Future colliders WG

ECFA ECR Panel Meeting 10 November 2023

Armin Ilg, University of Zürich

Future colliders WG

Goal: Inform ECRs about future collider options and development, enabling them to shape their own vision on future colliders

Future colliders for early-career researchers

Short presentations on prospects, lots of time for discussions. Can serve as reference information for ECRs.

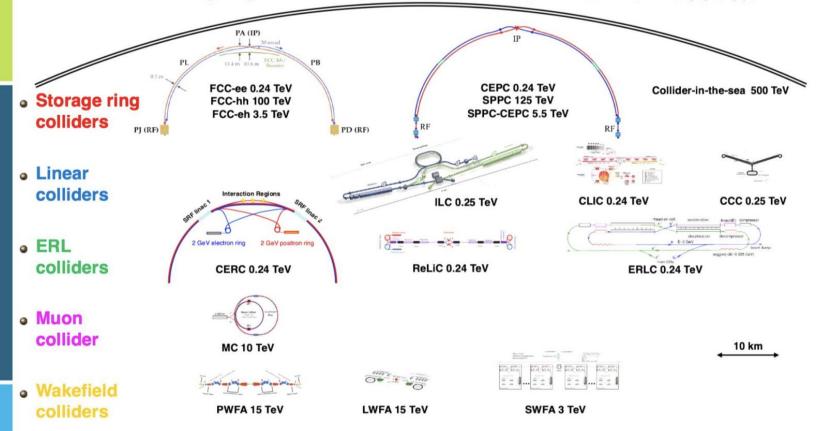
→ Almost one hundred in-person participants, > 100 on Zoom

Back to the future

Jorgen d'Hondt (experimental view): *The Future doesn't exist yet*

Federico Buccioni (theory view): Tomorrow is today!

Let's instead write: *The future is ours!* (Prof. Rabinovici)


So which future collider do we want?

Requirements for the next HEP machine

- From pure physics
 - Capable of H and t physics complementary to/beyond LHC and HL-LHC
 - Capable of Z and W physics beyond currently known
 - ⇒ an e⁺e⁻ collider covering a region of 90-350 GeV centre of mass energy (cme)
- Somewhat physics related issues
 - It is good to start data taking with some overlap with the HL-LHC operation since the results might influence each other's scientific programme.
 - \Rightarrow A machine which can be built within the next 10~15 years.
 - Can be upgraded to probe higher energy scales if physics result motivates.
 - Should not damage the diversity of particle physics activities.
 - ⇒ A machine with a reasonable cost
- HEP sociology
 - Continuity in the HEP programme to sustain the community
- Other issues have become increasingly important
 - Environmental impact, energy consumption, resource availability, attractivity in technology, impact on industries, spinoffs, ...

Tatsuya Nakada

Future collider proposals: 0.125 – 500 TeV; e+e-, hh, eh, $\mu\mu$, $\gamma\gamma$, ...

CLD

Scintillator-iron HCAL

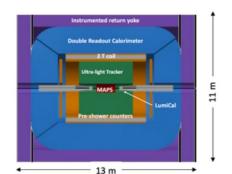
SI Tracker

21

Well established design

https://arxiv.org/abs/1911.12230 and FCC CDS vol. 2

ILC -> CLIC detector -> CLD


Full Si vtx + tracker; CALICE-like calorimetry; large coil, muon system
Engineering and R&D needed for

- reduction of tracker material budget
- operation with continous beam (no power pulsing: cooling of Si sensors for tracking + calorimetry)

Possible detector optimizations

- Improved σ_p/p , σ_E/E
- PID: timing and/or RICH?

IDEA

· Less established design

FCC CDR vol.

- But still ~15y history: ILC 4th Concept
- Si vtx detector; ultra light drift chamber w powerfull PID; compact, light coil; monolitic dual readout fibre calorimeter; muon system
 - Possibly augmented by crystal ECAL
- Active community
 - Prototype designs, test beam campains, ...

