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  FCC in the future collider landscape
๏  Huge ongoing effort to figure out future directions after the great success of the LHC. Important lessons 
from this machine as to where to aim next: Higgs discovery, broad spectrum of SM measurements, refined 
understanding of QFT, constraints on BSM physics, … 


๏  An ideal future collider should satisfy at least 3 criteria: 

➡ Guaranteed deliverables (e.g. Higgs)

➡  Discovery reach (energy & intensity frontier)

➡  Versatility ~ broad array of measurements and topics

Precision calculations crucially 
impact all three facets, placing


this aspect at the core of the planning
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  Guaranteed deliverable: exploration of the Higgs sector

13th ICFA Seminar, Hamburg, November 2023Gavin Salam

Higgs potential

29

➤ this is a cartoon 

➤ caution needed: e.g. realistic 
BSM models do not just 
modify the potential, but 
may bring extra scalars 
(often modify other couplings, but not 
always, e.g. 2209.00666) 

➤ even if we take the picture 
seriously we may want to 
consider impact of limited 
constraints on  
(figures show either SM or FCC-hh 
constraint; how many coincidences are 
needed for a BSM model to leave  
untouched while modifying ?)
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[G. Salam @ ICFA 2023] (λ3 only)
e.g. constraints on Higgs trilinear coupling

e.g. Yukawa couplings
๏  3rd gen: established at LHC (with higher precision from  

 lepton colliders)

๏  2nd gen: Yμ will likely be measured at LHC; Yc constrained at  

 LHC / guaranteed at FCC-ee. Prospects for Ys at FCC-ee

๏  1st gen: prospects for Ye at FCC-ee; some ideas to (loosely)  

 constrain Yu,d
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  Breadth & diversity of the scientific programme

CG - Oct. 11, 2023/429

FCC-ee
•Axion-like	par/cles,	dark	photons,		
Heavy	Neutral	Leptons	 
•	long	life/mes	-	LLPs	

direct searches  
of light new physics

"

flavour factory 
(1012 bb/cc; 1.7x1011 !!) 

! physics

•!-based EWPOs  
•lept. univ. violation tests 

B physics
•Flavour EWPOs (Rb, AFBb,c)  
•CKM matrix,  
•CP violation in neutral B mesons 
•Flavour anomalies in, e.g., b ➝ s!! 

"intensity  
frontier”

1

Higgs
mHiggs, ΓHiggs 

Higgs couplings 
self-coupling

2

mtop, Γtop 
EW top couplings

Top

3

detector req.

detector hermeticity 
tracking, calorimetry

particle flow 
energy resol. 

particle ID

momentum resol. 
tracker

vertexing, tagging 
energy resolution 

hadron identification

EW & QCD

•αS(mZ) with per-mil accuracy 
•Quark and gluon fragmentation  
•Clean non-perturbative QCD studies 

•mZ, ΓZ, N" 
•Rl, AFB  
•mW, ΓW

6x1012 Z

106 H

106 tt

Future Circular Collider
[C. Grojean’s CERN TH colloquium 2023]

Broad array of physics 
measurements on 
several areas of 

fundamental physics



๏  The LHC taught us much more than the Higgs boson, what more can we learn from FCC(-ee)?
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  Exploration of QFT structure

e.g. spin correlations & entanglement
e.g. collective effects?

e.g. BFKL dynamics (hh)

e.g. structure of fragmentation
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FIG. 4: vn as a function of the track pairs’ pT
requirement in di↵erent multiplicity intervals for the

thrust axis analysis for the LEP-II high-energy sample.
Data’s v1, v2, and v3 are shown in black, red, and
purple error bars. MC results are dashed lines with

corresponding colors.
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FIG. 5: Excess of flow coe�cient sign(�V2)
p
�V2,

where �V2 = V2,data � V2,MC, as a function of the track
pairs’ pT requirement for Ntrk � 50 in the thrust axis
analysis for LEP-II high-energy sample. The result is

overlaid with CMS subtracted flow coe�cient
measurements [57].

particle angular correlations from e+e� annihilation at
energies

p
s = 183–209 GeV using archived ALEPH

LEP-II data recorded between 1996 and 2000. In analyz-
ing the thrust axis of these collisions between

p
s = 183

to 209 GeV, a long-range near-side excess in the correla-
tion function emerges. For the first time, we decomposed
two-particle correlation functions in e+e� collisions us-
ing a Fourier series. The resulting Fourier coe�cients
vn from LEP-II provided a comparison to the archived

MC, especially in high multiplicity events where particle
counts exceeded 50; the magnitudes of v2 and v3 in data
are larger than those in the Monte Carlo reference. High-
lighting these contrasts, we present the di↵erence in v2
between data and the MC. The di↵erence between data-
and MC-derived v2 as a function of associated particle
pT is remarkably similar to the vsub2 {2} measured in high
multiplicity pp collisions. These intriguing findings for-
tify our understanding of the underlying mechanisms in
particle collisions and shed light on the origins of flow-like
signals in smaller collision systems.

The authors would like to thank the ALEPH Col-
laboration for their support and foresight in archiving
their data. We would like to thank the valuable com-
ments and suggestions from Roberto Tenchini, Guenther
Dissertori, Wei Li, Jiangyong Jia, Wit Busza, Néstor
Armesto, Jean-Yves Ollitrault, Jürgen Schukraft and Jan
Fiete Grosse-Oetringhaus. This work has been supported
by the Department of Energy, O�ce of Science, under
Grant No. DE-SC0011088 (to Y.-C.C., Y.C., M.P., T.S.,
C.M., Y.-J.L.), Eric and Wendy Schmidt AI in Science
Postdoctoral Fellowship (A. Badea) and Grant No. DE-
SC0012567 (to J.T.).
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Figure 3: Azimuthal angles are defined between successive splitting planes for the 1 ! 23
splitting, P1 � {~p2, ~p3} and the 2 ! 45 splitting, P2 � {~p4, ~p5}. The figure also depicts the
vectors normal to the two planes, ~n1 and ~n2.

3 Collinear spin correlations: expectations and measurement
strategy

In this section, we start (section 3.1) by examining how the spin correlations translate into
azimuthal correlations between the planes of separate collinear branchings, both within a single
jet and across pairs of jets. We do so at fixed order, O

�
↵

2
s

�
, where it is trivial to define the

observables. We then propose (section 3.2) a set of observables that are suitable for use at all
orders. They exploit a Lund diagram [26] representation of individual jets [44]. Next (section
3.3), we recall the definition of the EEEC spin-sensitive observable, which was proposed and
resummed in Ref. [38]. Finally (section 3.4), we use these observables to study the impact on
the azimuthal correlations coming from the all-order resummation of collinear spin-correlation
e↵ects.

3.1 Azimuthal structure

Each collinear branching in an event can be associated with the plane that contains the momenta
of the two o↵spring partons. The simplest observable one may think of to study spin correlations
is the azimuthal di↵erence, � , between the planes defined by two distinct branchings. Here we
will consider two broad cases: intra-jet correlations, i.e. between the planes of two branchings
within a single jet, for example between the plane of the 1 ! 56 splitting and the plane of the
6 ! 78 splitting in Fig. 2; and inter-jet correlation, i.e. between the planes of two splittings in
separate jets, for example between the plane of the 1 ! 56 splitting and the plane of the 2 ! 34
splitting in Fig. 2.7 We will refer to the two azimuthal di↵erences as � 12 and � 110 where the
1 and 2 labels refer to the first and second splitting within a given jet and the 10 label refers to
the first splitting in a distinct jet. The � 12 and � 110 observables are straightforward to define
at O

�
↵

2
s

�
relative to the hard scattering and it is this situation that we will concentrate on here.

In the � 12 case, the splitting planes and the azimuthal angle between them are illustrated in
Fig. 3.

7That particular case, with a qq̄ hard process, would have zero correlation, but the correlation is non-zero for
a gg hard process.
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FIG. 1. All-order e↵ects on the Higgs cross section computed at N3LO, as a function of
p
s. The plot of the left shows the

impact of small-x resummation, while the one of the right of large-x resummation. The bands represent PDF uncertainties.

and at small-x [90, 91]. This opens up the possibility of
achieving fully consistent resummed results. While we
presently concentrate on the Higgs production cross sec-
tion, our technique is fully general and can be applied
to other important processes, such as the Drell-Yan pro-
cess or heavy-quark production. We leave further phe-
nomenological analyses to future work.

Let us start our discussion by introducing the factor-
ized Higgs production cross section

�(⌧,m2
H
) = ⌧�0

�
m2

H
,↵s(µ

2
R
)
�

(1)

⇥

X

ij

Z 1

⌧

dx
x Lij

�
⌧
x , µ

2
F

�
Cij

⇣
x,↵s(µ

2
R
), m2

H

µ2

F

, m2

H

µ2

R

⌘
,

where �0 is the lowest-order partonic cross section, Lij

are parton luminosities (convolutions of PDFs), Cij are
the perturbative partonic coe�cient functions, ⌧ = m2

H
/s

is the squared ratio between the Higgs mass and the col-
lider center-of-mass energy, and the sum runs over all
parton flavors. Henceforth, we suppress the dependence
on renormalization and factorization scales µR, µF. More-
over, because the Higgs couples to the gluon via a heavy-
flavor loop, (1) also implicitly depends on any heavy vir-
tual particle mass.

