Low pile-up $p_T(W)$ measurement from ATLAS

Zhibo Wu
On behalf of ATLAS
30/11/2023

Conference note: ATLAS-CONF-2023-028
The motivation the p_T^W measurement

Reduce the p_T^W modelling uncertainty in the m_W measurement.

- ATLAS 7 TeV m_W analysis:
 6 MeV p_T^W modelling uncertainty dominated by the $p_T^Z \rightarrow p_T^W$ extrapolation uncertainties.
- Solution:
 -> Direct p_T^W measurement.

Targeted p_T^W precision:
- A granularity of 6~7 GeV.
- 1~2% uncertainty in the low values of p_T^W where the fixed-order perturbative prediction fails.
Event topology: leptonic decay of W/Z

- Only **two objects** to measure:
 1. The charged lepton
 2. Hadronic recoil $\mathbf{u}_T = \sum \mathbf{p}_T^{\text{ISR}} q, g = -\mathbf{p}_T^V$

 \[
 \begin{align*}
 W \text{ events}: & \quad \mathbf{u}_T \rightarrow \mathbf{p}_T^W \\
 Z \text{ events}: & \quad \mathbf{p}_T^L \rightarrow \mathbf{p}_T^Z \text{ or } \mathbf{u}_T \rightarrow \mathbf{p}_T^Z
 \end{align*}
 \]

- Detector calibrations are needed for lepton and recoil.
- Detector resolution of \mathbf{u}_T is affected by underlying event and pile-up.

\[m_T = \sqrt{2\mathbf{p}_T^l \mathbf{p}_T^{\text{miss}} (1 - \cos(\phi_l - \phi_{\mathbf{p}_T^{\text{miss}}}))}
\]

\[\mathbf{p}_T^{\text{miss}} = - (\mathbf{p}_T^l + \mathbf{u}_T) \text{ for the neutrino}
\]

Figure taken from M. Schott

Lower pile-up in the dataset

\[\rightarrow \text{ More precise measurement of } \mathbf{p}_T^W\]
ATLAS Run 2 low pile-up data

Probes of perturbative and non-perturbative QCD in W events, as well as in Z events at 5.02 TeV.

<table>
<thead>
<tr>
<th>Probes</th>
<th>2017, $\sqrt{s}=5.02$ TeV</th>
<th>2017+2018, $\sqrt{s}=13$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity (pb$^{-1}$)</td>
<td>255</td>
<td>338</td>
</tr>
<tr>
<td>W^+ events after selection</td>
<td>888K</td>
<td>2.45M</td>
</tr>
<tr>
<td>W^- events after selection</td>
<td>562K</td>
<td>1.91M</td>
</tr>
<tr>
<td>Total W events after selection</td>
<td>1.45M</td>
<td>4.36M</td>
</tr>
<tr>
<td>Total Z events after selection</td>
<td>122K</td>
<td>379K</td>
</tr>
</tbody>
</table>
Event display of the low pile-up data

The event display of a W^- boson candidate at 13 TeV.
- Orange line: muon
- Red arrow: missing transverse momentum

Event kinematics:
- $p_T^\mu = 35$ GeV
- Reconstructed $p_T^W = 16$ GeV
- $m_T = 77$ GeV
- $p_T^{\text{miss}} = 49$ GeV.
MC samples and event selection

MC simulations were produced to match the low pile-up condition in data.

- **W & Z production**: Powheg+Pythia8 AZNLO, CT10 PDF
- **Top-related background**: Powheg+Pythia8
- **Di-boson background**: Sherpa
- **Minimum-bias events**: Pythia8 A3 tune with NNPDF2.3LO