And even muon collider now!

new

- A design in its infancy
- High granularity Noble Liquid ECAL is core
 - Pb+LAr (or denser W+LCr)
- Drift chamber; CALICE-like HCAL; muon system.
- Coil inside same cryostat as LAr, possibly outside ECAL
- Active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

Mogens Dam and Nadia Pastrone

Precision measurements at FCC-ee

Baseline FCC-ee operation model (+ potential resonant Higgs for electron Yukawa)

Working point	Z, years 1-2	Z, later	WW	HZ	tt		(s-channel H)
$\sqrt{s} \; (\text{GeV})$	88, 91,	94	157, 163	240	340-350	365	m_{H}
$Lumi/IP (10^{34} cm^{-2} s^{-1})$	115	230	28	8.5	0.95	1.55	(30)
Lumi/year (ab ⁻¹ , 2 IP)	24	48	6	1.7	0.2	0.34	(7)
Physics Goal (ab ⁻¹)	150		10	5	0.2	1.5	(20)
Run time (year)	2	2	2	3	1	4	(3)
Number of events	$5 \times 10^{12} \text{ Z}$		$10^8~\mathrm{WW}$	10^6 HZ	$10^{6} t \bar{t}$ $+200k HZ$ $+50k WW \rightarrow H$		(6000)
				+			
				$25k \text{ WW} \rightarrow \text{H}$			

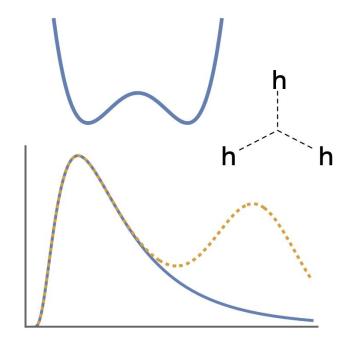
Physics at the Z-pole, W^+W^- @threshold $\sim m_W$, Higgs factory, tt@threshold $\sim m_t$ great opportunities for precision QCD: a_s , jets, hadronization models...

The foreseen precision is staggering:

this poses astounding but also attractive challenges on theory predictions

- calculations within the SM of equivalent accuracy needed to exploit full discovery/exclusion power
- theory will serve as an input in many measurements, e.g. electroweak pseudo observables (EWPOs)

