Exercises for Introductory Lectures on Resurgence

Gerald Dunne

University of Connecticut

CERN Summer School: July 2024

Continuum Foundations of Lattice Gauge Theories

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 1. Lecture 1: Airy, Stokes, Borel and Trans-series
- 2. Lecture 2: Nonlinear Stokes, Painlevé and Gross-Witten-Wadia Model
- 3. Lecture 3: QFT example: Euler-Heisenberg Effective Action

4. Lecture 4: Resurgent Extrapolation, Padé & Analytic Continuation

Large Order/Low Order Resurgence Relations: Bessel Function

Exercise 1.1: the modified Bessel function $I_{\nu}(x)$ has the large x asymptotic expansion (dlmf.10.40.E5):

$$I_{\nu}(x) \sim \frac{e^x}{\sqrt{2\pi x}} \sum_{n=0}^{\infty} (-1)^n \frac{\alpha_n(\nu)}{x^n} \quad , \quad x \to +\infty$$

the coefficients depend on the Bessel index parameter ν

$$\alpha_n(\nu) = (-1)^n \frac{\cos(\pi\nu)}{\pi} \frac{\Gamma\left(n + \frac{1}{2} - \nu\right)\Gamma\left(n + \frac{1}{2} + \nu\right)}{2^n \Gamma(n+1)}$$

うして ふゆ く 山 マ ふ し マ う く し マ

1. Show that the large-order growth $(n \to \infty)$ is

$$\alpha_n(\nu) \sim \frac{1}{\pi} \frac{(-1)^n (n-1)!}{2^n} \left(\alpha_0(\nu) - \frac{2 \alpha_1(\nu)}{(n-1)} + \frac{2^2 \alpha_2(\nu)}{(n-1)(n-2)} - \dots \right)$$

2. What is the significance of the $\cos(\pi\nu)$ prefactor?

Borel Singularities with a branch cut

Exercise 1.2: Consider the Borel transform $B(t) = \frac{1}{(t+1)^{\beta}}$, which has a *branch point* at t = -1, with exponent $0 < \beta < 1$, and a branch cut along the negative axis: $t \in (-\infty, -1]$:

$$x^{\beta-1} e^x \Gamma(1-\beta, x) = \int_0^\infty dt \, e^{-x \, t} \, \frac{1}{(t+1)^\beta}$$

- 1. Generate an expression for the $x \to +\infty$ asymptotic expansion of the function $x^{\beta-1} e^x \Gamma(1-\beta, x)$.
- 2. Using the discontinuity of the Borel transform function $B(t) = \frac{1}{(t+1)^{\beta}}$ across the cut, derive the general connection formula dlmf.8.2.E10 for the incomplete gamma function:

$$e^{\pi i\beta}\Gamma\left(1-\beta,z\,e^{\pi i}\right) - e^{-\pi i\beta}\Gamma\left(1-\beta,z\,e^{-\pi i}\right) = \frac{2\pi i}{\Gamma\left(\beta\right)}$$

Borel Singularities and Non-perturbative Terms

Exercise 1.3: Consider the asymptotic expansion of the trigamma function $(B_n(q))$ is the Bernoulli polynomial)

$$\psi^{(1)}\left(\frac{1+x}{2}\right) \sim \sum_{n=0}^{\infty} \frac{2^{n+1}B_n\left(\frac{1}{2}\right)}{x^{n+1}} , \quad x \to +\infty$$

1. Use Borel summation to show that

$$\psi^{(1)}\left(\frac{1+x}{2}\right) = 2\int_0^\infty dt \, e^{-x t} \frac{t}{\sinh(t)}$$

Hint: see dlmf.24.4.E27 & dlmf.24.4.E2. Note that there is an *infinite number* of Borel poles.

2. Show that the real part of this function, along the imaginary axis, has an infinite series of exponential terms

$$\operatorname{Re}\left[\psi^{(1)}\left(\frac{1+i\,x}{2}\right)\right] \sim 0 \ -2\pi^2 \sum_{k=1}^{\infty} (-1)^k k \, e^{-k\,\pi\,x} \quad , \quad x \to +\infty$$

and show that these terms are required for consistency with dlmf.5.15.E6, the non-perturbative reflection formula \mathbf{E} of \mathbf{E}