The general method to consistently combine large-
and small-x resummation of partonic coe�cient functions
Cij(x,↵s) was developed in [86]. The basic principle is
the definition of each resummation such that they do
not interfere with each other. This statement can be
made more precise by considering Mellin (N) moments
of (1). The key observation is that while in momen-
tum (x) space coe�cient functions are distributions, their
Mellin moments are analytic functions of the complex
variable N and therefore, they are (in principle) fully de-
termined by the knowledge of their singularities. Thus,
high-energy and threshold resummations are consistently

combined if they mutually respect their singularity struc-
ture. In [86], where an approximate N3LO result for Cij

was obtained by expanding both resummations to O(↵3
s),

the definition of the large-x logarithms from threshold re-
summation was improved in order to satisfy the desired
behavior, and later this improvement was extended to
all orders in [45], leading to the so-called  -soft resum-
mation scheme. Thanks to these developments, double-
resummed partonic coe�cient functions can be simply
written as the sum of three terms [92]

Cij(x,↵s) = Cfo
ij (x,↵s)+�C lx

ij (x,↵s)+�Csx
ij (x,↵s), (2)

where the first term is the fixed-order calculation, the
second one is the threshold-resummed  -soft contribu-
tion minus its expansion (to avoid double counting with
the fixed-order), and the third one is the resummation of
small-x contributions, again minus its expansion. Note
that not all partonic channels contribute to all terms
in (2). For instance, the qg contribution is power-
suppressed at threshold but it does exhibit logarithmic
enhancement at small x.
Our result brings together the highest possible accu-

racy in all three contributions. The fixed-order piece is
N3LO [18–22], supplemented with the correct small-x be-
havior, as implemented in the public code ggHiggs [49,
86, 93]. Threshold-enhanced contributions are accounted
for to next-to-next-to-next-to-leading logarithmic accu-
racy (N3LL) in the  -soft scheme, as implemented in
the public code TROLL [45, 49]. Finally, for high-energy
resummation we consider the resummation of the lead-
ing non-vanishing tower of logarithms (here LLx) to the
coe�cient functions [63, 84], which we have now imple-
mented in the code HELL [87, 88]. The technical details
of the implementation will be presented elsewhere [94].
Additionally, on top of scale variations, subleading terms
can be varied in both resummed contributions, thus al-

[Bonvini, Marzani 2018]

e.g. non-perturbative QCD
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be studied using the light-ray operator product expansion
(OPE) [32, 66, 67] and celestial blocks [66, 67, 73, 74],
much in analogy with the study of multi-point correlation
functions of local operators.

In the last several years there has been a program [69]
to bridge the gap between these formal developments and
real world phenomenology.1 The goal of this program is
to enable new theoretical techniques to be applied to real
world collider data, extending our understanding of jet
substructure, and conversely, to enable field theoretically
interesting multi-point correlators of light-ray operators
to be studied experimentally for the first time [76, 78].
In this Letter, we take the final step, using recent devel-
opments in e↵ective field theory (EFT) to derive rigor-
ous factorization theorems allowing calculations of energy
correlators to be seamlessly embedded into the complex
LHC environment.

The Light-Ray Operator Product Expansion and Light-
Ray Densities—The leading scaling behavior of multi-
point correlators of energy flow operators in the small
angle limit, as is relevant for the study of energy flow
within jets at the LHC, is captured by the leading twist
operators appearing in the light-ray OPE. At weak cou-
pling, and for unpolarized jets, these are the twist-2 spin-
J light-ray operators [32, 70]

~O[J] =
⇣
O

[J]
q ,O[J]

g

⌘T
= lim

r!1
r2

1Z

0

dt ~O[J](t, r~n) , (2)

obtained from the light transform [39] of the standard
twist-2 quark and gluon operators

O[J]
q =

1

2J
 ̄�+(iD+)J�1 ,

O[J]
g = � 1

2J
Fµ+
a (iD+)J�2Fµ+

a . (3)

Performing the iterated OPE of light-ray operators, one
finds that at leading twist [32, 71]2

E(~n1)E(~n2) · · · E(~nk) =
1

R2
L

n
f [k]
q (ui, vi)O

[k+1]
q (~n1) (4)

+f [k]
g (ui, vi)O

[k+1]
g (~n1)

o
+ O(R0

L) ,

where RL is a scaling variable3, which for concreteness
we take to be the largest angle between the energy flow

1 See in particular [61, 62, 69–71, 74, 76–78].
2 Strictly speaking, beyond leading logarithmic order in a non-
conformal theory, lightray operators with spins that di↵er from
J = k+1 by terms proportional to the �-function appear in the
OPE [62]. These are taken into account in our analysis, but are
suppressed here for simplicity.

3 For applications at hadron colliders, we use boost-invariant co-
ordinates �R2 = ��2 +�⌘2, with � the azimuthal angle, and ⌘
the rapidity.

FIG. 2: A comparison of the LL and NLL predictions
for the normalized two-point correlator, hE(~n1)E(~n2)i,

with CMS Open Data points extracted from [76].

operators, and f [k]
j (ui, vi) are non-trivial functions of the

cross ratios for k > 2.

The light-ray OPE reduces the study of multi-point
correlation functions to the study of the matrix elements

hO[J]
i (~n1)i = h |O[J]

i (~n1)| i, where | i is the state for
an identified jet at the LHC. Formally, this state can be
described as being sourced by a soft collinear e↵ective
theory (SCET) quark or gluon field [79–83].

It is useful to rewrite this expectation value in terms
of the so called light-ray density matrix ⇢ = | ih | [73],

as hO[J]
i i = Tr[⇢O[J]

i ]. Much like for the light-ray op-
erators, it is convenient to work with states of definite
quantum numbers under the Lorentz group, namely the
celestial quantum numbers � associated with boosts, and
j associated with transverse rotations | i =

P
�,j | �,ji.

A primary complexity of jet physics is that standard ob-
servables are sensitive to the infinite sum over states of
arbitrary quantum numbers. This has led to di↵erent ap-
proaches, such as grooming [84, 85] to attempt to simplify
it. The energy correlators allow for a far more dramatic
simplification by exploiting the underlying symmetries of

the theory. The measurement of O[J]
i projects onto the

single state with definite quantum numbers | �=J+1,j=0i.
Measurements of the low point correlators project onto
the particularly simple low � states, ultimately leading to
their simple theoretical structure. The OPE has there-
fore reduced the calculation of multi-point correlators at
the LHC, to computing the probability to produce jet
states | �,ji. This represents a clear departure from the
way in which jets are more traditionally studied at the
LHC, heavily motivated by developments in CFT.

Factorization Theorem for Light-Ray Densities.—A
factorization theorem for the energy correlators in the
collinear limit in e+e� colliders was derived in [62], al-
lowing them to be systematically resummed at higher
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the particularly simple low � states, ultimately leading to
their simple theoretical structure. The OPE has there-
fore reduced the calculation of multi-point correlators at
the LHC, to computing the probability to produce jet
states | �,ji. This represents a clear departure from the
way in which jets are more traditionally studied at the
LHC, heavily motivated by developments in CFT.

Factorization Theorem for Light-Ray Densities.—A
factorization theorem for the energy correlators in the
collinear limit in e+e� colliders was derived in [62], al-
lowing them to be systematically resummed at higher

[Credit:Karlberg et al.’21]

[Credit: Lee et al.’22]

[Credit:Plaetzer et al.’23]



๏  Reaching the foreseen performance poses 
outstanding challenges on TH. Evolution in many 
areas is demanded‡ 


➡ NB: cross-pollination across fields essential, global 
progress is required to match astonishing 
experimental precision 

6

  Theory challenges (in this talk mainly QCD)

precision calcns 


(EW⊕QCD, QED ISR/FSR,  
NP corrections, high pert. orders, 

factorisations, …)

new observables 

(jet algorithms,  
flavour tagging,  

S/√B optimisation, 
study of radiation patterns,  
reduction of NP effects, …)

event generators 
(higher pert. accuracy,  
non-relativistic effects,  

heavy resonances, 
hadronisation & CR, …)

‡ I will focus on some of the next steps in this 
direction. Monte Carlo generators covered in 
Silvia, Peter and Stefano’s talks



7

  QCD studies in Z/γ* ⇾ jets



8

  Physics at the Z pole
๏  Theory input crucial for: measurement/calibration (e.g. QED ISR); interpretation of results (e.g. EWPO); 
parametric uncertainties (i.e. couplings, masses), …

[P. Janot’s talk @ CERN FC workshop 2022]
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  Precision physics in Z/γ* ⇾ jets
๏  Main challenges from EW aspects: 


➡ EWPO Z ⇾ qq+X @ 3 loops EW (with 4 loop arguably necessary in some cases) 