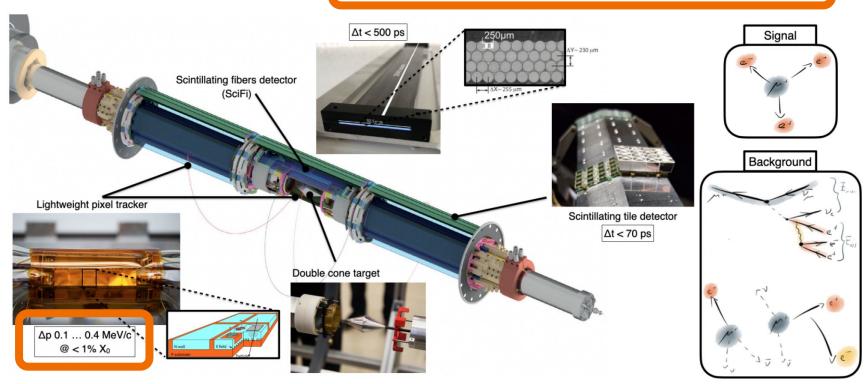
Federico Buccioni

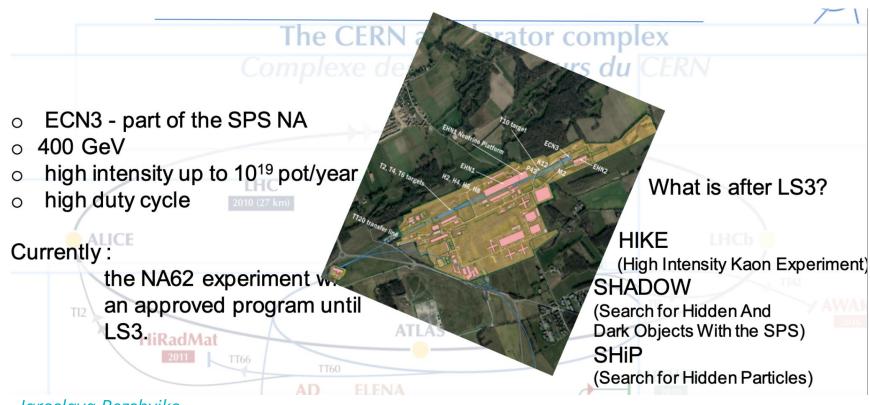

			[Blondel, Janot 2106.13885]	
present	FCC-ee	FCC-ee	Comment and	
value ± error	Stat.	Syst.	leading exp. error	
91186700 ± 2200	4	100	From Z line shape scan	
10			Beam energy calibration	
2495200 ± 2300	4	25	From Z line shape scan	
			Beam energy calibration	
231480 ± 160	2	2.4	from $A_{FB}^{\mu\mu}$ at Z peak	
			Beam energy calibration	
128952 ± 14	3	small	from $A_{FB}^{\mu\mu}$ off peak	
			QED&EW errors dominate	
20767 ± 25	0.06	0.2-1	ratio of hadrons to leptons	
			acceptance for leptons	
1196 ± 30	0.1	0.4-1.6	from R_{ℓ}^{Z} above	
41541 ± 37	0.1		peak hadronic cross section	
			luminosity measurement	
2996 ± 7	0.005	1	Z peak cross sections	
	376 376 764		Luminosity measurement	
216290 ± 660	0.3	< 60	ratio of bb to hadrons	
			stat. extrapol. from SLD	
992 ± 16	0.02	1-3	b-quark asymmetry at Z pole	
			from jet charge	
1498 + 49	0.15	<2	τ polarization asymmetry	
1100 110	0.10		τ decay physics	
290.3 ± 0.5	0.001	0.04	radial alignment	
			momentum scale	
17.38 ± 0.04	0.0001	0.003	e/μ/hadron separation	
	0.25	0.3	From WW threshold scan	
2085 ± 42	1.2	0.3	From WW threshold scan	
			Beam energy calibration	
2920 ± 50	0.8	small	ratio of invis. to leptonic	
		***************************************	in radiative Z returns	
172740 ± 500	17	small	From tt threshold scan	
			QCD errors dominate	
1410 ± 190	45	small	From tt threshold scan	
100			QCD errors dominate	
1.2 ± 0.3	0.10	small	From tt threshold scan	
1.2 2 5.0	0.10		QCD errors dominate	
	$\begin{array}{c} \text{value} \pm \text{error} \\ \text{value} \pm \text{error} \\ \text{91186700} \pm 2200 \\ 2495200 \pm 2300 \\ 231480 \pm 160 \\ 128952 \pm 14 \\ 20767 \pm 25 \\ 1196 \pm 30 \\ 41541 \pm 37 \\ 2996 \pm 7 \\ 216290 \pm 660 \\ 992 \pm 16 \\ 1498 \pm 49 \\ 290.3 \pm 0.5 \\ 1776.86 \pm 0.12 \\ 17.38 \pm 0.04 \\ 80350 \pm 15 \\ 2085 \pm 42 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	value \pm error Stat. Syst. 91186700 ± 2200 4 100 2495200 ± 2300 4 25 231480 ± 160 2 2.4 128952 ± 14 3 small 20767 ± 25 0.06 $0.2-1$ 1196 ± 30 0.1 $0.4-1.6$ 41541 ± 37 0.1 4 2996 ± 7 0.005 1 216290 ± 660 0.3 < 60 992 ± 16 0.02 $1-3$ 1498 ± 49 0.15 < 2 290.3 ± 0.5 0.001 0.04 176.86 ± 0.12 0.004 0.04 177.88 ± 0.04 0.0001 0.003 80350 ± 15 0.25 0.3 2085 ± 42 1.2 0.3 2920 ± 50 0.8 small 172740 ± 500 17 small 1410 ± 190 45 small	

Summary

Exciting times ahead if a future collider is built!

- Guaranteed deliverables:
 - Precision measurements
 - Higgs self-coupling


Potential direct discoveries


Anke Biekoetter

Mu3e detector

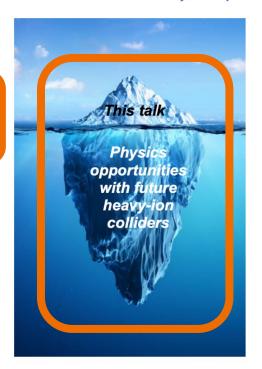
The aim is to improve the current limit of $\mathcal{B}(\mu \to eee) < 1.0 \times 10^{-12}$ (90 % C.L.) to S.E.S. $< 10^{-16}$ [2].