Analysis cuts for W signal selection

<table>
<thead>
<tr>
<th>Cut</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>One charged lepton</td>
<td>Exactly one electron or muon</td>
</tr>
<tr>
<td>Lepton trigger matched</td>
<td>• 1 electron, $E_T > 15$ GeV, loose ID.</td>
</tr>
<tr>
<td></td>
<td>• Or 1 muon, $E_T > 14$ GeV.</td>
</tr>
<tr>
<td>Isolation</td>
<td>$P_{t\text{cone20}} / \min(p_T, 50\text{GeV}) < 0.1$</td>
</tr>
<tr>
<td>Kinematics</td>
<td>$p_T > 25$ GeV</td>
</tr>
<tr>
<td></td>
<td>$p_T^{\text{miss}} > 25$ GeV</td>
</tr>
<tr>
<td></td>
<td>$m_T > 50$ GeV</td>
</tr>
</tbody>
</table>
Physics corrections

- Vertex z-position correction.
- Vertex efficiency correction: Correct the efficiency of primary vertex association for $W \rightarrow l \nu$ events in the simulations.
- QED FSR: Powheg+Pythia8 interfaced to PHOTOS++.
- W, Z polarization: Ai’s are calculated by DYTURBO at fixed-order NNLO using CT10NNLO PDF.
- p_T^V modelling correction: The underling p_T^V spectra predicted by Powheg+Pythia8 are reweighted by functions of p_T^V to optimize the reco-level data/MC agreement.

➢ 8 different p_T^V reweighting functions are determined individually for W^\pm, Z (u_T) and Z (p_T^U) at two center-of-mass energies.
Detector calibration: lepton

The lepton momentum in the simulation is corrected to reproduce the resonance of Z-boson in data.

Efficiency measured in Z-\(\rightarrow \ell\ell\) events with tag & probe:
- Tighten the selection on one of the leptons (tag) to ensure the signal purity.
- Measure the selection efficiency on the second, unbiased lepton (probe).
Detector calibration: hadronic recoil

- In $Z\rightarrow\ell\ell$ events, the transverse momentum of the di-lepton pair ($p_T^{\ell\ell}$) is well-measured.
- $p_T^{\ell\ell}$ corresponds to the transverse momentum of Z-boson ($p_T^Z = p_T^{\ell\ell}$).

Use the $p_T^{\ell\ell}$ constraint to calibrate the response and resolution of u_T in $Z\rightarrow\ell\ell$ events. Then extrapolate the results to W events.
Hadronic recoil calibration and correction

The calibration is obtained as a function of $\Sigma \overline{E}_T$ and p_T^V: $(\Sigma \overline{E}_T = \Sigma E_T - u_T)$
- $\Sigma \overline{E}_T$ modelling
- Azimuthal angle corrections
- Response and resolution corrections

Uncertainty sources:
- $\Sigma \overline{E}_T$ reweighting uncertainty.
- Response and resolution uncertainties.
- Since the Z-based calibration is applied to W, the uncertainties due to this extrapolation are taken into account.

13 TeV $Z \rightarrow \mu \mu$ events

Mean value for bias $b = u_\parallel + p_T^{\parallel}$. STDEV of u_\perp.
Multijet estimation

- MJ sources: heavy quark decay, in-flight pion decay, photon conversion.

- Data-driven methods are applied to both W and Z:
 (a) Determination of yield.
 (b) Derivation of MJ shape.

- The MJ fraction is below 0.1% for all Z channels.
- MJ fraction 0.6%~2.9% for W at 13 TeV, 0.1%~0.8% for W at 5.02 TeV
Reconstructed level control plots

u_T in 5.02 TeV
$W^−\rightarrow e\nu$ channel

$W\rightarrow e\nu$ channel

$Z\rightarrow e\nu$ channel

$Z\rightarrow e\nu$ channel
Unfolding

IBU using the migration matrix

• Iterative Bayesian unfolding for \(p_T^W \): \(\tilde{u}_T = \sum p_{T}^{ISR} q.g = -p_T^V \)

• \(p_T^Z \) spectrum can be obtained by unfolding \(u_T \) and \(p_T^U \).

--> Compatibility test of the unfolding
Unfolding

Iterative Bayesian Unfolding:
• $u_T \rightarrow p^W_T$: 9 (25) iterations with 7 GeV bin width in the low p^W_T region for W channels at 5.02 (13) TeV.
• $p^l_T \rightarrow p^Z_T$: 2 iterations with 7 GeV bin width at low p^Z_T for Z.