➡  Beam calibration (e+e- ⇾ e+e-, μ+μ-, γ γ @ NNLO EW - still beyond reach)


๏  But high potential for precision QCD studies at the Z pole and above: 


➡ Strong coupling constant from R𝓁 (4 loop QCD known, 1/Q6 hadronisation corrections)


➡  Jet dynamics and substructure: spin correlations, fragmentation & track functions, (multi-)jet observables


➡  Study of non-perturbative effects & their modelling 


➡  Heavy quarks (Q) studies (e.g. asymmetries, fragmentation functions) & flavour tagging (e.g. q/Q vs. g jets)


➡  τ decays


➡  Calibration/tuning of ML & MC tools (instrumental for higher-energy runs)



๏  Significant improvement needed for QCD calculations


➡  3 jets @ N3LO QCD: amplitudes in the making (planar limit), 
 but IR subtraction is an open challenge 
 
 
  
 
 

➡  4 jets @ NNLO QCD: likely within reach in next O(few) years


➡  Higher orders/jet multiplicities are more ambitious and require a breakthrough. Crucial bottlenecks are amplitudes &  
 how to handle the overwhelming complexity (e.g. N3LO subtraction) in efficient numerical codes

10

  Precision physics in Z/γ* ⇾ jets

N3LO : 𝒪(α3
s )

NNLO : 𝒪(α3
s )

NLO : 𝒪(α3
s )

NLO : 𝒪(α4
s )

NLO for 6 & 7 jets (lead . colour)

Current state of the art

[Abreu et al.2023]
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nar penta-box (PB) families, three non-planar hexa-box
(HB) families and two non-planar double-pentagon (DP)
families that we depict in fig. 1, as well as a factorizable
planar topology. The factorizable, PB and HB families
have already been studied in the literature [2, 6, 8–10].
Here we define the DP families. Integrals in these families
can generically be written as

I[~⌫] = e2✏�E

Z
dD`1
i⇡D/2

dD`2
i⇡D/2

⇢�⌫9
9 ⇢�⌫10

10 ⇢�⌫11
11

⇢⌫1
1 · · · ⇢⌫8

8

, (1)

where we set D = 4�2✏, and ~⌫ is a vector of integers with
the restriction that ⌫9, ⌫10, ⌫11  0. Explicit expressions
for the ⇢i are given in ancillary files [50].

There are six independent variables sij = (pi + pj)2,
which we choose to be

~s = {p2
1 , s12 , s23 , s34 , s45 , s15} . (2)

Together with the parity-odd object

tr5 = 4i"↵��� p↵1 p�2p�3p�4 , (3)

they fully specify a point in the five-particle phase space.
Singularities of Feynman integrals are located at zeroes
of certain determinants, see e.g. refs. [51–55]. Three cases
play a special role here: the three and five-point Gram
determinants

�3 = � det G(p1, p2 + p3) ,

�5 = det G(p1, p2, p3, p4) ,
(4)

where G(q1, . . . , qn) = 2{qi · qj}i,j2{1,...,n}, and the poly-
nomial [9]

⌃5 = (s12s15 � s12s23 � s15s45 + s34s45 + s23s34)
2

� 4s23s34s45(s34 � s12 � s15) .
(5)

While �5 = tr25, relating tr5 to
p

�5 precisely is a subtle
issue. We adopt the convention of ref. [9] to only use
p

�5 in the pure integrals’ definitions.
Fig. 1 shows a fixed ordering of the massless legs, but

we consider the set of integrals closed under all permu-
tations of these legs. While �5 is invariant under these
permutations, there are three di↵erent permutations of

�3, denoted �(k)
3 , and six di↵erent permutations of ⌃5,

denoted by ⌃(k)
5 . Expressions for the �(k)

3 , ⌃(k)
5 and �5

are given in ancillary files [50].

Analytic Di↵erential Equations

We follow refs. [3, 4, 6, 9], where analytic DEs [14–
18] in canonical form [19] are obtained from numerical
samples. We focus on the DPmz and DPzz families, for
which we obtain canonical DEs for the first time. Any
integral in the DPmz (DPzz) family can be written as a
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FIG. 1: Two-loop five-point one-mass families. The
thick external line denotes the massive external leg.

linear combination of 142 (179) master integrals. The top
sectors, with 8 propagators and 9 master integrals each,
were previously unknown. All integration-by-parts (IBP)
reductions [56–58] are performed within FiniteFlow [59]
(interfaced to LiteRed [60, 61]), and checked with Kira
2.0 [62] and FIRE6 [63].

Let ~g⌧ denote a vector whose entries form a pure [13]
basis of master integrals for a family of integrals ⌧ . It
satisfies a DE in canonical form [19]

d~g⌧ = ✏M · ~g⌧ , M =
X

i

Mi d log Wi , (6)

where the Wi are the letters of the (symbol) alphabet [33]
associated with ~g⌧ . While the Wi are algebraic functions
of ~s, the matrices Mi are matrices of rational numbers.
Finding a pure basis is still the most challenging aspect in
obtaining DEs in canonical form. We construct educated
guesses for pure bases building on the ideas of refs. [4–
6, 9], and test candidate bases by evaluating their deriva-
tives at numerical points and verifying the factorization
of ✏. Once a pure basis is found, we follow the steps in
section 4 of ref. [6] to determine that the alphabet for the
DPmz and DPzz families is contained within the one ob-
tained in ref. [9]. DPmz and DPzz have 62 and 74 letters
respectively. As in ref. [6], we fit the matrices Mi from
numerical evaluations on a finite field. Our results for the
pure bases, the alphabet (closed under all permutations
of the massless legs), and the analytic DEs can be found
in ancillary files [50]. Some pure integrals were simplified
with ideas from ref. [64].

Construction of One-Mass Pentagon Functions

The (one-mass) pentagon functions are a basis of spe-
cial functions to express all one- and two-loop five-point
integrals with an external massive leg, up to the order
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FIG. 1: Two-loop five-point one-mass families. The
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linear combination of 142 (179) master integrals. The top
sectors, with 8 propagators and 9 master integrals each,
were previously unknown. All integration-by-parts (IBP)
reductions [56–58] are performed within FiniteFlow [59]
(interfaced to LiteRed [60, 61]), and checked with Kira
2.0 [62] and FIRE6 [63].

Let ~g⌧ denote a vector whose entries form a pure [13]
basis of master integrals for a family of integrals ⌧ . It
satisfies a DE in canonical form [19]

d~g⌧ = ✏M · ~g⌧ , M =
X

i

Mi d log Wi , (6)

where the Wi are the letters of the (symbol) alphabet [33]
associated with ~g⌧ . While the Wi are algebraic functions
of ~s, the matrices Mi are matrices of rational numbers.
Finding a pure basis is still the most challenging aspect in
obtaining DEs in canonical form. We construct educated
guesses for pure bases building on the ideas of refs. [4–
6, 9], and test candidate bases by evaluating their deriva-
tives at numerical points and verifying the factorization
of ✏. Once a pure basis is found, we follow the steps in
section 4 of ref. [6] to determine that the alphabet for the
DPmz and DPzz families is contained within the one ob-
tained in ref. [9]. DPmz and DPzz have 62 and 74 letters
respectively. As in ref. [6], we fit the matrices Mi from
numerical evaluations on a finite field. Our results for the
pure bases, the alphabet (closed under all permutations
of the massless legs), and the analytic DEs can be found
in ancillary files [50]. Some pure integrals were simplified
with ideas from ref. [64].

Construction of One-Mass Pentagon Functions

The (one-mass) pentagon functions are a basis of spe-
cial functions to express all one- and two-loop five-point
integrals with an external massive leg, up to the order
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Construction of One-Mass Pentagon Functions

The (one-mass) pentagon functions are a basis of spe-
cial functions to express all one- and two-loop five-point
integrals with an external massive leg, up to the order

(a) N
3 (b) N

2
N f

(c) NN
2
f

Figure 1: Representative three-loop planar diagrams which contribute to the
three leading color layers.

In the following, we fix the renormalization scale in ⌦ as
µ2 = q

2. The full scale dependence can then be recovered
through

⌦(3)(µ) =
 

5
16
�3

0L(µ)3 + �0�1L(µ)2 +
1
2
�2L(µ)

!
⌦(0)

+

 
15
8
�2

0L(µ)2 +
3
2
�1L(µ)

!
⌦(1)

+
5
2
�0L(µ)⌦(2) +⌦(3) (13)

with L(µ) = log
⇣
µ2/q2

⌘
.