Giovanni Dal Maso

Iaroslava Bezshyiko

What cool things can we do with ATLAS/CMS/LHCb/ALICE leftovers after HL-LHC? Using waste particles: Beam dumps at future colliders?

CERN


Conclusions

(Ultra-relativistic) heavy-ion collisions: unique tool to study QCD matter under extreme conditions

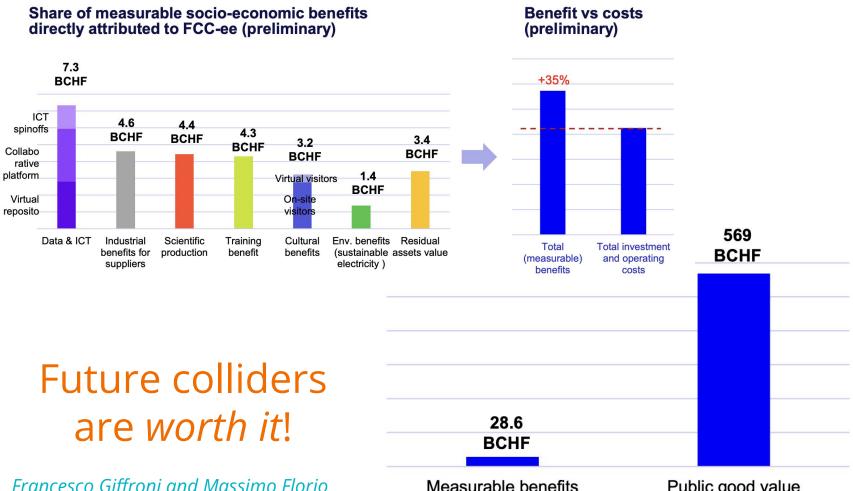
Next decades will be crucial to shape the post-LHC future of heavy-ion field!

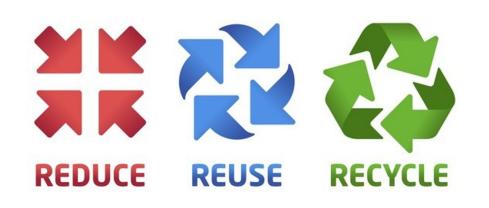
- Whole new opportunities for heavy-ion studies with colliders like FCC
- EIC will complement these future heavy-ion studies by exploring cold QCD
- New (and unconventional) ideas are welcome!

Ivan Vorobyev

Reflections

- ECRs need to be involved in future projects it is your future
 - In the early stages, these projects are driven by experienced senior colleagues
 - They have the luxury/duty of preparing the future, but todays ECRs will benefit from this and actually carry out the science – get involved, you can make a difference ...
- Participating in running experiments gives invaluable experience
 - Real data is not simulation, but ATLAS SCT works a lot better than the testbeam
 - Experience the full chain from detector operations to paper acceptance
 - A different experience of collaboration, analysis WGs/hierarchies, getting results
 - Some colleagues worked only on LHC expts. from 1990 until now I'm glad I did not
- Expertise is transferrable between experiments / projects
 - Figure out what you are interested in and good at look for synergies
 - I have worked on tracking/b-tagging & precision measurements at OPAL and ATLAS
- Say yes to leadership opportunities even if it upsets your plans
 - Explore different areas, learn new skills, broaden your horizons
 - Less-attractive tasks are still vital, people appreciate that you take them on
- Be prepared for setbacks, surprises and successes good luck !
 Richard Hawkings


ECRs: This is YOUR TIME, YOUR FUTURE


• BIRMINGHAM ONE FULL DAY, PARIS TWO HOURS, CAMBRIDGE, LONDON TWO HOURS, UK ECR+, GENEVA ONE FULL DAY.