Fiducial volume:
• $p^l_T > 25$ GeV, $|\eta_l| < 2.5$
• W events: $p^V_T > 25$ GeV and $m^W_T > 50$ GeV
• Z events: $66 < m_{ll} < 116$ GeV

The variations & non-closures of the data-driven p^V_T modelling correction are accounted for as unfolding bias uncertainties.
Combination and χ^2

- At each center-of-mass energy, the electron and muon channels are combined for each charge of the boson.
- Statistical procedure: BLUE prescription with 4 iterations.

Good compatibility is found between electron and muon channels.
Uncertainty break-down for p_T^W

Break-down of p_T^W uncertainty for the combined $W^-\rightarrow l\nu$ measurements at 5.02 TeV (left) and at 13 TeV (right).

Leading systematic sources in the low p_T region:
- Unfolding uncertainties
- Recoil calibration systematics.
- “Sherpa vs Powheg” generator systematics

Total uncertainty achieves the goal: **1-2%** in the low p_T with a granularity of **7 GeV**.
Uncertainty break-down for $p_T^Z(p_T^{ll})$

Break-down of p_T^Z uncertainty for the combined $Z\to ll$ measurements at 5.02 TeV (left) and at 13 TeV (right).
- Dominated by statistical uncertainty.
Measurement compared with various MC generators at 5.02 TeV.
- The differential cross-sections are valuable input to m_W measurement.
- Good data MC agreement for the W^+/W^- ratio.
p_T^W differential cross-section: 5.02 TeV

DYTURBO @NNLO+NNLL for $pp \to W \to lv$.
- The differential cross-sections are valuable input to m_W measurement.
- Good data MC agreement for the W^+/W^- ratio.
Measurement compared with various MC generators at 13 TeV.
• The differential cross-sections are valuable input to m_W measurement.
• Tension in the low p_T region of the W^+/W^- ratio.
DYTURBO @NNLO+NNLL for pp -> W -> lv.

- The differential cross-sections are valuable input to m_W measurement.
- Tension in the low p_T region of the W^+/W^- ratio.
The parton showers tuned using ATLAS 7 TeV data agrees with the measurement at 5.02 TeV.

Some discrepancy in the low p_T region at 13 TeV.
p_T^W measurement: integrated cross-sections

Integrated fiducial cross-section

<table>
<thead>
<tr>
<th>Process</th>
<th>Cross section at $\sqrt{s} = 5.02$ TeV [pb]</th>
<th>Cross section at $\sqrt{s} = 13$ TeV [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W^- \rightarrow \ell \nu$</td>
<td>1385 ± 2 (stat.) ± 5 (sys.) ± 15 (lumi.)</td>
<td>3486 ± 3 (stat.) ± 18 (sys.) ± 34 (lumi.)</td>
</tr>
<tr>
<td>$W^+ \rightarrow \ell \nu$</td>
<td>2228 ± 3 (stat.) ± 8 (sys.) ± 23 (lumi.)</td>
<td>4571 ± 3 (stat.) ± 21 (sys.) ± 44 (lumi.)</td>
</tr>
<tr>
<td>$Z \rightarrow \ell \ell$</td>
<td>333.0 ± 1.2 (stat.) ± 2.2 (sys.) ± 3.3 (lumi.)</td>
<td>780.3 ± 2.6 (stat.) ± 7.1 (sys.) ± 7.1 (lumi.)</td>
</tr>
</tbody>
</table>

- Sufficient statistics and small systematics.
- High precision luminosity calibration: 1% at 5.02 TeV & 0.92% at 13 TeV.
- One of the most accurate cross-section measurements at hadron colliders.