The helicity amplitudes for the decay of a Standard Model
vector boson V can finally be related to the helicity amplitudes
obtained above by dressing with the appropriate electroweak
couplings

M
V

�q2�3�l5
= �

i
p

4⇡↵s(4⇡↵) L
V

l5l6
L

V

q1q2

D(p
2
56,m

2
V

)

⇥ Ta

i j
M�q2�3�l5

, (14)

where p56 = p5 + p6, the vector boson propagator reads

D

⇣
q

2,m2
V

⌘
= q

2
� m

2
V
+ i�VmV (15)

and the couplings for the bosons V = Z,W±, �⇤ are

R
�
f1 f2
= L

�
f1 f2
= �e f1� f1 f2 , (16)

L
Z

f1 f2
=

I
f1
3 � sin2 ✓we f1

sin ✓w cos ✓w
� f1 f2 , (17)

L
W

f1 f2
=

✏ f1, f2
p

2 sin ✓w
, (18)

R
Z

f1 f2
= �

sin ✓we f1

cos ✓w
� f1 f2 , (19)

R
W

f1 f2
= 0 . (20)

In the formulas above, ↵ is the electroweak coupling constant,
✓w is the Weinberg angle, I3 = ±1/2 is the third component of
the weak isospin and the charges ei are measured in terms of
the fundamental electric charge e > 0. Moreover, ✏ f1, f2 = 1
if f1 , f2 but belonging to the same isospin doublet, and zero
otherwise.

In order to compute the (unrenormalized) corrections to the
helicity amplitude coe�cient, we use the same unified work-
flow as for the tree-level, one- and two-loop amplitudes for
Vqq̄g [22], whose agreement with older results in the litera-
ture up to the finite part in ✏ provides an additional check on
our method. In summary, the relevant three-loop diagrams
are generated using QGRAF [44] and every manipulation in-
cluding insertion of Feynman rules, evaluation of Dirac and
Lorentz algebra and application of the projectors are performed
in FORM [50]. Once the helicity projectors have been applied,
all Feynman diagrams are expressed in terms of scalar integrals,
which can be written in terms of a single planar auxiliary topol-
ogy of the form

In1,...,n15 = e
3�E✏

Z 3Y

i=1

d
d
ki

i⇡d/2
1

D
n1
1 ...D

n15
15

(21)

with �E = 0.5772 . . . the Euler constant and propagators

D1 = k1 D6 = k3 � p1 D11 = k2 � p123
D2 = k2 D7 = k1 � p12 D12 = k3 � p123
D3 = k3 D8 = k2 � p12 D13 = k1 � k2
D4 = k1 � p1 D9 = k3 � p12 D14 = k1 � k3
D5 = k2 � p1 D10 = k1 � p123 D15 = k2 � k3

with pi j(k) = pi + p j(+pk). The integrals can be reduced to a
set of master integrals using integration-by-parts (IBP) iden-
tities [12, 49]. For the actual reduction, we use the imple-
mentation of the Laporta algorithm [40] in the automated code
Kira2 [37, 41] and express all integrals directly in terms of the
canonical basis for the three-loop planar family defined in [6].
Here it was shown that, in line with the one- and two-loop re-
sults, the three-loop planar integrals can be evaluated to arbi-
trary orders in the dimensional regularization parameter ✏ in
terms of multiple polylogarithms (MPLs) [26, 32, 48, 51] with
alphabet {y, z, 1 � y, 1 � z, y + z, 1 � y � z}.

The amplitude before reduction can be expressed in terms of
95625 scalar integrals, which in turn are reduced to 291 canoni-
cal basis elements and their crossings. The size and complexity
of intermediate expressions makes the use of traditional meth-
ods for symbolic insertion of the IBP reduction into the unre-
duced amplitude highly non-trivial. Therefore, in view of the
expected increase in complexity of the subleading layers in the
color expansion (12), we also devised a hybrid method involv-
ing finite field reconstruction, in parallel to a standard fully an-
alytic approach.

In particular, in the standard approach, we produced the IBP
identities with Kira2 and used Mathematica and Fermat to in-
clude them into the unreduced amplitude and simplify the re-
sulting coe�cients. We then expanded the master integrals in
✏ and obtained the final expression for the amplitude in terms

3

[Gehrmann et al.2023]



๏  Heavy quarks challenges: let’s consider AFB as an example


➡  N3LO quite hard at the moment (QQg @ 2L, QQ @ 3L): possible workaround with series expansions (e.g. Rb currently 
known to N3LO up to O(mb4/Q4), “massification” of massless amps, …) or numerical methods 


➡  Explore fiducial selections to improve perturbative convergence (e.g. cut on acollinearity angle to suppress g ⇾ QQ 
reduces the size of QCD corrections/uncertainties)
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  Precision physics in Z/γ* ⇾ jets (heavy quarks)
Alain Blondel1, Patrick Janot2: FCC-ee overview: new opportunities create new challenges 7

Table 3. Measurement of selected precision measurements at FCC-ee, compared with present precision. The systematic uncer-
tainties are initial estimates, aim is to improve down to statistical errors. This set of measurements, together with those of the
Higgs properties, achieves indirect sensitivity to new physics up to a scale ⇤ of 70TeV in a description with dim 6 operators,
and possibly much higher in specific new physics (non-decoupling) models.

Observable present FCC-ee FCC-ee Comment and
value ± error Stat. Syst. leading exp. error

mZ (keV) 91186700 ± 2200 4 100 From Z line shape scan
Beam energy calibration

�Z (keV) 2495200 ± 2300 4 25 From Z line shape scan
Beam energy calibration

sin2✓e↵W (⇥106) 231480 ± 160 2 2.4 from Aµµ
FB at Z peak

Beam energy calibration

1/↵QED(m
2
Z)(⇥103) 128952 ± 14 3 small from Aµµ

FB o↵ peak
QED&EW errors dominate

RZ
` (⇥103) 20767 ± 25 0.06 0.2-1 ratio of hadrons to leptons

acceptance for leptons

↵s(m
2
Z) (⇥104) 1196 ± 30 0.1 0.4-1.6 from RZ

` above

�0
had (⇥103) (nb) 41541 ± 37 0.1 4 peak hadronic cross section

luminosity measurement
N⌫(⇥103) 2996 ± 7 0.005 1 Z peak cross sections

Luminosity measurement

Rb (⇥106) 216290 ± 660 0.3 < 60 ratio of bb̄ to hadrons
stat. extrapol. from SLD

Ab
FB, 0 (⇥104) 992 ± 16 0.02 1-3 b-quark asymmetry at Z pole

from jet charge

Apol,⌧
FB (⇥104) 1498 ± 49 0.15 <2 ⌧ polarization asymmetry

⌧ decay physics
⌧ lifetime (fs) 290.3 ± 0.5 0.001 0.04 radial alignment
⌧ mass (MeV) 1776.86 ± 0.12 0.004 0.04 momentum scale
⌧ leptonic (µ⌫µ⌫⌧ ) B.R. (%) 17.38 ± 0.04 0.0001 0.003 e/µ/hadron separation
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2
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`
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QCD errors dominate

�top/�
SM
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QCD errors dominate
ttZ couplings ± 30% 0.5 – 1.5 % small From

p
s = 365GeV run

predictions. The e↵ects of a heavy Z0 gauge boson provide an illustrative example of complementarity, analysed in
Ref. [14] for a specific Higgs composite model. The precise measurements at and around the Z pole would be sensitive
to such a new object by Z/Z0 mixing or interference, while measurements at higher energies would display increasing
deviation from the SM in the dilepton, diquark or diboson channels. The combination of these two e↵ects would
provide a tell-tale signature and allow constraints on mass and couplings of this possible new object to be determined.

5 Opportunities: Flavours

A total of 7 ⇥ 1011 bb̄ pairs, available with a sample of 5 ⇥ 1012 Z decays promised by FCC-ee, provides many
opportunities in flavour physics. The precisions of CKM matrix element measurements expected from LHCb and
Belle2 will be challenged, and the search for unobserved phenomena will be pushed forward, such as CP-symmetry
breaking in the mixing of beautiful neutral mesons [14].
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⌧ decay physics
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W)(⇥104) 1170 ± 420 3 small from RW
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in radiative Z returns
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QCD errors dominate
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QCD errors dominate

�top/�
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top 1.2 ± 0.3 0.10 small From tt̄ threshold scan

QCD errors dominate
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predictions. The e↵ects of a heavy Z0 gauge boson provide an illustrative example of complementarity, analysed in
Ref. [14] for a specific Higgs composite model. The precise measurements at and around the Z pole would be sensitive
to such a new object by Z/Z0 mixing or interference, while measurements at higher energies would display increasing
deviation from the SM in the dilepton, diquark or diboson channels. The combination of these two e↵ects would
provide a tell-tale signature and allow constraints on mass and couplings of this possible new object to be determined.

5 Opportunities: Flavours

A total of 7 ⇥ 1011 bb̄ pairs, available with a sample of 5 ⇥ 1012 Z decays promised by FCC-ee, provides many
opportunities in flavour physics. The precisions of CKM matrix element measurements expected from LHCb and
Belle2 will be challenged, and the search for unobserved phenomena will be pushed forward, such as CP-symmetry
breaking in the mixing of beautiful neutral mesons [14].