Non-perturbative Bessel Connection Formula

Exercise 1.4: The modified Bessel function $K_{\nu}(x)$ has a Borel representation (Airy is associated with $\nu = \frac{1}{3}$) for x > 0

$$K_{\nu}(x) = \sqrt{2\pi x} e^{-x} \int_0^\infty dt \, e^{-2xt} \, _2F_1\left(\frac{1}{2} - \nu, \frac{1}{2} + \nu, 1; -t\right)$$

1. Derive the asymptotic expansion:

$$K_{\nu}(x) \sim \left(\frac{\pi}{2x}\right)^{\frac{1}{2}} e^{-x} \sum_{k=0}^{\infty} \frac{a_k(\nu)}{x^k} \quad , \quad x \to +\infty$$

$$a_k(\nu) = \frac{\cos(\pi\nu)}{\pi} \left(-\frac{1}{2}\right)^k \frac{\Gamma\left(k + \frac{1}{2} - \nu\right)\Gamma\left(k + \frac{1}{2} + \nu\right)}{\Gamma(k+1)}$$

2. Use the discontinuity of the hypergeometric function (dlmf.15.2.E3) to derive the non-perturbative connection formula of $K_{\nu}(x)$ (dlmf.10.34.E2):

$$K_{\nu}\left(ze^{m\pi i}\right) = e^{-m\nu\pi i}K_{\nu}\left(z\right) - \pi i\sin\left(m\nu\pi\right)\csc\left(\nu\pi\right)I_{\nu}\left(z\right)$$

Exercise 1.5:

- 1. Translate standard notation for the Mathieu equation $w'' + (a - 2q\cos(2z))w = 0$, from https://dlmf.nist.gov/28.2.E1, into Schrödinger form $-\frac{\hbar^2}{2}\frac{d^2}{dx^2}\psi(x) + \cos(x)\psi(x) = E\psi(x).$
- Hence convert the perturbative small ħ expansion from https://dlmf.nist.gov/28.8.E1 into an expression for the first 8 terms of the perturbative energy expansion E_{pert}(ħ, N), where N is the band label.
- 3. Compute the small \hbar expansion of

$$\frac{\partial E_{\text{pert}}}{\partial N} \exp\left[8\int_0^{\hbar} \frac{1}{\hbar^3} \left(\frac{\partial E_{\text{pert}}}{\partial N} - \hbar + \frac{\hbar^2}{8}\left(N + \frac{1}{2}\right)\right)\right]$$

and compare with the leading non-perturbative Mathieu splitting in https://dlmf.nist.gov/28.8.E2

Resurgence in Nonlinear ODEs: Painlevé II = "nonlinear Airy"

$$y''(x) = x y(x) + 2 y^3(x)$$

Exercise 2.1:

1. Show that the general Painlevé II solution has a meromorphic expansion with only poles for moveable singularities (those associated with boundary conditions):

$$y(x) = \frac{1}{x - x_0} - \frac{x_0}{6}(x - x_0) - \frac{1}{4}(x - x_0)^2 + \frac{h_0}{6}(x - x_0)^3 + \frac{x_0}{72}(x - x_0)^4 + \dots$$

- 2. Show that all the coefficients of this expansion are expressed in terms of the pole location x_0 and the coefficient h_0 of the cubic term.
- 3. Change the nonlinearity of the equation from $y^3(x)$ to $y^4(x)$ and show that this Painlevé integrability condition fails (comment: nevertheless, despite being nonintegrable, all the subsequent resurgent trans-series analysis still holds)

Exercise 2.2:

- 1. Generate many terms, and verify the large order behavior of the coefficients of the formal $x \to -\infty$ series for the Painlevé II Hastings-McLeod solution
- 2. Numerically identify the Stokes constant to high precision

$$0.1466323... = \frac{1}{\pi} \sqrt{\frac{2}{3\pi}}$$

3. Confirm the large-order/low-order resurgence relation

Exercise 2.3: Consider the Painlevé III (Okamoto form) for the GWW model:

$$t^{2}\Delta'' + t\Delta' + \frac{N^{2}\Delta}{t^{2}} \left(1 - \Delta^{2}\right) = \frac{\Delta}{1 - \Delta^{2}} \left(N^{2} - t^{2} \left(\Delta'\right)^{2}\right)$$

1. Show that in the t > 1 region this equation linearizes to

$$t^{2}\Delta'' + t\Delta' + \frac{N^{2}}{t^{2}}\left(1 - t^{2}\right)\Delta \approx 0$$

which is solved by the Bessel functions $J_N\left(\frac{N}{t}\right), Y_N\left(\frac{N}{t}\right)$

2. Show that for t < 1 the dominant large N solution is algebraic, $\Delta(t) \sim \sqrt{1-t}$, from which the formal large N series solution can be generated.