Integrated cross-section ratios

<table>
<thead>
<tr>
<th>Processes</th>
<th>Cross-section ratio at 5.02 TeV</th>
<th>Cross-section ratio at $\sqrt{s} = 13$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>W^+/W^-</td>
<td>1.611 ± 0.003 (stat.) ± 0.004 (sys.)</td>
<td>1.312 ± 0.001 (stat.) ± 0.003 (sys.)</td>
</tr>
<tr>
<td>W^-/Z</td>
<td>4.16 ± 0.01 (stat.) ± 0.05 (sys.)</td>
<td>4.46 ± 0.01 (stat.) ± 0.07 (sys.)</td>
</tr>
<tr>
<td>W^+/Z</td>
<td>6.69 ± 0.02 (stat.) ± 0.08 (sys.)</td>
<td>5.84 ± 0.01 (stat.) ± 0.09 (sys.)</td>
</tr>
<tr>
<td>W^{\pm}/Z</td>
<td>10.85 ± 0.04 (stat.) ± 0.11 (sys.)</td>
<td>10.31 ± 0.02 (stat.) ± 0.15 (sys.)</td>
</tr>
</tbody>
</table>

$Z\rightarrow ll$: $p_T^l > 25$ GeV, $|\eta_l| < 2.5$, and $66 < m_{ll} < 116$ GeV

$W\rightarrow l\nu$: $p_T^l > 25$ GeV, $|\eta_l| < 2.5$, $p_T^\nu > 25$ GeV, and $m_T > 50$ GeV
p_T^W measurement: integrated cross-sections

<table>
<thead>
<tr>
<th>PDF set</th>
<th>$W^- \rightarrow \ell\nu$</th>
<th>$W^+ \rightarrow \ell\nu$</th>
<th>$Z \rightarrow \ell\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-section at 5.02 TeV [pb]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT18</td>
<td>1364</td>
<td>2199</td>
<td>320.9</td>
</tr>
<tr>
<td>MSHT20</td>
<td>1351</td>
<td>2185</td>
<td>324.3</td>
</tr>
<tr>
<td>NNPDF3.1</td>
<td>1381</td>
<td>2232</td>
<td>329.8</td>
</tr>
<tr>
<td>Data</td>
<td>1384 ± 16</td>
<td>2228 ± 25</td>
<td>333.0 ± 4.1</td>
</tr>
<tr>
<td>Cross-section at 13 TeV [pb]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT18</td>
<td>3410</td>
<td>4462</td>
<td>749.8</td>
</tr>
<tr>
<td>MSHT20</td>
<td>3397</td>
<td>4457</td>
<td>766.1</td>
</tr>
<tr>
<td>NNPDF3.1</td>
<td>3452</td>
<td>4513</td>
<td>771.4</td>
</tr>
<tr>
<td>Data</td>
<td>3486 ± 38</td>
<td>4571 ± 49</td>
<td>780.3 ± 10.4</td>
</tr>
</tbody>
</table>

Measured integrated fiducial cross-sections are compared with predictions of DYTURBO @NNLO+NNLL, using different PDF sets.

The best compatibility is found between data and NNPDF3.1.

$Z\rightarrow\ell\ell$: $p_T^\ell > 25$ GeV, $|\eta_\ell| < 2.5$, and $66 < m_\ell < 116$ GeV

$W\rightarrow\ell\nu$: $p_T^\ell > 25$ GeV, $|\eta_\ell| < 2.5$, $p_T^\nu > 25$ GeV, and $m_T > 50$ GeV
Conclusions

• The transverse momentum spectra of the W and Z bosons at 5.02 TeV and 13 TeV have been measured using ATLAS Run 2 low pile-up data.

• The dedicated datasets, reconstruction, calibration and data-driven multijet estimation render a granularity of 7 GeV in the low p_T^W region, with typically a 1~2% level precision.

• The measured p_T^W and p_T^Z differential cross-sections are compared with a variety of MC predictions, including the higher-order DYTURBO analytical resummation. All predictions show a small discrepancy with data for W^+/W^- at 13 TeV.

• The integrated cross-sections are reported with high precision. An improvement by a factor of ≥2 is found after the updated luminosity measurement.