COUNCIL VIEW INFORMED ACTION

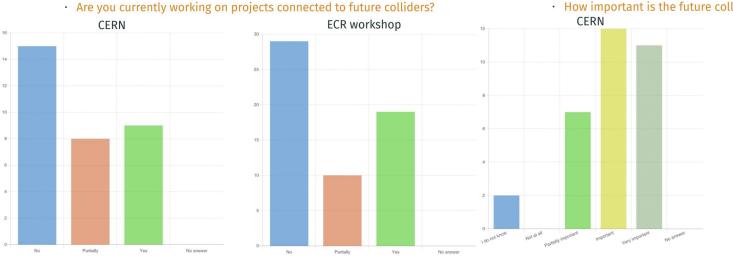
ECR INFORMED ACTION


Eliezer Rabinovici

LifeCycle Assessment: CLIC & ILC

UN Breakthrough Outcomes for 2030

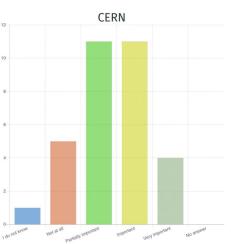
For the built environment sector, the <u>UN breakthrough</u> outcomes for 2030 detail that 100% of projects due to be completed in 2030 or after are net zero carbon in operation, with at least 40% less embodied carbon compared to current practice. This has been set to make sure the sector is on track for 100% projects to be net zero carbon across the whole life cycle by 2050.


https://climatechampions.unfccc.int/system/breakthroughs/

We need to consider how to get to net zero carbon operation and 40% less impacting construction for our future projects....

Roberto Losito

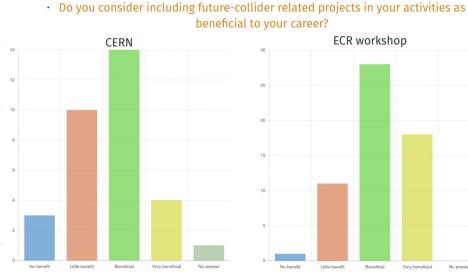
CERN and **ECR** Workshop survey (full presentation <u>here</u>)


· Majority already working (partially or fully) on future collider projects

- · Majority already working (partially or fully) on future collider projects
- · A future collider program is considered important by (almostt) everyone

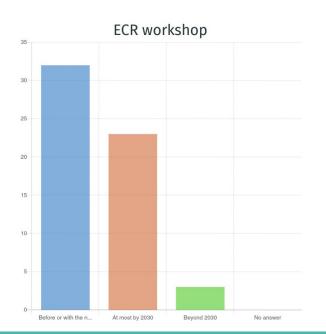
· A future collider program is considered important by (almost) evervone

CERN and **ECR** Workshop survey (full presentation <u>here</u>)


· Is the choice of a specific future collider over another important for your

· The choice of the collider seems to matter, in part or completely

· The choice of the collider seems to matter, in part or completely


· Sizable 'little benefit' choice

More positive outlook

CERN and **ECR** Workshop survey (full presentation <u>here</u>)

In light of your career prospects, how long do you think it is acceptable to wait before the decision of which machine to build is made

Would you accept to work nearly full time on a project connected to a future collider, while the decision on the next machine is still pending? If yes, under which conditions

What are the considerations for choosing the next step

What do **WE** (the ECR community) find most important in the considerations for a next collider

We will not pick the next collider today, but we ask the questions that need answering

- What are the physics questions we want answered?
- How can we make sure that the probable physics is diverse enough?
 - Are several smaller colliders preferable over one large collider for the diversity of the achieved physics program?
- What are the upgrade possibilities of proposed projects?
- How precise can we get, taking realistic improvements in theory predictions into account?
- How can we make sure the collaboration with other energy range experiment is ensured?
- Is the future collider programme compatible with ECR careers considering possible large time gaps after HL-LHC runtime?
 - Would/could muon colliders make it in time to follow the HL-LHC?
- Can we bridge the gap between HL-LHC and a large future collider with enough attractive projects?
- How can we make a next collider is sustainable in terms of energy use?
- At what time-scale should the ECR community dedicate itself to one particular proposal?
- How can ECRs make the impact they desire on the decision making process?

What's next?

Spread the word

- A.I presented the workshop outcome at the <u>CALICE ECR meeting</u>
- Emanuele Bagnaschi presented the workshop outcome at the <u>Second e[±]e⁻</u>
 <u>Higgs/EW/top factory in Paestum</u>, incl. <u>ECR panel discussion</u>

Write a short arXiv paper about the event (Marko Pesut has volunteered start this, thanks!)

From ECFA to the national communities

- Follow-up the ECFA-wide event with national, in-person events on future colliders, directing discussions into the ECFA countries as some issues are country dependent
 - Timeline? → To be discussed in WG
- A lot to be organised still! Let us know if you'd be willing to help!

Subscribe to ecfa-ecr-future-colliders e-group!

Thanks!