Resurgence Relation in the GWW Model

Exercise 2.4:

1. Generate many terms of the formal large N solution for $\Delta(t, N)$ in the small t regime

$$\Delta(t,N) \sim \sqrt{1-t} \sum_{n=0}^{\infty} \frac{d_n^{(0)}(\lambda)}{N^{2n}}$$

2. Derive the form of the first non-perturbative correction to this formal large N expansion, including the first few fluctuation corrections:

$$\Delta_{NP}(t,N) \sim f(t) e^{-N S_{\text{weak}}(t)} \sum_{n=0}^{\infty} \frac{d_n^{(1)}(\lambda)}{N^n} + \dots$$

3. Show that the subleading corrections to the large n growth of the coefficient functions $d_n^{(0)}(\lambda)$ are associated with the expansion terms $d_n^{(1)}(\lambda)$ of the first non-perturbative correction to the formal large N expansion.

Analytic Continuation of the Hurwitz Zeta Function

Exercise 3.1: Analytically continue the integral representation of the Hurwitz zeta function (for Re(s) > 1, Re(z) > 0)

$$\zeta_H(s,z) = \sum_{n=0}^{\infty} \frac{1}{(n+z)^s} = \frac{1}{\Gamma(s)} \int_0^\infty dt \, e^{-zt} \frac{t^{s-1}}{1-e^{-t}} \tag{1}$$

into the region Re(s) > -2 to obtain

$$\zeta_H(s,z) = \frac{z^{1-s}}{s-1} + \frac{z^{-s}}{2} + \frac{s \, z^{-1-s}}{12} + \frac{2^{s-1}}{\Gamma(s)} \int_0^\infty \frac{dt}{t^{1-s}} \, e^{-2zt} \left(\coth(t) - \frac{1}{t} - \frac{t}{3} \right)$$
(2)

Hence show that $\zeta_H(-1, z) = -\frac{1}{12} + \frac{z}{2} - \frac{z^2}{2}$, and

$$\zeta'_{H}(-1,z) = \frac{1}{12} - \frac{z^{2}}{4} - \zeta_{H}(-1,z) \ln z \\ -\frac{1}{4} \int_{0}^{\infty} \frac{dt}{t^{2}} e^{-2zt} \left(\coth(t) - \frac{1}{t} - \frac{t}{3} \right)$$
(3)

Euler-Heisenberg via the Zeta Function

Exercise 3.2: In the zeta function method we define

$$\ln \det(\text{operator}) := -\zeta'(0) \qquad \text{where} \qquad \zeta(s) := \sum_{\text{spectrum } \lambda} \frac{1}{\lambda^s}$$

1

うして ふゆ く 山 マ ふ し マ う く し マ

Given that the eigenvalues of the Dirac operator in a constant magnetic field B are given by the Landau level result

$$\lambda_n^{\pm} = m^2 + p_{\perp}^2 + eB(2n + 1 \pm 1) \qquad , \qquad n = 0, 1, 2, \dots$$

with the Landau degeneracy factor $\frac{eB}{2\pi}$, derive the Euler-Heisenberg effective action \mathcal{L} by showing that

$$\mathcal{L} = \frac{e^2 B^2}{2\pi^2} \left\{ \zeta'_H \left(-1, \frac{m^2}{2eB} \right) + \zeta_H \left(-1, \frac{m^2}{2eB} \right) \ln \left(\frac{m^2}{2eB} \right) -\frac{1}{12} + \frac{1}{4} \left(\frac{m^2}{2eB} \right)^2 \right\}$$

$$(4)$$

Exercise 3.3:

 Show that the Euler-Heisenberg effective action can be expressed in terms of the log of the Barnes gamma function (https://dlmf.nist.gov/5.17)

$$\mathcal{L}(b) = \frac{b^2}{2\pi^2} \left[-\log(A) + \frac{1}{16b^2} + \left(-\frac{1}{8b^2} + \frac{1}{4b} - \frac{1}{12} \right) \log\left(\frac{1}{2b}\right) - \log\left(G\left(\frac{1}{2b}\right)\right) - \left(1 - \frac{1}{2b}\right) \log\left(\Gamma\left(\frac{1}{2b}\right)\right) \right]$$

うして ふゆ く 山 マ ふ し マ う く し マ

where $b \equiv \frac{eB}{m^2}$.