Important input to the low pile-up m_W measurement!
Backup
A MC 16 campaign was produced to match the low pile-up condition in data:
• W & Z production: Powheg+Pythia8 AZNLO, CT10 PDF
• Top-related background: Powheg+Pythia8
• Di-boson background: Sherpa
• Minimum-bias events: Pythia8 A3 tune with NNPDF2.3LO

<table>
<thead>
<tr>
<th>Cut</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSSF dilepton</td>
<td>Electron pair or muon pair</td>
</tr>
</tbody>
</table>
| At least one lepton triggers the event | • Electron, $E_T > 15$ GeV, loose ID.
 • Or muon, $E_T > 14$ GeV. |
| Isolation | $P_{Tcone20} / \text{Min}(p_{Tl}, 50\text{GeV}) < 0.1$ |
| Additional lepton veto | Veto ≥3 muons (electrons) with $p_{Tl} > $ 20 GeV + medium (loose) ID |
| Kinematics | $66 < m_{ll} < 116$ GeV |

Analysis cuts for Z signal selection
Electron SF and calibration

- The electron reconstruction SF: extrapolation of the standard high-mu SFs to the low-mu regime applied to both the 5.02 and 13 TeV datasets.
- The identification SF: measured in-situ separately for the 5.02 and 13 TeV data.
- Isolation and trigger efficiencies SF: measured in-situ using the 5.02 and 13 TeV combined datasets.
- Electron energy scale and resolution corrections are measured in-situ using Z->ee events from the low-mu dataset.
Muon SF and calibration

- Muon reconstruction efficiencies: extrapolated from high-mu measurements.
- The muon trigger, isolation and TTVA efficiencies: measured in-situ.
- Momentum scale and resolution: derived from the high-mu data.
- Sagitta bias corrections: derived from 2017 low-mu datasets.
Iterative Bayesian unfolding

• Assuming the true distribution after the fiducial cut is T_j:

$$D_i = \sum_j M_{ij} \varepsilon_j T_j + B_i$$

• Then the unfolded spectrum \hat{U}_j estimates the underlying T_j:

$$\hat{U}_j = \sum_i U_{ij} (D_i - B_i) \times p_i$$

$i = \text{reco-level bin, } j = \text{unfolded-level bin}$

M_{ij}: Migration matrix

ε_j: Reconstruction efficiency

p_i: Reconstruction purity

U_{ij}: The unfolding transformation

References:

[1] doi.org/10.1016/0168-9002(95)00274-X

Uncertainty propagation

• **Data statistics** $\tilde{U}_j^\alpha = \sum_i U_{ij} (D_i^\alpha - B_i)$
Fluctuate the data -> calculate the spread at unfolded level.

• **MC statistics** $\tilde{U}_j^\alpha = \sum_i U_{ij}^\alpha (D_i - B_i)$
Fluctuate the migration matrix, efficiency and purity corrections -> calculate
the spread at unfolded level.

• **Experimental** systematics $\tilde{U}_j^\alpha = \sum_i U_{ij}^\alpha (D_i - B_i)$
Vary the migration matrix, efficiency and purity corrections.

• **Background** systematics $\tilde{U}_j^\alpha = \sum_i U_{ij} (D_i - B_i^\alpha)$
Vary the estimation of background.
\(p_T^V \) reweighting

- For a first fit, the data/MC agreement is optimized at reco-level by reweighting the truth-level \(p_T^V \) distribution. Once the reweighting function is determined, it will be used to correct the \(p_T^V \) distribution in the MC.

- A second fit is performed after \(p_T^V \) reweighting as a closure test. The uncertainties in the fit parameters are propagated to the unfolding.

Optimization of reco-level distribution.

\[
\chi^2 = \sum_{ij} \Delta_i^T C_{ij}^{-1} \Delta_j, \quad \text{i: reco-level bin} \\
\Delta_i = (D_i - B_i) - \sum_j R_{ij} \times (w_T(p_T^W))_j, \quad \text{j: truth level bin}
\]

\[
(w_T(p_T^W))_j = N_j \left[\left(1 + a p_{T,j}^W + b p_{T,j}^W \right)^2 \left(1 - c + c \times r_{NPDF/CT10}(p_T^W) \right) \right]
\]

Fitted truth reweighting functions of \(p_T^W \). The final choice is the \(e\mu \) average.