Of this, the current QCD error is





May become a bottleneck at FCC-ee

ΔAFB/AFB ∼ ± 0.003
With this new definition in hand we are now able to understand in more depth the

evolution of the asymmetry measurement as a function of the ⇠0 cut applied at the recon-
struction level. The central values of the measurement are obtained by scaling the ratio
RQCD effects at each point by the factor A0

FB = 0.10379± 0.00011(stat.), determined using
all the available statistics. Regarding uncertainties, three separate components are con-
sidered at each ⇠0 point: 1) the statistical uncertainty provided by the weighted average
of the 7 tune results, basically corresponding to 1/

p
7 times the uncertainties reported in

Table 7 for the Monash 2013 tune case; 2) the (symmetrized) envelope of the central results
obtained using different tunes; 3) a theoretical uncertainty equivalent to a 10% relative
uncertainty on the correction factor C, consistent with the uncertainty assumed in LEP
measurements [1]. Central values and uncertainties are collected in Table 9, and depicted
in Figure 2. Results are also corrected for small biases due to the limited angular resolution
effects, as discussed in Section 8.

⇠0 cut Measured AFB �AFB(stat) �AFB(tune) �AFB(theo. QCD corr)
No cut 0.0998± 0.0004 0.00008 0.00014 0.00033

1.50 0.1003± 0.0003 0.00011 0.00014 0.00023

1.00 0.1011± 0.0002 0.00011 0.00010 0.00016

0.50 0.1023± 0.0002 0.00011 0.00010 0.00007

0.30 0.1030± 0.0002 0.00011 0.00010 0.00003

0.20 0.1033± 0.0001 0.00011 0.00005 0.00002

0.10 0.1035± 0.0002 0.00016 0.00005 0.00001

Table 9. Central values and components of the uncertainty in the measurement of the AFB

asymmetry with 7 ⇥ 107 e+e� ! bb(g) events at the Z pole, for different ⇠ < ⇠0 cuts at the
reconstructed level.

Changes in the central values of the asymmetry as a function of the acollinearity cut
can be largely explained by the different size of the theoretically expected QCD corrections
at each point. The uncertainty on these corrections is larger (�AFB(QCD corr) ⇡ 0.0003)
when no acollinearity cuts are applied. Pythia tune uncertainties seem to have a marginal
effect for ⇠0 < 0.5 (�AFB(tune) . 0.0001) and are relatively stable down to rather low
values of the acollinearity cut. Statistical uncertainties start to dominate for ⇠0 . 0.3, but
let us remind that the statistical uncertainty will not be a limiting factor at FCCee, where
⇡ 1012 Z decays should be available. We conclude that, for a real analysis of e+e� !

bb(g) events, a cut ⇠ < 0.2 � 0.3 is already optimal, with associated QCD systematics
�AFB(tune+QCD corr) . 0.0001.

Figure 2 also shows the generator-level reference values of the asymmetry with and
without QCD corrections, calculated in the absence of acollinearity cuts. Let us note again
that we only expect a qualitative agreement with the reference value with QCD corrections.
For instance, there are hidden implicit cuts on acollinearity at the selection level. We
consider reconstructed jets with a limited resolution parameter (0.4), but require at least
two tagged b-jets in the event. Even without any explicit cut, the double-tag requirement

– 13 –

Moderate cuts seem to reduce 
the QCD error by an order of 

magnitude

[Blondel, Janot 2021]

[Bernreuther et al. 2016]

[Alcaraz Mestre 2020]
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  Precision physics in Z/γ* ⇾ jets (resummations)

[Banfi, Dreyer, PM ’21]

[Duhr, Mistlberger, Vita ’22]

e.g. EEC in back-to-back limit

e.g. NGLs in jet cross sections (planar)

Resummation of Next-to-Leading Non-Global Logarithms at the LHC

Thomas Bechera,⇤ Nicolas Schalcha,† and Xiaofeng Xub‡
a
Institut für Theoretische Physik & AEC, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

b
PRISMA

+
Cluster of Excellence, Johannes Gutenberg University, 55099 Mainz, Germany

In cross sections with angular cuts, an intricate pattern of enhanced higher-order corrections
known as non-global logarithms arises. The leading logarithmic terms were computed numerically
two decades ago, but the resummation of subleading non-global logarithms remained a challenge
that we solve in this Letter using renormalization group methods in effective field theory. To achieve
next-to-leading logarithmic accuracy, we implement the two-loop anomalous dimension governing
the resummation of non-global logarithms into a large-Nc parton shower framework, together with
one-loop matching corrections. As a first application, we study the interjet energy flow in e+e�

annihilation into two jets. We then present, for the first time, resummed predictions at next-to-
leading logarithmic accuracy for a gap-between-jets observable at hadron colliders.

Introduction. — There has been impressive progress
in the perturbative calculation of processes at the
Large Hadron Collider (LHC). However, for observables
involving disparate scales, computations beyond fixed
perturbative order are necessary. These include cross
sections involving a hard scale Q but with sensitivity to
a soft scale Q0. Such cross sections involve large loga-
rithms in the scale ratio L = ln(Q/Q0) that degrade the
perturbative expansion and should be resummed to all
orders to obtain reliable predictions. For jet and other
observables involving angular constraints on the radi-
ation, a complicated pattern of enhanced higher-order
corrections known as Non-Global Logarithms (NGLs)
arises due to secondary emissions off hard partons [1–
3]. At leading-logarithmic (LL) ⇠ (↵sL)n accuracy, re-
summed results both at large [1–3] and finite Nc [4–7]
are available. Despite continued progress in the under-
standing of non-global observables over the past 20 years
[8–34], a full resummation of next-to-leading logarithmic
(NLL) ⇠ ↵s (↵sL)n corrections remained elusive. In this
letter we solve this problem based on a factorization the-
orem [13, 14] obtained in soft-collinear effective field the-
ory [35–37]. The factorization theorem splits the cross
section into hard and soft functions. To resum the large
logarithms, one solves the renormalization group (RG)
equations of the hard functions to evolve them from a
scale µ ⇠ Q down to µ ⇠ Q0. Since the associated
anomalous dimension is a matrix in the (infinite) space
of particle multiplicities, we resort to Monte Carlo (MC)
methods to solve the RG equations. A key ingredient
for NLL resummation is the recently extracted two-loop
anomalous dimension [38], which we implement into a
parton shower framework, which iteratively generates ad-
ditional emissions to solve the RG equations. Combined
with the one-loop corrections to the hard and soft func-
tions we obtain in this Letter the full set of NLL contri-
butions for gap-between-jets cross sections at lepton and
hadron colliders. For the lepton-collider case NLL results
were first presented in [39], based on very different for-
malism [40], and we find full agreement within numerical
uncertainties.

Q

Q0

↵
�Y

FIG. 1. Representation of the factorization formula (1). The
blue lines depict hard radiation associated with the energy
scale Q, which is constrained inside the jet cones, while the
red lines represent the soft radiation at lower energies Q0.
The soft radiation can cover the entire phase space.

Methodology. — The basis for our resummation are fac-
torization theorems for jet production in the presence of
a veto on radiation in certain angular regions of the phase
space. The simplest case is two-jet production in e+e�

collisions, which factorizes as [13, 14]

�(Q, Q0) =
1X

m=2

⌦
Hm({n}, Q, µ) ⌦ Sm({n}, Q0, µ)

↵
, (1)

where Q is the center-of-mass energy and Q0 is the energy
scale above which we veto radiation in the gap outside
the jet cones. We impose the veto by demanding that
the transverse energy ET of the particles in the gap is
below Q0. At the order we are working, our constraint
is equivalent to imposing that the transverse momentum
of the leading jet in the gap region is below Q0. Fig-
ure 1 shows a pictorial representation of the factoriza-
tion theorem (1). The hard functions Hm describe m
hard partons, which we treat as massless, inside the jet
cones. To obtain Hm, one integrates the squared am-
plitudes over the energies of the m hard partons while
keeping their directions {n} = {n1, . . . , nm} fixed. The
bare hard functions in d = 4 � 2✏ are defined as

Hm =
1

2Q2

mY

i=1

Z
dEi Ed�3

i

c̃✏ (2⇡)2
|Mm({p})ihMm({p})|

⇥ (2⇡)d �
⇣
Q �

mX

i=1

Ei

⌘
�(d�1)(~ptot) ⇥in({n}) , (2)
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[Becher, Rauh, Xu ’21, + Becher, Schalch, Xu ‘23]

e.g. Lund event shapes

๏  Resummation techniques refined at the LHC (SCET, numerical methods, generating functionals, higher-
order parton showers, …)

➡  Ongoing effort to push standard for 2-leg observables to N3LL (even N4LL in some cases).  