2. Hence study the small b and large b expansions, showing that the strong field expansion has a finite radius of convergence.

Euler-Heisenberg for Scalar QED

Exercise 3.4: For scalar QED the spectrum of the Klein-Gordon operator in a constant B field has no spin projection term, so it is given by

$$\lambda_n = m^2 + p_\perp^2 + eB(2n+1)$$
 , $n = 0, 1, 2, ...$

1. Hence use the zeta function method to show that the EH effective action for scalar QED has the integral representation

$$\mathcal{L}_{\text{scalar}} = \frac{e^2 B^2}{16\pi^2} \int_0^\infty ds \, \frac{1}{s^2} \left(\frac{1}{\sinh(s)} - \frac{1}{s} + \frac{s}{6} \right)$$

- 2. Generate the asymptotic weak field expansion of the scalar QED effective action and compare the large-order behavior of the expansion coefficients with the spinor QED case.
- 3. Compute the leading strong-field behavior by inspection of the Borel integral representation, and relate this to the scalar QED beta function.

Resurgence in the Locally Constant Field Approximation (LCFA)

Exercise 3.5: Consider an electric field, directed in the z direction, with a one-dimensional cosine inhomogeneity: $E(t) = E \cos(\omega t)$.

- 1. Compute the LCFA effective action by integrating the Euler-Heisenberg effective action over one period of the field, with the constant field replaced by its time-dependent form.
- 2. Show that the coefficients of the weak field expansion grow factorially with perturbative order, and with subleading corrections of both power-law and exponential form. Compute the first few power-law correction terms.
- 3. Demonstrate the resurgence relation by showing that the power-law corrections in the previous part are related to the fluctuations about the instanton factors for the imaginary part of the effective action.

Worldline Instantons in the Euler-Heisenberg Effective Action

Exercise 3.6: Consider the classical Euclidean equations of motion for scalar QED in a (generally inhomogeneous) background electromagnetic field :

$$\ddot{x}_{\mu} = 2ieF_{\mu\nu}(x)\,\dot{x}_{\nu}$$

where the dots refers to derivatives wrt the proper-time and x_{μ} is the 4 dim spacetime coordinate.

- 1. Show that for any solution \dot{x}_{cl}^2 is a constant of motion.
- 2. Show that the closed trajectory (with period T) for a constant E field is a circle, and evaluate the classical action.
- 3. Show that for a time dependent (but spatially constant) linearly polarized electric field, with Euclidean vector potential $A_3 = -i\frac{E}{\omega} f(\omega x_4)$, where ω is a frequency scale parameter, the classical action can be expressed as

$$S[x_{\rm cl}](T) = -\frac{\dot{x}_{\rm cl}^2}{4}T + \frac{1}{2}\int_0^T d\tau (\dot{x}_4^{\rm cl})^2$$

Resurgent form of large order growth

Exercise 4.1: In resurgence it is convenient to re-write a factorial large order growth expression, with power-law corrections, as an expansion in "diminishing" factorials:

$$b_n \sim \Gamma(n+a) \sum_{m=0}^{\infty} \frac{d_m}{n^m} , \quad n \to +\infty$$

can be written as

$$b_n \sim \sum_{k=0}^{\infty} c_k \, \Gamma(n+a-k) \qquad , \quad n \to +\infty$$

where the coefficients c_k are expressed in terms of the d_m via the Stirling numbers of the first kind (hint: dlmf.26.8.ii):

$$c_k = \sum_{l=0}^k S^{(1)}(k,l) \sum_{j=0}^l (-a)^l \binom{j-l}{j} d_{l-j}$$

Verify this with some examples.

Numerical Exploration of Large Order Growth

Exercise 4.2: The perturbative expansion $C(x) \sim \sum_{n=1}^{\infty} c_n x^n$ determines the anomalous dimension in the Hopf algebraic renormalization of 4 dimensional Yukawa theory. The coefficients c_n are positive integers, enumerating combinatorial objects known as "connected chord diagrams". This sequence is listed on the OEIS as https://oeis.org/A000699.

