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Motivation
• The connection between deconfinement and

chiral symmetry restoration at the finite tem-
perature QCD transition is still not fully un-
derstood.

• Low Dirac modes could be key in understand-
ing this connection.

• Chiral symmetry breaking is controlled by the
density ρ(λ) of low modes according to the
Banks-Casher relation∣∣⟨ψ̄(x)ψ(x)⟩∣∣ m→0

= πρ(0).

• Deconfinement is signalled by the ordering of
Polyakov loops

P (x⃗) = tr Pexp
{
ig

∫ 1
T

0
dtA4(t, x⃗)

}
.

• “Sea/islands” picture: Islands of fluctuations
in the sea of ordered Polyakov loops are “en-
ergetically” favorable for Dirac modes ⇒ low-
lying Dirac modes localize [1].

• The “sea/islands” mechanism is general and
requires only the ordering of the Polyakov
loop [2]: test it in gauge theories with a de-
confinement transition other than QCD, e.g.,
the SU(2)-Higgs model in the infinite coupling
limit [3].

SU(2)-Higgs model
The model on a hypercubic N3

s × Nt lattice is
defined by the action

S =
β

2

∑
n

∑
µ<ν

trUµν(n)−
κ

2

∑
n

∑
µ

trGµ(n) ,

Uµν(n) = Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)†Uν(n)
† ,

Gµ(n) = ϕ(n)†Uµ(n)ϕ(n+ µ̂) ,

with ϕ the unit-length Higgs field and Uµ =

eia
2Aµ with Aµ the SU(2) gauge field. We work

at finite temperature T = 1/(aNt), keeping Nt

fixed (Nt = 4) and changing a by changing β
and κ.

Localization
Localized (resp. delocalized) modes occupy a fi-
nite amount (resp. a finite fraction) of modes.
Localization can be studied [2]

• by looking at the participation ratio (PR) of
the eigenvectors ψl

PRl =
1

NtN3
s

IPR−1
l , IPRl =

∑
n

∥ψl(n)∥4 ,

with PR ∼ Nα−3
s at large Ns, with α the frac-

tal dimension of modes;

• or by studying the probability distribution of
the unfolded eigenvalue level spacing

Is0 =

∫ s0

0

p(s)ds, s = (λi+1 − λi)ρ(λi).

with known pPoisson(s) for localized modes, and
pRMT(s) for delocalized modes.

Phase diagram at finite temperature
The model displays three phases: a confined phase at low β and κ, a deconfined phase at large β and
low κ, and a Higgs phase at large κ, distinguished by the average Polyakov loop and gauge-Higgs
term.
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Localization properties of Dirac eigenmodes
In the confined phase the fractal dimension of low modes hovers around 3, while in the deconfined
and Higgs phases it is 0 up to a “mobility edge”, λc, and 3 above.
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In the confined phase Is0 ≈ Is0,RMT, while in the deconfined and Higgs phases Is0 ≈ Is0,RMT above
λc, and Is0 ≈ Is0,Poisson below.
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The mobility edge can be identified as the point where Is0 takes its critical value[2]. As one approaches
the confined phase, it decreases, and λc → 0 in the crossover region (black dots in the phase diagram).
At the transition from the deconfined to the Higgs phase, the dependence of λc on κ changes.
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Our results confirm the universality of the “sea/islands” picture and the close connection between
deconfinement and localization of the low Dirac modes.
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