 Progress needed for n-jet case (some NNLL, e.g. D parameter)

➡  Exploit LHC-gained expertise in designing new observables (e.g. w/o NGLs); 

 balance performance (e.g. small NP corr.ns) and calculability  
 (e.g. correlators, Lund jet plane, grooming, …)

[Ferrario Ravasio et al.’23]

[Dasgupta et al.’20]

2 F. A. Dreyer, R. Grabarczyk, P. Monni: Leveraging universality of jet taggers through transfer learning

transfer learning techniques [62] to leverage an existing
model for a new application to a di↵erent experimental
signature. As a result, we will discuss the construction of
computationally e�cient jet taggers that can achieve high
performance also when trained on a small fraction of the
original data set, with a significant reduction in the com-
putational complexity associated with the training. The
article is structured as follows. In Sec. 2 we briefly review
the graph neural network LundNet that we adopt for our
studies, and discuss the underlying description of jets in
terms of Lund jet plane declusterings. In Sec. 3 we then in-
troduce two transfer-learning procedures that allow one to
train a new signal starting from an existing model trained
on a di↵erent tagging problem. These techniques are then
applied to the problem of top tagging in Sec. 4, where
we study in detail the performance of transfer learning
between top taggers with di↵erent transverse-momentum
cuts and from a W tagger to a top tagger. Subsequently,
we present an analysis of the computational advantages
of transfer learning procedures over training new models
from scratch. In Sec. 5 we discuss our conclusions.

2 Graph neural networks in the Lund plane

The Lund jet plane [46] is a useful theoretical framework
to represent the internal kinematics of a jet by means of
Lund diagrams [45]. To define it, one starts by construct-
ing the Cambridge-Aachen [63,64] clustering sequence us-
ing the constituents of the jet, which carries out a sequen-
tial pair-wise recombination of the two proto-jets with
the smallest angular separation in rapidity-azimuth. One
maps this clustering sequence to a tree of Lund declus-
terings, each of which encodes the kinematic properties
of the corresponding clustering step. Each declustering
pi ! pa, pb can be parametrised in terms of the follow-
ing set of variables:

� ⌘ �ab, kt ⌘ pTb�ab, m2 ⌘ (pa + pb)
2,

z ⌘ pTb

pTa+pTb
,  ⌘ tan�1 yb�ya

�b��a
, (1)

where pa, pb are the post-branching momenta with their
transverse momenta ordered such that pTb < pTa, �ab =p

(ya � yb)2 + (�a � �b)2 (with y and � denoting the ra-
pidity and azimuth, respectively),  is an azimuthal angle
around the subjet axis, and z is the transverse momentum
fraction of the branching. The construction of the Lund
jet plane can be schematically understood with the help
of Fig. 1. The (primary) Lund plane associated with the
initial proto-jet represents a two-dimensional parametri-
sation of the phase space available to further radiation
from it. This is indicated by the large (blue) triangle in
the ln kt � ln 1/� plane in Fig. 1. Each subsequent pri-
mary emission along the hard branch of the tree is shown
in red, and it forms a new leaf of the Lund plane, from
which secondary emissions will be radiated, indicated by
orange leaves. The procedure iterates through all branches
of the clustering history, leading to a complete representa-
tion of the jet’s substructure. In particular, the structure

of the primary Lund jet plane can be computed accurately
with perturbative methods [65] and measured experimen-
tally [66].

LundNet [67] is a graph neural network which takes
the Lund jet plane as input to train e�cient and robust
jet taggers. The resulting taggers outperform tools with
low-level inputs [67] and are relatively resilient to non-
perturbative and detector e↵ects given an appropriate
choice of cuts in the Lund plane. The jet is mapped into

ln 1/�

ln
k t

Fig. 1. A graphic representation of the Lund plane for the
radiation within a jet. The blue triangle represents the primary
Lund plane, with secondary and tertiary Lund planes shown
in red and orange, respectively.

a graph whose nodes represent the declustering steps of
the Cambridge-Aachen history, parametrised in terms of
tuples T (i) containing the kinematic variables defined in
Eq. (1). In particular, one can define two versions of the
LundNet network based on the dimensionality of the input
tuple, defined as follows:

LundNet3 : T (i) = {k(i)t ,�(i), z(i)} , (2)

LundNet5 : T (i) = {k(i)t ,�(i), z(i),m(i), (i)} . (3)

The edges of the graph correspond to the structure of the
Cambridge-Aachen tree.

The LundNet5 network contains more kinematic infor-
mation for each declustering node, and therefore results
in a higher tagging e�ciency. Conversely, the LundNet3
network has been shown to be more resilient to non-
perturbative and detector e↵ects [67], while having an
e�ciency similar to state-of-the-art taggers.

The core of the graph architecture relies on an Edge-
Conv operation [68], which applies a multi-layer percep-
tron (MLP) to produce a learned edge feature, using com-
bined features of node pairs along each edge as input. This
shared MLP consists of two layers, each with a dense net-
work, batch normalisation [69] and ReLU activation [70].
This is followed by an aggregation step which takes an
element-wise average of the learned edge features along



๏  Large hadronization corrections are a limiting factor (e.g. up to ~15% for event shapes/jet rates) 


๏  Recent work revealed flaws in analytic models, with uncertainties arguably under-estimated (?) 

➡  Leading corrections (~ ) varies with kinematics across the spectrum, and 

 can become much smaller than assumed in 3-configurations

➡  Current observations largely based on large-nF calculations, still far from QCD  

(except around Sudakov shoulders). Interplay with resummations currently unknown

➡  NP scale Λ could itself vary across the spectrum (i.e.  of different EFT ops.)

1/Q

⟨O⟩
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  Non-perturbative QCD corrections

dσ
d𝒪

(𝒪) ≃
dσpert.

d𝒪 (𝒪 − ζ(𝒪)α0(Λ)
Λ
Q )

[Luisoni, PM, Salam ’20; Caola, Ferrario Ravasio, 
Limatola, Melnikov, Nason ’21+’22; Nason, Zanderighi ’23]

e.g. 1/Q correction relative to the 2-jet approximation
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  Non-perturbative QCD: possible avenues 

e.g. GANs as hadronisation model
e.g. CR inspired by amplitude-level evolution
[S. Plaetzer et al. 2023]

[J. Chan et al. ’22-’23]

[Marzani et al.2019]

e.g. αS from SD thrust

๏  Better MC models/tuning

➡  Span of c.o.m. energies crucial for tuning, 

 jointly w/ higher order PSMCs  
 [High-purity samples of g/q/Q jets beneficial]


➡  Cross-benefit between stages of FCCee 
 (e.g. Z ⇾ jets useful for ZH, CR at WW ⇾ jets, …)


๏  Observables with smaller sensitivity to soft physics

➡  e.g. grooming, albeit unclear whether effective at FCC-ee 

 due to limited phase space


๏  Factorisation theorems and data driven extraction

➡  Constrain NP parameters/operators across energies  

 (use of lattice also shows promising prospects)

➡  Idea to run below the Z peak might be beneficial

➡  Further progress in analytic methods very desirable
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  WW threshold



๏   TH cross section currently known accurately at  
 NLO (EW) + NNLO (unstable particles EFT) sufficient 
 for δmW ~ 5-6 MeV


๏  Can be further improved using NLL ISR


๏  Effect of tight selection cuts in the EFT to be understood
16

  WW threshold scan and W mass and width

ΔMW

ΔΓW

Reaching the stat. uncertainty of 0.3-0.5  
MeV (lep. channel) is very demanding

[Denner, Dittmaier, Roth, Wieders ’05; Actis, Beneke, Falgari, Schwinn ’08]

[Azzurri ’21]

(NB: no W BRs [~0.04% in table units])



๏  Recent computation of  terms to WW production


➡  Corrections of O(0.034%) (Gμ scheme)


➡  Suggests that full NNLO (EW) may likely be necessary [out of reach at the moment]

𝒪(αsα)

17

  WW threshold scan and W mass and width

[Li et al.2024]
p
s [GeV] schemes �LO[pb] �NLO[pb] �EW[%] �NNLO[pb] �QCD-EW[%]

161
↵(0) 2.766743 1.91742 �30.6975 1.94325 0.9336

Gµ 2.973577 2.11078 �29.0156 2.11179 0.0339

200
↵(0) 18.075506 16.01245 �11.4136 16.17810 0.9164

Gµ 19.426781 17.79225 �8.4138 17.79535 0.0160

240
↵(0) 15.961183 14.90107 �6.6418 15.04671 0.9124

Gµ 17.154397 16.56135 �3.4571 16.56337 0.0118

250
↵(0) 15.342627 14.44029 �5.8813 14.58025 0.9122

Gµ 16.489600 16.04952 �2.6688 16.05143 0.0116

350
↵(0) 10.514905 10.34951 �1.5730 10.44576 0.9155

Gµ 11.300970 11.50336 1.7909 11.50504 0.0149

500
↵(0) 6.684693 6.76970 1.2717 6.83075 0.9133

Gµ 7.184422 7.52419 4.7293 7.52511 0.0127

1000
↵(0) 2.497517 2.63439 5.4806 2.65749 0.9249

Gµ 2.684224 2.92760 9.0667 2.92826 0.0247

Table 3: LO, NLO EW and NNLO QCD-EW corrected integrated cross sections, as well

as the corresponding EW and QCD-EW relative corrections for e+e� ! W+W�.