Data/MC ratio for reco-level \(u_T \) in 13 TeV \(W^-\rightarrow\mu\nu \) channel, before and after the \(p_T^V \) modelling correction.
Unfolding bias uncertainty for p_T^W

• Fit uncertainty: uncertainties in the parameters of the p_T^W reweighting function.

• Parametrization uncertainty: the difference caused by determining the p_T^W reweighting using an alternative function.

• Initial (p_T^W, y) uncertainty: reweight (p_T^W, y) to alternative MC predictions to get different initial spectra.

• The non-closure of the reweighting.
The measurement of the p_T^Z spectrum

- $p_T^Z(p_T^{ll}) - p_T^Z(u_T)$ compatibility and uncertainty break-down

<table>
<thead>
<tr>
<th></th>
<th>5.02 TeV</th>
<th>13 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2 (Stat. + Syst.)</td>
<td>14.9 / 14</td>
<td>8.7 / 16</td>
</tr>
<tr>
<td>p-value</td>
<td>38.5%</td>
<td>85%</td>
</tr>
</tbody>
</table>

The $p_T^Z(p_T^{ll}) - p_T^Z(u_T)$ compatibility test at 5.02 TeV (left) and at 13 TeV (right). Good compatibility is found at both center-of-mass energies.

Break-down of unfolded-level shape uncertainties for p_T^{ee} at 5.02 TeV (left) and at 13 TeV (right).

The data statistics dominates the uncertainty.

The unfolding bias and the optimization of unfolding for p_T^Z follow the methods described for p_T^W.

The data statistics dominates the uncertainty.
p_T^Z differential cross-section

Measured p_T^Z spectra vs NNLO+NNLL DYTURBO predictions using different PDF sets.
W/Z ratios

ATLAS Preliminary
\(\sqrt{s} = 5.02 \text{ TeV}, 255 \text{ pb}^{-1} \)
W → ℓν/ Z → ll

ATLAS Preliminary
\(\sqrt{s} = 13 \text{ TeV}, 338 \text{ pb}^{-1} \)
W → ℓν/ Z → ll

\(1/\sigma \frac{d\sigma}{dp_T} \text{ [GeV}^{-1}] \) W/Z

\(p_T \text{ [GeV]} \)
MJ yield

<table>
<thead>
<tr>
<th>Channel</th>
<th>$W^- \rightarrow e^-\nu$</th>
<th>$W^+ \rightarrow e^+\nu$</th>
<th>$W^- \rightarrow \mu^-\nu$</th>
<th>$W^+ \rightarrow \mu^+\nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJ background yield</td>
<td>2200</td>
<td>2300</td>
<td>300</td>
<td>500</td>
</tr>
<tr>
<td>Statistics</td>
<td>300 (14%)</td>
<td>340 (14%)</td>
<td>120 (40%)</td>
<td>140 (25%)</td>
</tr>
<tr>
<td>Extrapolation</td>
<td>290 (13%)</td>
<td>340 (15%)</td>
<td>210 (70%)</td>
<td>230 (40%)</td>
</tr>
<tr>
<td>μ_T-dependence</td>
<td>600 (29%)</td>
<td>800 (40%)</td>
<td>270 (90%)</td>
<td>300 (50%)</td>
</tr>
<tr>
<td>Total uncertainty</td>
<td>700 (32%)</td>
<td>900 (40%)</td>
<td>340 (110%)</td>
<td>400 (70%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel</th>
<th>$Z \rightarrow ee$</th>
<th>$Z \rightarrow \mu\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.02 TeV</td>
<td>$Z \rightarrow \ell\ell$</td>
<td></td>
</tr>
<tr>
<td>MJ background yield</td>
<td>0^{+100}_{-0}</td>
<td>16 ± 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel</th>
<th>$Z \rightarrow ee$</th>
<th>$Z \rightarrow \ell\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 TeV</td>
<td>$Z \rightarrow \ell\ell$</td>
<td></td>
</tr>
<tr>
<td>MJ background yield</td>
<td>110 ± 70</td>
<td>180 ± 40</td>
</tr>
</tbody>
</table>