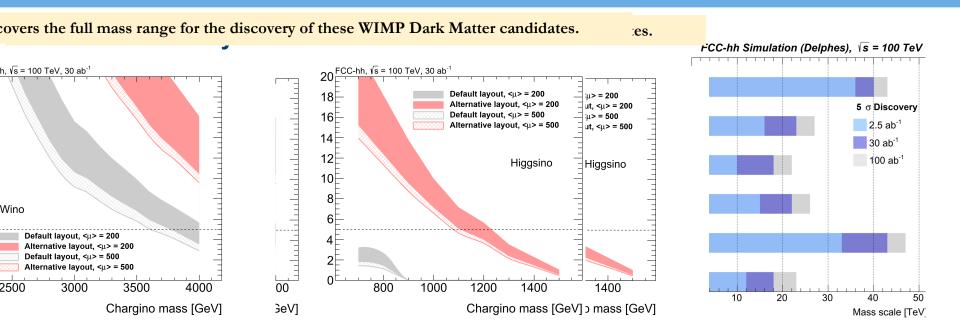

Integrated programme combines precision at the intensity frontier (FCC-ee) giving indirect sensitivity to a multitude of NP as well as unique direct sensitivity to lowmass and weakly interacting BSM physics, with discovery potential at the energy frontier (FCC-hh) that will furtger extend the precision achieved at FCC-ee!

UNIVERSITY OF CAMBRIDGE Dr Sarah Williams: ZPW2024- BSM searches at FCC


Synergies in FCC programme

Taken from slides by J. D"Hondt at FCC week

Taken from updated HE-LHC CDR



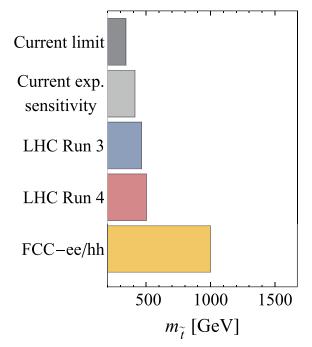
- Empower FCC-hh with precision input on hadron structure and strong coupling (to permille accuracy) during parallel running.
- Complementary measurements of Higgs couplings (CC+NC DIS x-sections, no pile-up, clean).
- Plus... complementary BSM prospects (LLPs, LFV, not-too-heavy scalars, GeV-scale bosons)- more on this later ⁽²⁾

uncertainties;

FCC-ee and -hh synergies - BSM searches More details in FCC TDR and ESU submissions here

Cover full mass range for discovery of WIMP dark matter candidates

Substantial discovery reach for heavy resonances


In summary- exciting possibilities to discover/characterize NP that could be indirectly predicted through precision measurements at FCC-ee

FCC-ee BSM snapshot

Taken from FCC Snowmass submission

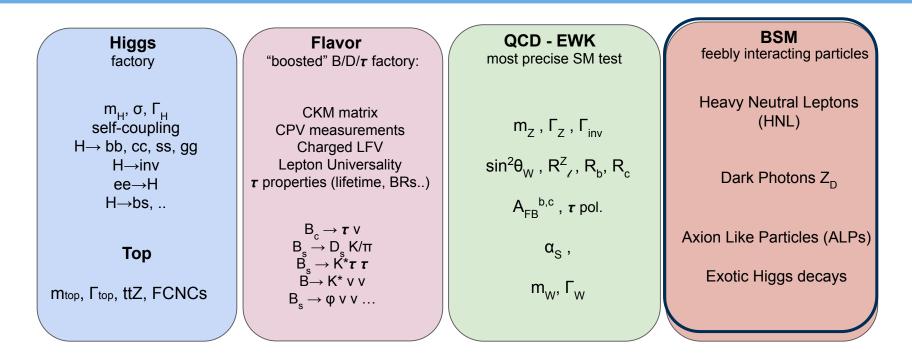
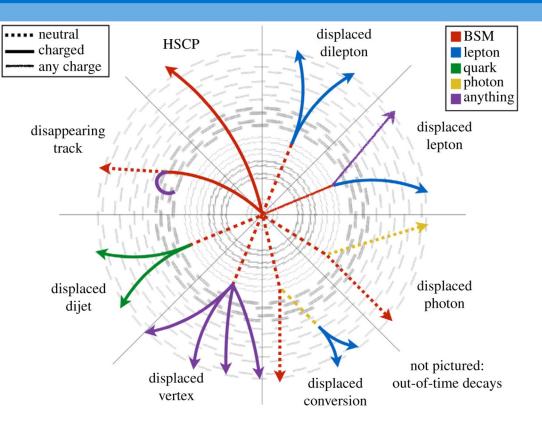

- 1. Indirectly discover new particles coupling to the Higgs or EW bosons up to scales of $\Lambda \approx 7$ and 50 TeV.
- 2. Perform tests of SUSY at the loop level in regions not accessible at the LHC.
- 3. Study heavy flavour/tau physics in rare decays inaccessible at the LHC.
- 4. Perform searches with best collider sensitivity to dark matter, sterile neutrinos and ALPs up to masses \approx 90 GeV.