4.2 Kinematic distributions

In this subsection, we study some kinematic distributions of the final-state W boson for

e+e� ! W+W�. The EW and QCD-EW di↵erential relative corrections with respect to

the kinematic variable x are defined as

�EW =
⇣d�EW

dx
�

d�LO

dx

⌘
/
d�LO

dx
, �QCD-EW =

⇣d�QCD-EW

dx
�

d�LO

dx

⌘
/
d�LO

dx
. (4.4)

As a consequence of the CP conservation, we have the following symmetry relations for the

di↵erential distributions of W+ and W�,

d�

d cos ✓
W

�
=

d�

d cos ✓
W

+

���
✓
W

+!⇡�✓
W

�
,

d�

dpW
�

T

=
d�

dpW
+

T

���
pW

+

T
!pW

�
T

. (4.5)

Thus, the transverse momentum distribution of W� is identical to that of W+, and the

scattering angle distribution of W� can be obtained by reversing the scattering angle

distribution of W+. Consequently, we restrict our focus to the di↵erential distributions

of W+ in the subsequent discussion, and denote d�/d cos ✓ and d�/dpT as the scattering

angle and transverse momentum distributions of W+, respectively.
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๏  Very good experimental resolution with momentum conservation fit (4C or 5C), competitive with √s scan


๏  Theory modelling harder, with systematics yet to be precisely assessed


➡  Control over QED ISR


➡  EFT resonant aspects near threshold


➡  Backgrounds: 2f & 4f final states


➡  Colour reconnection in hadronic channels 

18

  W mass extraction from hadronic and semi-leptonic decays

[G.Wilson’s talk @ CERN FC workshop 2022]
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  Intermezzo: QED aspects & ISR



๏  Central component in across whole FCCee programme (Z, WW, tt, ZH,…)


๏  Recently important progress in formulating collinear factorisation (as opposed to YFS) beyond LO/LL

➡  NLL sizeable (% level) and process/observable dependent; NNLL  

 needed (hard but within reach with modern methods)

➡  Implementation in fully differential PSMCs essential

➡  Collinear factorisation probably insufficient in some cases (e.g. tt), 

 simultaneous treatment of soft and collinear corrections necessary

[Bertone et al. 2022]

20

  QED collinear factorisation

[from S.Frixione’s talk]

τmin =
M2

s

Size of NLL correction to total rates

soft collinear
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  FCC-ee as a Higgs factory



๏  Experimental precision (approaching 0.1% level in many cases) enables precise  
 extraction of Higgs properties

Figure 11: A scheme-ball illustration of the constraints on and correlations between all
the e�ective couplings with and without a Z-pole run at CEPC and FCC-ee.

and 240+365 GeV), respectively. All of the large correlations between the e�ective Higgs
couplings and the EW couplings drop o� leaving only correlations between ”Ÿ“ and ”ge‹

W

for all energies. Correlations between ”gZZ

H
and ”g1,Z remain as significant correlations

between the e�ective Higgs couplings and the aTGCs for the 240 GeV runs at both CEPC
and FCC-ee .

The change in the correlations from one EW scenario to another for both CEPC and
FCC-ee can also be seen from figure 12. For both the colliders at 240 GeV, meshes of
significant correlations can be identified between the Higgs and the EW sectors. With the
inclusion of the Z-pole projections these two sectors get decoupled. While we see from
table 1 that the assumption of perfect EW measurements and the case for the inclusion of
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  Higgs at FCC-ee

Figure 11: A scheme-ball illustration of the constraints on and correlations between all

the e�ective couplings with and without a Z-pole run at CEPC and FCC-ee.
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๏  Example: total cross section will be measured with 0.2%-0.5% accuracy. Necessary TH for (EW) production:

➡ e+e- ⇾ Z H (available), H ν ν (e+e-) @ 2 loops EW (beyond reach at the moment)

➡ Mixed QCD⊗EW @ 2 loops under control


๏  Wealth of data in hadronic decays relies on QCD input

23

  Theory challenges at the ZH threshold

Projected reduction of intrinsic TH uncertainties 
for total rates in line with what can be achieved 
with future calculations; improvement needed in 

parametric uncertainties

[Chen, Guan, He, Liu, Ma ’22; Freitas, Song ’21-’22]
[Gong et al. ‘17]

[Table from J.de Blas’ talk at FCC week 2023]

Current and future uncertainties in total Higgs decay rates 
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Figure 4: Exclusion limits based on soft-drop groomed fractional energy correlations (from left to right)
FC1.5, FC1, FC0.5.
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Figure 5: Exclusion limits based on fractional energy correlations (from left to right) FC1.5, FC1, FC0.5,
measured individually on the two hemispheres.

Finally, FC0.5 appears to not be sensitive to µqq̄ within the range we consider.

Including soft-drop grooming of the hemispheres does not result in any significant improvements, as shown
in Fig. 4, the equivalent of Fig. 3 but with grooming included. In fact, the limits worsen slightly, which
could to some extend have been anticipated, since there are competing e↵ects at work. Grooming will
remove some information from the radiation pattern, but on the other hand has the potential to reduce
the impact of hadronisation corrections and hence the associated systematic uncertainty. Apparently, this
reduction is not su�cient to compensate for the loss in information, at least with the grooming parameters
we have considered here. One could imagine that an optimisation of zcut and the inclusion of angular
dependence in the soft-drop condition could lead to more competitive results. In addition it is certainly
worth stressing that the combination of probable future refinements of the hadronisation models and the
drastically increased data set of a potential FCC-ee (1012 events vs 107 at LEP-I) will most likely significantly
reduce the uncertainty related to the modelling of the parton-to-hadron transition. To illustrate this, we
present in Appendix A Fig. 7 selected exclusion-limit plots for the scenario of negligible non-perturbative
uncertainties. As anticipated, the limits improve, resulting in µgg = 1 ± 0.05 and µqq̄ < 25 for plain FC1.5,
and µgg = 1 ± 0.06 and µqq̄ < 28 for its soft-drop groomed variant.

One of the major di↵erences of our procedures so far, compared to traditional tagging methods, is that we
e↵ectively tag any event as a whole. When individually tagging jets, or hemispheres for that matter, one
would want to include a requirement that both tags are compatible with the desired final state. To mimic
this, we consider a measurement of the fractional energy correlations but on each hemisphere separately.
We then derive exclusion limits based on the corresponding two-dimensional histograms. While we hope
to expose additional information in this way, it should be clear that this is a more involved observable
definition. In particular, joint resummed calculations of several observables are far less advanced than what
would be available for the distributions considered above. The resulting confidence levels can be found in
Fig. 5. They are somewhat improved compared to the baseline in Fig. 3. In particular, for FC1.5 we obtain
µgg = 1± 0.05 and µqq̄ < 21. This suggests that combining individual results from the two hemispheres into

7

๏  New opportunities in differential distributions: e.g. strange (light quarks?) Yukawa/Higgs BRs from shapes

➡  Standard event shapes sensitive to hadronization, likely necessary to rely on new observables or tuning from lower √s

24

[Gao ’16]

e.g. H ⇾ qq BRs from event shapes
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Finally, FC0.5 appears to not be sensitive to µqq̄ within the range we consider.

Including soft-drop grooming of the hemispheres does not result in any significant improvements, as shown
in Fig. 4, the equivalent of Fig. 3 but with grooming included. In fact, the limits worsen slightly, which
could to some extend have been anticipated, since there are competing e↵ects at work. Grooming will
remove some information from the radiation pattern, but on the other hand has the potential to reduce
the impact of hadronisation corrections and hence the associated systematic uncertainty. Apparently, this
reduction is not su�cient to compensate for the loss in information, at least with the grooming parameters
we have considered here. One could imagine that an optimisation of zcut and the inclusion of angular
dependence in the soft-drop condition could lead to more competitive results. In addition it is certainly
worth stressing that the combination of probable future refinements of the hadronisation models and the
drastically increased data set of a potential FCC-ee (1012 events vs 107 at LEP-I) will most likely significantly
reduce the uncertainty related to the modelling of the parton-to-hadron transition. To illustrate this, we
present in Appendix A Fig. 7 selected exclusion-limit plots for the scenario of negligible non-perturbative
uncertainties. As anticipated, the limits improve, resulting in µgg = 1 ± 0.05 and µqq̄ < 25 for plain FC1.5,
and µgg = 1 ± 0.06 and µqq̄ < 28 for its soft-drop groomed variant.

One of the major di↵erences of our procedures so far, compared to traditional tagging methods, is that we
e↵ectively tag any event as a whole. When individually tagging jets, or hemispheres for that matter, one
would want to include a requirement that both tags are compatible with the desired final state. To mimic
this, we consider a measurement of the fractional energy correlations but on each hemisphere separately.
We then derive exclusion limits based on the corresponding two-dimensional histograms. While we hope
to expose additional information in this way, it should be clear that this is a more involved observable
definition. In particular, joint resummed calculations of several observables are far less advanced than what
would be available for the distributions considered above. The resulting confidence levels can be found in
Fig. 5. They are somewhat improved compared to the baseline in Fig. 3. In particular, for FC1.5 we obtain
µgg = 1± 0.05 and µqq̄ < 21. This suggests that combining individual results from the two hemispheres into
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e.g. H ⇾ gg & H ⇾ qq BRs from fractional moments of EEC
[Knobbe, Krauss, Reichelt, Schumann ’23]

with Soft Drop

constraints from two  
independent hemispheres

  Hadronic Higgs decays



 ±

 ±
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Figure 4. Expected 95% CLs exclusion limit on r and the 1σ and 2σ fluctuations based on measure-
ments of different event shape observables and assuming a theory of the SM. Theoretical uncertainties
on the event shape distributions are not included.

larger than the qq̄ ones for a Higgs boson mass of 125 GeV. Thus, a small downward shift of

the gg induced cross sections comparing to experimental data, either due to the experimental

or theoretical uncertainties, can allow for a much larger light-quark Yukawa coupling.

