
Lastly, we perform combined chiral and continuum extrapolations considering multiple different models. The 
results from different models are then combined into a weighted average using the Takeuchi Information Criterion 
(TIC) [5], in order to estimate the systematics arising from the spread of results from different models.


The preliminary results presented here still have a relatively large uncertainty due to the limited parameter space 
coverage. In the future, we will add more ensembles and increase statistics significantly.
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μ [NLOa] = − 16.60(37)(55) +
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[−1.986(26)(78) + 67.0(0.0)(7.0) × 10−5] +
2

3 3
[3.0(6.0)(2.0) × 10−5] = − 20 . 92(42)(57) [3.38%]
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4
9

[0.556(07)(22) − 20.2(0.0)(5.7) × 10−5] +
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3 3
[−1.6(4.0)(4.4) × 10−5] = 10 . 49(28)(35) [4.27%]

ahvp
μ [NLOc] = 0.226(09)(12) +
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[0.0810(52)(87)] +
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81

[0.00213(50)(17)] +
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[0.1253(60)(95)] +
8
9
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27
[0.0087(19)(38)] = 0 . 338(13)(14) [5.65%]

ahvp
μ [NLO] = ahvp

μ [NLOa] + ahvp
μ [NLOb] + ahvp

μ [NLOc] = − 10 . 09(23)(67) = − 10 . 09(71) [7.02%]

Suitable representation for the NLO Kernels

Lattice determination of the NLO HVP contribution to the (g − 2)μ

In this work, we present a full computation of the NLO HVP contributions to the muon . 
Starting with a study of the Time-Momentum Representation (TMR) of the corresponding Kernels for 
the relevant contributions to the numerical implementation of QCD correlators obtained from lattice 
simulations.


There are essentially three different types of  subleading HVP contributions to the  . 
When comparing with the LO contribution, these can be classified in diagrams (a) containing extra 
photon or muon lines, (b) containing a leptonic (electron or tauon) loop and (c) with an additional 
QCD insertion.

The TMR integral representation of these Kernels is

g − 2

αem (g − 2)μ
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(g − 2)μ

It is convenient to work with a simplified version of the TMR Kernels, a polynomial representation is best suited for the 
task.  can be analytically solved and then expanded around 5 different regions depending on the behaviour of the 
two Euclidean-time coordinates. For the (a) and (b) contributions, it is not possible to analytically solve the integral and 
another approach is required.

f̃ (4c)

 ,         ,


 ,


where  and  are the time-like LO and NLO Kernels [1] and  is the Lepton loop function [2].


These Kernels are then to be combined with a lattice calculation of the electromagnetic correlator  .

f̃ (4a) (t; mμ) = ∫
∞

0
dω2

4π2f4(ω2; mμ)
ω2 [ω2t2 − 4 sin2 ωt

2 ] f̃ (4b)
l (t; mμ, ml) = 2∫

∞

0
dω2

4π2f2(ω2; mμ)
ω2 [ω2t2 − 4 sin2 ωt

2 ] Fl (ω2; m2
l )

f̃ (4c) (t, τ; mμ) = ∫
∞

0
dω2

16π4f2(ω2; m2
μ)

ω4 [ω2t2 − 4 sin2 ωt
2 ] [ω2τ2 − 4 sin2 ωτ

2 ]
f2 f4 Fl

G(t) = −
1
3

3

∑
μ=1

∑
x∈Λ

⟨jμ(x, t)jμ(0)⟩
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(g − 2)HVP,LO
μ

In [1] Balzani, Laporta and Passera developed an analytic method to obtain a polynomial expansion for 
contribution (a). First, the integral is conveniently split into small and large  values which allow for different 
expansions around . For high  values, this approximation fails and another expansion is required.

We follow a similar approach for the electronic (b) contribution , where one must first apply the method 
around a small leptonic mass ratio  and then expand in the same way around .


These polynomial representations are valid for all values of the Euclidean time up to a precision of  and 
can be tested against their numerical representation (shown for (b) in the upper-right corner and for (c) in the 
bottom-left).

ω
t ∼ 0 t

l = e
M = me/mμ t ∼ 0

10−8

Eventually, the new Kernel representations are combined with lattice data from 12 CLS ensembles [3] with  
flavours of -improved Wilson quarks, to obtain a full preliminary determination of the sub-leading hadronic 
contribution to the . 

Following a decomposition in the iso-spin basis to simplify renormalisation, the total contribution can be symbolically 
expressed as


 ,


where the dots correspond to contributions from the bottom and top quarks, negligible at the current statistical 
precision.


We have applied 2 different sets of improvement coefficients with two discretizations each to constrain the continuum 
limit. Finite-volume effects are corrected for using the Hansen-Patella method [4]. To better control the signal-to-noise 
problem in the long distance regime of the correlators we have made use of the Bounding Method [3].

Nf = 2 + 1
𝒪(a)

(g − 2)μ

ahvp
μ [NLOa&b] = [Iso − vector] +

1
3

[Iso − scalar] +
4
9

[charm conn. + charm disc.] +
2

3 3
[Iso-scalar ↔ charm] + …

[2]

*

* Notice a different structure for the (c) contribution, this is caused by the  product in the integrand.G(t) × G(τ)