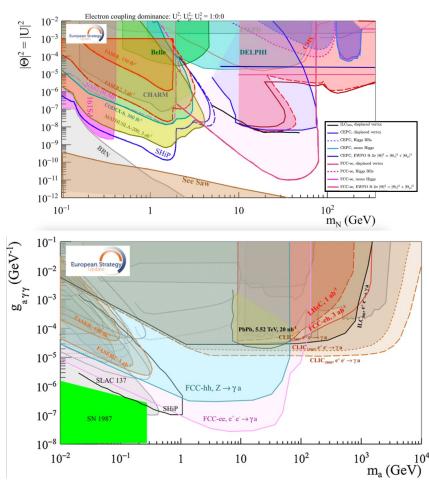
Image credit: FCC CDR


Projected 2σ indirect reach from Higgs couplings on stops.

Physics landscape at FCC-ee

- Broad landscape of physics opportunities which include direct and indirect sensitivity to new physics.
- Unique sensitivity to feebly interacting particles and LLPs means we are in an exciting position to design detectors with these scenarios in mind.

FCC-ee case study: LLPs


LLPs that are semi-stable or decay in the sub-detectors are predicted in a variety of BSM models:

- Heavy Neutral Leptons (HNLs)
- RPV SUSY
- ALPs
- Dark sector models

The range of unconventional signatures and rich phenomenology means that understanding the impact of detector design/performance on the sensitivity of future experiments is key!

LLPs @ FCC-ee

- Targeting precision measurements of EWK/Higgs/top sector of SM.
- Unique sensitivity to LLPs coupling to Z or Higgs.
 - No trigger requirements.
 - Excellent vertex reconstruction and impact parameter resolution can target low LLP lifetimes (this can drive hardware choices).
 - Projections often assume background-free searches (should check these assumptions).

FCC-ee LLP group: past and present

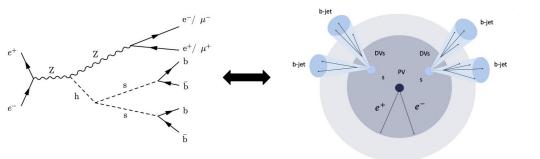
- Following a <u>Snowmass LOI</u>, an LLP white paper was recently published in <u>Front. Phys. 10:967881 (2022)</u> which included case studies with the official FCC analysis tools.
- These initial studies motivate further optimization of experimental conditions and analysis techniques for LLP signatures.
- Currently a very active community, with meetings on Thursdays 13:00 CERN time.

Searches for long-lived particles at the future FCC-ee

C. B. Verhaaren¹, J. Alimena^{2*}, M. Bauer³, P. Azzi⁴, R. Ruiz⁵, M. Neubert^{6.7}, O. Mikulenko⁸, M. Ovchynnikov⁸, M. Drewes⁹, J. Klaric⁹, A. Blondel¹⁰, C. Rizzi¹⁰, A. Sfyrla¹⁰, T. Sharma¹⁰, S. Kulkarni¹¹, A. Thamm¹², A. Blondel¹³, R. Gonzalez Suarez¹⁴ and L. Rygaard¹⁴

¹Department of Physics and Astronomy, Brigham Young University, Provo, UT, United States, ²Experimental Physics Department, CERN, Geneva, Switzerland, ³Department of Physics, Durham University, Durham, United Kingdom, ⁴INFN, Section of Padova, Padova, Italy, ⁵Institute of Nuclear Physics, Polish Academy of Sciences, Kracow, Poland, ⁶Johannes Gutenberg University, Mainz, Germany, ⁷Corrnell University, Ithaca, NY, United States, ⁸Leiden University, Leiden, Netherlands, ⁹Université Catholique de Louvain, Louvain-la-Neuve, Belgium, ¹⁰University of Geneva, Geneva, Switzerland, ¹¹University of Graz, Graz, Austria, ¹²The University of Melbourne, Parkville, VIC, Australia, ¹³LPNHE, Université Paris-Sorbonne, Paris, France, ¹⁴Uppsala University, Uppsala, Sweden