We also comment on the comparison of our proposal with the possibility of using gluon/quark

jet discriminators. On the theory side, the event shape distributions can be calculated sys-

tematically in perturbative QCD, and the theoretical uncertainties are under control. Exper-

imentally, the hadronic even-shape observables have been studied extensively at LEP. The

experimental systematics are well understood. By comparing with the experimental results

on the αs(MZ) measurement [44, 45], we found the sensitivity obtained in this study is real-

istic. Even after all the experimental systematics are included, the expected exclusion limit

should not change greatly.

In summary, we have proposed a novel idea for measuring the light-quark Yukawa cou-

plings using hadronic event shape distributions in addition to the conventional measurement

of Higgs couplings at lepton colliders. We show that for a e+e− collider with a center-of-mass

energy of 250 GeV and an integrated luminosity of 5 ab−1 one can expect to exclude a decay

BR of 0.48% for the Higgs boson decay to qq̄, at 95% CLs, with q be any of the u, d, s quarks,

assuming a hypothesis of SM-like theory and only modifications to the Higgs boson couplings

to gluon and light quarks. That corresponds to an exclusion limit on a light-quark Yukawa

coupling of about 9% of the strength of the bottom quark coupling in the SM.
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  Hadronic Higgs decays

‡  All ingredients for HO in H→gg known including quark-mass dependence

[Mondini, Williams ’21]

[Czakon et al.’20; Bonciani et al.’22; Melnikov, Penin ’16; Liu, Penin 17-’19; Anastasiou, Penin ’20; 
Coloretti et al ’22; Chen, Jakubcik, Marcoli, Stagnitto ’23; Gehrmann-De Ridder et al.’23]

e.g. jet rates in H ⇾ bb

0 0.2 0.4 0.6 0.8 1
jet tagging efficiency

3−10

2−10

1−10

1

je
t m

is
id

. p
ro

ba
bi

lit
y

b vs g
b vs ud
b vs c

 FCC-ee Simulation (IDEA)

b tagging j j→ Z H , H → -e+ e

j = u, d, s, c, b, g

(a)

0 0.2 0.4 0.6 0.8 1
jet tagging efficiency

3−10

2−10

1−10

1

je
t m

is
id

. p
ro

ba
bi

lit
y

c vs g
c vs ud
c vs b

 FCC-ee Simulation (IDEA)

c tagging j j→ Z H , H → -e+ e

j = u, d, s, c, b, g

(b)

0 0.2 0.4 0.6 0.8 1
jet tagging efficiency

3−10

2−10

1−10

1

je
t m

is
id

. p
ro

ba
bi

lit
y

s vs g
s vs ud
s vs c
s vs b

 FCC-ee Simulation (IDEA)

s tagging j j→ Z H , H → -e+ e

j = u, d, s, c, b, g

(c)

0 0.2 0.4 0.6 0.8 1
jet tagging efficiency

3−10

2−10

1−10

1

je
t m

is
id

. p
ro

ba
bi

lit
y

g vs ud
g vs s
g vs c
g vs b

 FCC-ee Simulation (IDEA)

g tagging j j→ Z H , H → -e+ e

j = u, d, s, c, b, g

(d)

Figure 5. Evaluation of ParticleNetIdea performance in terms of a receiver operating charac-
teristic (ROC) curve for the identification of different jet flavours i.e., b quarks (upper left), c quarks
(upper right), s (lower left), and g (lower right). The different jet flavours considered background
are indicated on the labels. The IDEA detector configuration is used.

5 Conclusion and perspectives

Jet flavour tagging will be a crucial tool for maximising the physics potential at future
colliders. This work builds on the design of a fast detector simulation framework, and
provides an efficient way to study the impact of different detector design options to the
jet flavour tagging problem. A fast tracking module was developed, which allows to easily
configure a full tracking geometry including material effects and compute both the charge
particle track parameters and the track covariance matrix. Two algorithms that allow for
particle identification, the time-of-flight and cluster counting with respectively configurable
time resolution and gas composition have also been added. The framework is designed
to provide flexibility for further studies, such as the exploration of alternative clustering
algorithms, beam energies and final states.

Deep learning techniques based on GNNs have proven very effective for classification
problems such as jet flavour tagging and boosted jet tagging at the LHC, and have not been
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Figure 5. Evaluation of ParticleNetIdea performance in terms of a receiver operating charac-
teristic (ROC) curve for the identification of different jet flavours i.e., b quarks (upper left), c quarks
(upper right), s (lower left), and g (lower right). The different jet flavours considered background
are indicated on the labels. The IDEA detector configuration is used.

5 Conclusion and perspectives

Jet flavour tagging will be a crucial tool for maximising the physics potential at future
colliders. This work builds on the design of a fast detector simulation framework, and
provides an efficient way to study the impact of different detector design options to the
jet flavour tagging problem. A fast tracking module was developed, which allows to easily
configure a full tracking geometry including material effects and compute both the charge
particle track parameters and the track covariance matrix. Two algorithms that allow for
particle identification, the time-of-flight and cluster counting with respectively configurable
time resolution and gas composition have also been added. The framework is designed
to provide flexibility for further studies, such as the exploration of alternative clustering
algorithms, beam energies and final states.

Deep learning techniques based on GNNs have proven very effective for classification
problems such as jet flavour tagging and boosted jet tagging at the LHC, and have not been
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e.g. flavour tagging with graph neural networks (ParticleNet)

[Bedeschi, Gouskos, Selvaggi ’22]

๏  Much room for improvement on the QCD front

➡  NNLO & resummations within reach (already available in H→bb and partly H→gg‡);  

 N3LO needed for few-% accuracy ( ~ available for 2-jet observables)


➡  Very promising prospects from ML taggers to constrain Ys 
 (better understanding of theory uncertainties desirable)
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  tt threshold scan



๏  Huge potential from threshold scan: up to per-mille accuracy on cross section & asymmetries


๏  Access to top mass and width, as well as strong coupling and top Yukawa coupling


๏  e.g. projected exp. target for top mass δmt ~ 20 MeV

27

  Top physics

Great challenge for theory to match 
this precision;


intrinsic (e.g. higher order) & parametric (e.g. 
strong coupling from Z pole) uncertainties

[Plot from F.Simon’s talk @ CERN FC workshop 2022]



๏  PNRQCD predictions known to N3LO (also including EW+non-resonant effects @ NNLO)


๏  Uncertainty in top mass (potential subtracted) δmt ~ 40 MeV. Towards exp. target (20 MeV):


➡  Some improvements will come from matching  
  of N3LO+NNLL (ingredients available)


➡  Needs NLL ISR (possibly including soft modes)


➡  Ultimately might require N4LO in PNRQCD needed  
 (currently out of reach)

28

  Top physics: theory for threshold scan

[Beneke, Kiyo, Marquard, Penin, Piclum, Steinhauser ’15]

[Beneke, Maier, Piclum, Rauh ’15]

[Beneke, Maier, Rauh, Ruiz-Femenia  ’17]



N3LO uncertainties @ 500 GeV: 0.15%

29

  Top physics: above threshold & continuum (mainly ILC/CLIC)

[Boronat, et al. ’19]

[Chen, Guan, He, Liu, Ma ’22]

๏  Continuum: target is 0.1% on cross section. N3LO QCD recently calculated but NNLO EW necessary


๏  Top mass from radiative return from ISR photon: required matching of continuum and threshold calcns


➡  TH unc. doesn’t seem to be dominant source of unc.


➡  Possible access to running of (MSR) mass



๏  Astounding physics programme at FCCee, drastic reduction of experimental uncertainties: theory 
precision likely to be among the main bottlenecks


๏  Many (if not all) areas of theory calculations need to be involved (fixed order QCD + EW, resummations in 
QCD & QED, effective field theories, non-perturbative QCD, event generators, new observables,…)


➡ Many challenges are technical in nature: hard calculations, currently beyond reach but likely to become 
achievable with the evolution of the field in the coming decades, and substantial work


➡ Also deep conceptual questions, which need significant breakthroughs to improve their understanding: 
e.g. non-perturbative QCD (hadronisation, CR, EFT calculations, high-order QCD+EW MCs) currently a 
bottleneck in several studies


➡ New opportunities from data-driven approaches, crucial to think of how to exploit it for modelling 
aspects and theory uncertainties (e.g. heavy flavour & gluon fragmentation, hadronisation modelling, …)


➡ Huge step forward demanded for MCs (QCD/EW, ISR, HO for jet processes, NR QCD, resonances)
30

  Concluding remarks