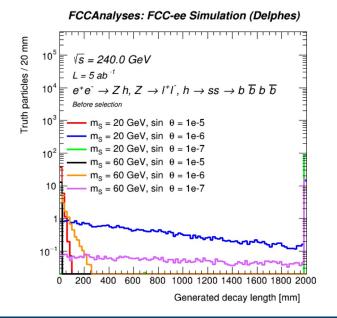
Ongoing FCC-ee LLP studies Note: this table will soon be updated following the mid-term review!								
Physics scenario	FCC-ee signature	Studies for snowmass	Ongoing work					
Heavy neutral leptons (HNLs)	Displaced vertices $\underbrace{\sum_{e^+} \sum_{v_e} \sum_{v_e}$	Generator validation and detector-level selection studies for eevv. First look at Dirac vs Majorana	 Update eevv studies for winter23 samples. First look at μμνν channel (prompt +LLP) First look at μνjj (prompt+LLP) First look at evjj including Dirac vs majorana (prompt) 					
Axion-like particles (ALPs)	Displaced photon/lepton pair	Generator-level validation for $a \rightarrow \gamma \gamma$ at Z-pole run.	No studies ongoing -> Opportunities to get involved :)					
Exotic Higgs decays	e.g.	Theoretical discussion and motivation for studies at ZH-pole	 Reco-level studies (inc. vertexing) for h→ss→bbbb 					


Dr Sarah Williams: ZPW2024- BSM searches at FCC

CAMBRIDGE

FCC-ee LLP studies: recent highlights Magdalena Vande Voorde, Giulia Ripellino

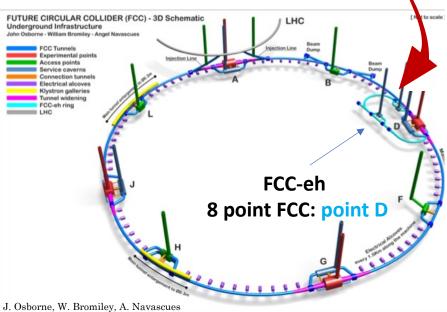
Nice <u>overview</u> by Juliette Alimena at EPS 2023


First simulation and sensitivity studies for Higgs decays to long-lived scalars

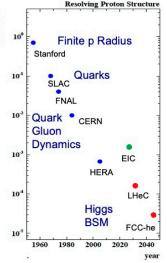
- Look at events with at least one scalar within acceptance region 4mm<r<2000mm- all except longest and shortest on RHS.
- Aim to develop event selection and perform early sensitivity study.

For further details see <u>presentation</u> by Magda at topical ECFA WG1-SRCH meeting

- Extend SM with additional scalar.
- Probe h→ss→bbbb in events with 2 displaced vertices, tagged by Z



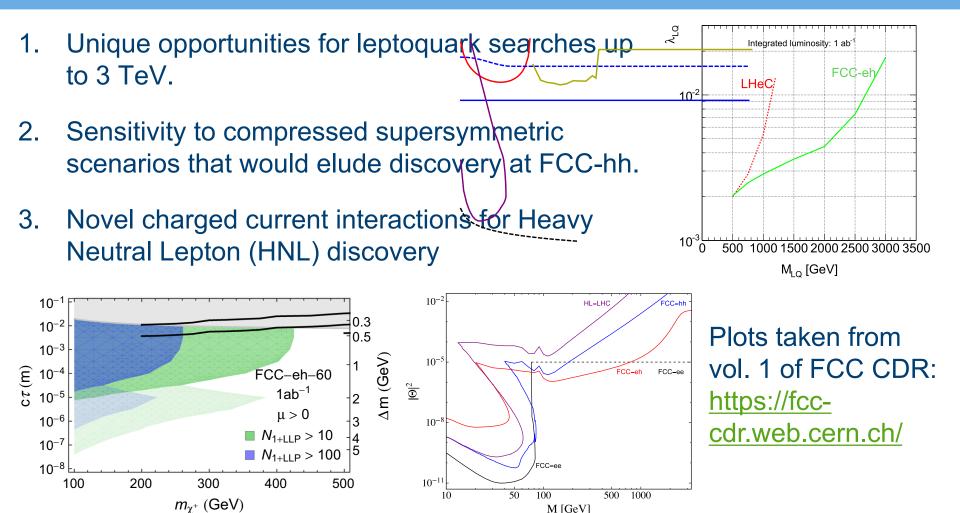
FCC-eh


For a nice review of electron-hadron colliders (including EIC) see https://cds.cern.ch/record/2811194

Novel use of Energy Recovery Linac (ERL) technology that will be demonstrated with the PERLE ERL demonstrator

FCC-eh (60 GeV electron beams) $E_{cms} = 3.5 \text{ TeV}$, described in CDR of the FCC run ep/pp together: FCC-hh + FCC-eh

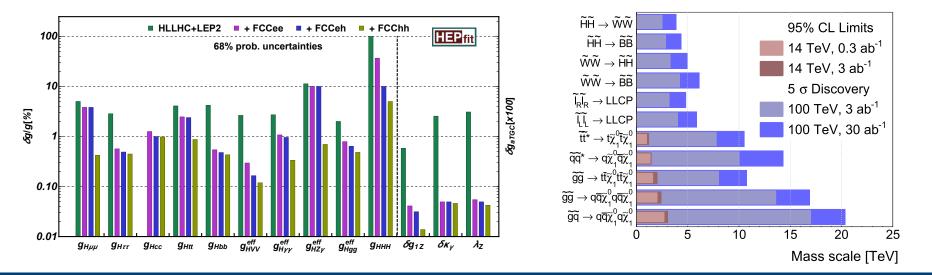
Use of ERL technologies a key step towards improving sustainability whilst maintaining high luminosities.


Relatively keen environment associated with e-p collisions provides a new window to discover new physics...

Taken from slides by J. D"Hondt at FCC week

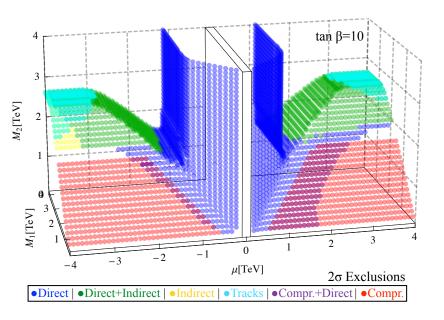
Dr Sarah Williams: ZPW2024- BSM searches at FCC

FCC-eh BSM snapshot

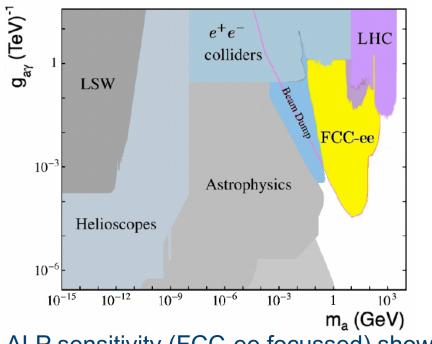


FCC-hh BSM snapshot

Plots taken from vol. 1 of FCC CDR: https://fcc-cdr.web.cern.ch/


- 1. Direct discovery potential up to ~50 TeV.
- 2. Precision measurement of Higgs self coupling.
- 3. Conclusively test the WIMP dark matter paradigm.

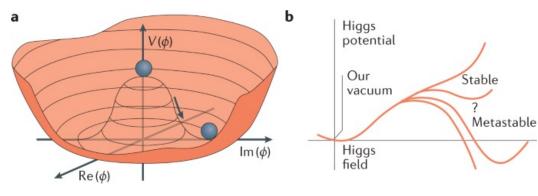
by way of synergy and complementarity, the integrated FCC programme appears to be the most powrful future facility for a thorough examination of the Higgs boson and EWSB.

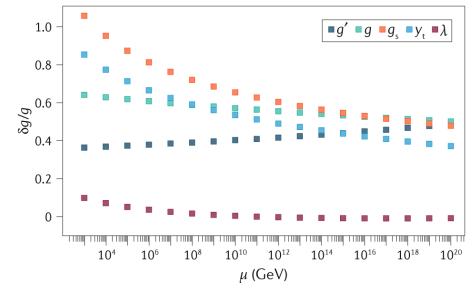

Dark matter complementarity...

... between direct/indirect detection and collider searches...

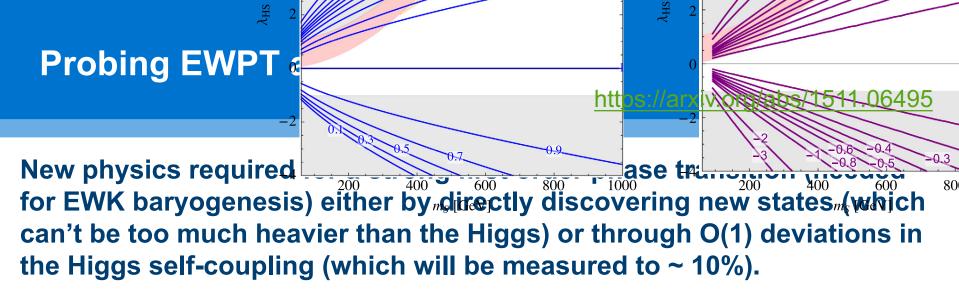
Full coverage of thermal surface in MSSM (image credit: <u>arXiv:1606.00947</u>)

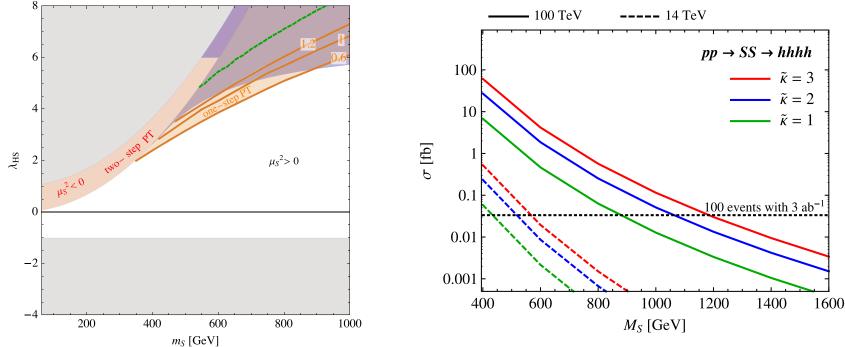
... between collider, non-collider searches + astrophysical constraints...

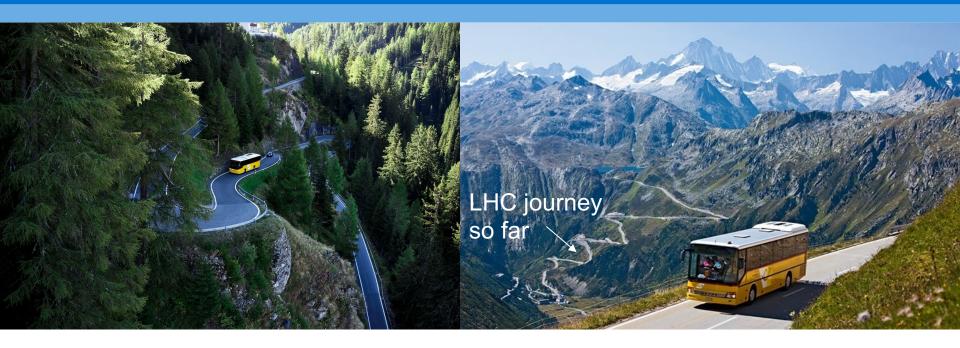

ALP sensitivity (FCC-ee focussed) shown in Rebeca's <u>slides</u> yesterday.


Back to slide 26

Significance of Higgs self coupling


https://www.nature.com/articles/s42254-021-00341-2


$$V(\phi) = \frac{1}{2}\mu^2\phi^2 + \frac{1}{4}\lambda\phi^4$$



- On EWSB λ gives 3-higgs and 4higgs (self-) interaction vertices accessed through di-Higgs production at the LHC and future colliders.
- Direct measurement could provide key understanding of EWPT and possible portal to new physics.

Thoughts for the future

We are In the middle of an exciting journey with significant opportunities and challenges.

- How can we better work together to:
 - Build/gather consensus?

•

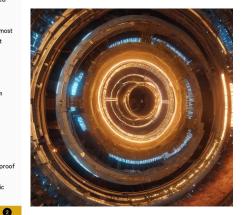
- Overcome challenges (technical, financial, sociological)
- Balancing current and future projects?

Some ideas from this workshop

- MC generators and theory predictions.
- Model building are we missing topologies?
- Refining benchmarks
- + some you might have?

Dr Sarah Williams: ZPW2024- BSM searches at FCC

What's in a name?


FUTURE CIRCULAR COLLIDER

ADJECTIVES STARTING WITH F

Fiscal	Flaggy	Fleshless	Flowery	Forworn	Fraggable
Fishable	Flagitious	Fleshlike	Flowing	Forwrought	Fragile
Fisheye	Flagrant	Fleshy	Fluctuant	Fossiliferous	Fragmenta
Fishless	Flagstoned	Flexible	Flued	Fossilized	Fragmenta
Fishlike	Flakey	Flexural	Flueless	Foster	Fragmente
Fishly	Flaky	Flexy	Fluent	Foul	Fragrant
Fishnetted	Flamboyant	Flickering	Fluey	Foule	Frail
Fishy	Flameless	Flighted	Fluffy	Four-door	Funky
Fissile	Flameproof	Flightless	Fluid	Foureyed	Funloving
Fissionable	Flaming	Flighty	Fluidal	Four-eyed	Fun-loving
Fissiparous	Flamingo	Flimsy	Fluidic	Four-fifths	Funniest
Fisted	Flaminical	Flinchless	Fluidized	Fourfold	Funny
Fistic	Flammable	Flinchy	Fluked	Four-footed	Fun-sized
Fist-size	Flammant	Flinty	Flukey	Four-handed	Fur
Fistular	Flammulated	Flippant	Fluky	Four-leaf	Furcal
Fistulate	Flapless	Flippered	Focal	Four-leaved	Furious
Fistulous	Flappy	Flip-up	Focusable	Four-legged	Furless
Fit	Flaring	Flirtatious	Focused	Fourpenny	Furlong
Fitched	Flash	Flirty	Focusless	Four-poster	Furlough
Fitful	Flashy	Floating	Foetal	Fourteenth	Furrin
Fittable	Flat	Floatless	Foetid	Fourth	Furrowed
Fitted	Flatbed	Floaty	Fogeyish	Fourth-class	Furry
Fitter	Flat-bottom	Floccose	Foggy	Four-wheel	Further
Fitting	Flat-bottomed	Flocculable	Foiled	Fouse	Furthermos
Five	Flat-chested	Floccular	Foldable	Fousty	Furthest
Fivefold	Flatfooted	Flocculated	Foldameric	Fouth	Furtive
Fivesome	Flat-footed	Flocculent	Foldaway	Fouthy	Furzy
Five-star	Flat-mouthed	Floodable	Folded	Fouty	Fused
Fixable	Flat-out	Flooded	Folded up	Foveal	Fusible
Fixative	Flat-rate	Floral 🦯	Folded-up	Foveate	Fusiform
Fixed	Flattened	Florentine	Folderless	Foveolar	Fusile
Fixed-point	Flattered	Florescent	Folderlike	Foxy	Fussed
Fixed-term	Flattering	Floricultural	Folding	Frabjous	Fussy
Fixtureless	Flattish	Florid	Fold-out	Frac	Fusty
Fizzing	Flatulent	Floristic	Foliaged	Fractal	Futile
Fizzy	Flatwoven	Flory	Foliated	Fractional	Future
Flabile	Flaunty	Flossy	Folic	Fractious	Future-pro
Flaccid	Flavored	Floury	Folkloric	Fracturable	Futurist
Flagellar	Flavorful	Flowerful	Folksy	Fractural	Futuristic
Flagging	Flavorless	Flowering	Folky	Fractured	Fuzzy
					6

Safer starting point?

2

POSITIVE ADJECTIVES F THAT START WITH

• Fabulous	• Fortunate	• Fabled	• Fecund	• Flamboyant
• Festive	• Feasible	• Familiar	• Fervent	Flavorful
 Flawless 	• Favored	Fast Fascinated	• Favorite	Whent
• Flexible	· Funny Stor	Fascinated	Favorite Feeling Fervid Fine	Focused
• Fruitful	• Forgiving	• Fastest	Fervid	• Formal
• Fresh	• Fiery	• Factual	• Fine	• Fond
• Flowering	• Faithful	• Fanatical	• Finite	• Formative
• Fancy	• Fair	 Fastidious 	• Fit	• Foxy
• Flattering	• Fantastic	• Fast-moving	• Flashy	• Forgivable
• Free	• Fierce	• Feathered	• Fireproof	 Forthright
• Fixable	riendly	• Fatherly	• Flattered	• Fragrant
• Fascinating	• Famous	• Feathery	• Firm	• Fortuitous
• Fitting	• Fashionable	• Fertile	• Fixed	• Frank
 Flourishing 	• Fearless	• Favorable	• First	• Frisky
• Frugal	• Functional	• Fundamental	• Fulfilled	• Fun-loving
• Full	• Full-grown	• Future	• Fullsome	Futuristic
		TESL.COM	HOP	
			•	

Left: AI generated image of "fuzzy circular collider" (from https://gencraft.com/generate)

Dr Sarah Williams: ZPW2024- BSM searches at FCC

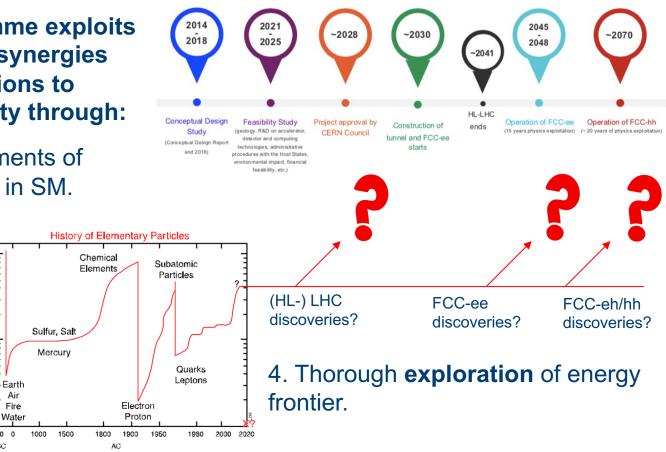
Conclusion and outlook

Integrated FCC programme exploits complementarities and synergies between ee/ep/pp collisions to maximise BSM sensitivity through:

100

Different Kinds of Basic Matter

10

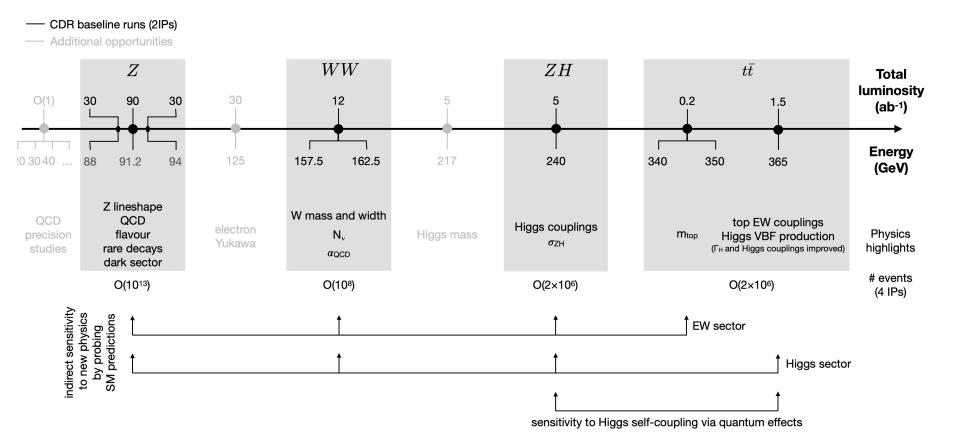

1000

BC

1. Ultra-precise measurements of EW/top/higgs parameters in SM.

2. Conclusively probing new states required by a strong 1st order EWPT.

3. Unique reach for less-than weakly coupled particles.


Thank you for listening- any questions?

Backup

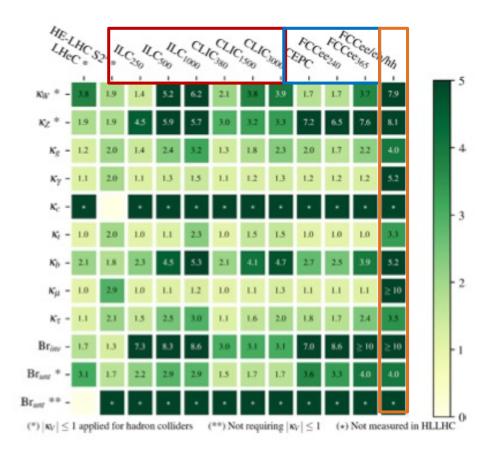
FCC-ee physics runs ordered by energy

Image credit: Christophe Grojean

FCC-ee updated operation schedule- 4 IPs

Updated for mid-term review 2023

Working point	Z, years 1-2	Z, later	WW, years 1-2	WW, later	ZH	$t\overline{t}$	
$\sqrt{s} \; (\text{GeV})$	88, 91, 94		157, 163		240	340-350	365
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	70	140	10	20	5.0	0.75	1.20
Lumi/year (ab^{-1})	34	68	4.8	9.6	2.4	0.36	0.58
Run time (year)	2	2	2	0	3	1	4
	610^{12} Z		$2.410^8\mathrm{WW}$		$1.4510^{6}{ m HZ}$	1.910^{6}	tī
Number of events					+	$+330 \mathrm{k} \mathrm{HZ}$	
					45k WW \rightarrow H	$+80 \text{kWW} \rightarrow \text{H}$	


CEPC Operation mode		ZH	Z	W+W-	ttbar
		~ 240	~ 91.2	~ 160	~ 360
Run time [years]		7	2	1	-
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
CDR (30MW)	[ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
(301117)	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×107	-
Run time [years]		10	2	1	5
_	<i>L</i> / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	27	0.83
Latest (50MW)	[ab-1, 2 IPs]	20	96	7	1
(30.777)	Event yields [2 IPs]	4 ×10 ⁶	4×10 ¹²	5×10 ⁷	5×105

Based on upgraded operation mode with 50MW power, more comparable with FCC-ee (more details in <u>slides</u> by João Guimarães da Costa in 2022 CEPC workshop).

Higgs coupling measurements

Taken from briefing book for 2020 ESU- improvements on Higgs coupling measurements in "kappa" framework:

- Red= linear e+e- collider colliders.
- Blue= circular e+e- machines.
- Orange= integrated FCC programme.

Higgs@FC WG September 2019

FCC and the Higgs potential

Expand Higgs potential about minimum:

$$V(h) = \frac{1}{2}m_h^2 h^2 + \frac{1}{3!}\sqrt{3\lambda_h^{\text{L}}} m_h^{\text{HC}} h^3 + \frac{1}{4!}\lambda_h h^4$$

Where HE-LHC $m_h^2 = \frac{d^2 V(h)}{dh^2}\Big|_{h=0}$, $\sqrt{3\lambda_h} m_h = \frac{d^2 V(h)}{dh^2}\Big|_{h=0}$, $\lambda_h = \frac{d^2 V(h)}{dh^2}\Big|_{h=0}$

Higgs cubic self-interaction can be directly accessed through di-Higgs production!

ILC Extend SM using EFT where EW symmetry linearly realised

$$\mathcal{L} = \mathcal{L}^{SM} + \frac{c_{\phi}}{2\Lambda^{2}} \partial_{\mu} |\phi|^{2} \frac{\partial^{\text{CEPC}}}{\partial^{\mu}} |\phi|^{2} - \frac{c_{6}\lambda_{h}^{SM}}{\Lambda^{2}} |\phi|^{6}$$

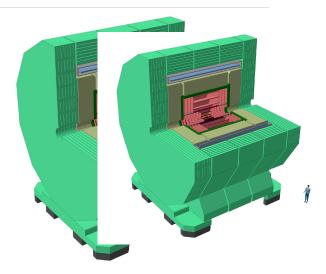
$$\rightarrow \kappa_{\lambda} = \frac{\lambda_{h}}{\lambda_{h}^{SM}} = 1 + \binom{\text{CLIC}}{c_{6}} - \frac{3}{2} c_{\phi} \cdot \frac{v^{2}}{\Delta^{2}} \frac{30 \quad 40 \quad 50}{68\% \text{ CL bounds on } \kappa_{3}} [\%]$$

di-Higgs single-Higgs HL-LHC HL-LHC 50% 50% HE-LHC HE-LHC 50% [10-20]% FCC-ee/eh/hh FCC-ee/eh/hh 25% 5% LE-FCC LE-FCC n.a. 15% FCC-eh₃₅₀₀ FCC-eh₃₅₀₀ -17+24% n.a. FCC-ee^{4IP}₃₆₅ 24% FCC-ee₃₆₅ 33% FCC-ee₂₄₀ 49% 1 ILC₁₀₀₀ ILC₁₀₀₀ 10% 36% ILC₅₀₀ ILC 500 27% 38% ILC₂₅₀ 49% CEPC 49% CLIC₃₀₀₀ CLIC 3000 49% -7%+11% CLIC₁₅₀₀ CLIC₁₅₀₀ 36% 49% CLIC₃₈₀ 50% All future colliders combined with HL-LHC

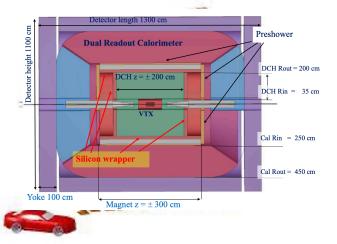
FCC can also provide 2σ sensitivity to Higgs quartic coupling

UNIVERSITY OF

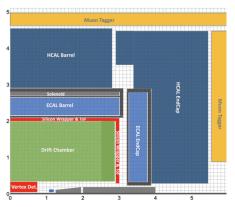
Sensitivity at 68% CL to " κ_3 "(κ_{λ})


50

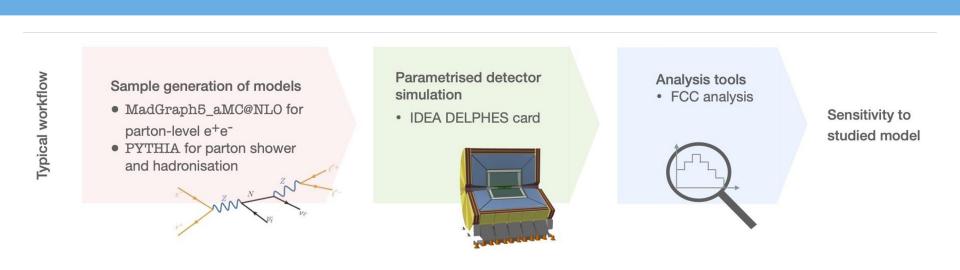
Detector concepts for FCC-ee


See <u>HECATE</u> article for discussion on gains in sensitivity with additional

instrumentation on the cavern


CLD ("CLIC-like Detector")

IDEA ("Innovative Detector for Electron-positron Accelerator")


Noble-liquid ECAL (newest proposal)

Full silicon vertex-detector+ tracker 3D high-granularity calorimeter Solenoid outside calorimeter Silicon vertex detector HG noble liquid ECAL. Short-drift chamber tracker. LAr or LAr+lead Dual-readout calorimeter absorber (solenoid inside)

We have exciting prospects to optimize detector design with LLP searches in mind!

Current workflow in FCC-ee LLP studies

- Use FCCAnalysis software to analyse centrally generated EDM4HEP files, though some signal files produced privately.
- Dedicated <u>LLP tutorial</u> prepared by Juliette Alimena enables full workflow.
- Current limitations include scalability of code and limited MC statistics (more on that later).