1. Generate 100 terms using the recursion formula listed on the OEIS and then analyze them using Richardson acceleration to show that

$$c_n \sim \frac{2^{n+\frac{1}{2}} \Gamma\left(n+\frac{1}{2}\right)}{e\sqrt{2\pi}} \left(1 - \frac{\frac{5}{2}}{2\left(n-\frac{1}{2}\right)} - \frac{\frac{43}{8}}{2^2\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)} + O\left(\frac{1}{n^3}\right)\right)$$

- 2. C(x) satisfies a nonlinear ODE: $_{C(x)} \left(1 2x \frac{d}{dx}\right) C(x) = x C(x)$. Show that the first non-perturbative correction term $C_{np}(x)$ satisfies a linear ODE $\frac{d}{dx} \ln (C(x)C_{np}(x)/x) = \frac{1}{2xC(x)}$. Therefore $C_{np}(x)$ is immediately solved in terms of C(x).
- 3. Hence expand $C_{np}(x)$ at small x and compare with part 1.

Exercise 4.3:

1. investigate Darboux's theorem numerically for the hypergeometric function, which has a branch point at t = 1

$${}_{2}F_{1}(a,b,c;t) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \sum_{n=0}^{\infty} \frac{\Gamma(n+a)\Gamma(n+b)}{\Gamma(n+c)n!} t^{n}$$

- 2. Compare with the exact expansion of the hypergeometric function about t = 1 (see dlmf.15.8)
- 3. What happens if a + b c = integer?

Exercise 4.4: Explore the Padé pole structures for various functions with interesting singularities.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

Exercise 4.5: Use the BenderWu package of Sulejmanpasic and Ünsal (https://arxiv.org/abs/1608.08256) to compute many terms of the perturbative expansion of the ground state energy of the anharmonic oscillator, and of the symmetric double-well potential, and use various extrapolation methods to explore the Borel plane structure of the (truncated) Borel transform functions. Comment on the physical meaning of what you find.

Exercise 4.6: Generate a finite amount (e.g. 50 orders) of perturbative data by expanding the function $x^{-\frac{1}{3}} e^x \Gamma(\frac{1}{3}, x)$ as $x \to +\infty$, and use this as input for resummation using the following methods:

(i) optimal truncation; (ii) Padé in the x plane; (iii) Padé in the Borel plane; (iv) Padé in the Borel plane after a conformal map into the unit disc; (v) Padé in the Borel plane after a uniformizing map.

Explore how things change as you change the amount of perturbative data.

Comment on the similarities and differences between the resulting reconstructions of the function.

Comparing Extrapolation Methods

Exercise 4.7: Generate a finite amount (e.g. 20 orders) of perturbative data by expanding the Borel transform B(p) of the Airy function: $B(p) = {}_{2}F_{1}\left(\frac{1}{6}, \frac{5}{6}, 1; -p\right)$, and use this as input for extrapolation using the following methods. Probe specifically the vicinity of the branch point at p = -1 and cut $p \in (-\infty, -1]$

1. Padé

2. Padé after a conformal map into the unit disc

$$p = \frac{4z}{(1-z)^2} \quad \longleftrightarrow \quad z = \frac{\sqrt{1+p}-1}{\sqrt{1+p}+1}$$

3. Padé after a uniformizing map via the elliptic nome function

$$p = -\varphi(z) = -16z + 128z^2 - 704z^3 + \dots \longleftrightarrow z = \exp\left[-\pi \frac{\mathbb{K}(1+p)}{\mathbb{K}(-p)}\right]$$

where $\varphi(z) = \text{InverseEllipticNomeQ}[z]$ in Mathematica.

Summation & extrapolation of Painlevé I

Exercise 4.8: Painlevé I equation: $y''(x) = 6y^2(x) - x$

- 1. Show that the Écalle critical variable is $\frac{(24x)^{5/4}}{30}$
- 2. With the *tritronquée* ansatz

$$y(x) \sim -\sqrt{\frac{x}{6}} \left(1 + \sum_{n=1}^{\infty} c_n \left(\frac{30}{(24x)^{5/4}} \right)^{2n} \right) , \quad x \to +\infty$$

show that the coefficients c_n satisfy the recursion formula:

$$c_n = -4(n-1)^2 c_{n-1} - \frac{1}{2} \sum_{m=2}^{n-2} c_m c_{n-m} , \quad n \ge 3$$

with $c_1 = \frac{4}{25}$ and $c_2 = -\frac{392}{625}$.

3. Show that the large order growth of the coefficients is

$$c_n \sim \frac{1}{\pi} \sqrt{\frac{6}{5\pi}} (-1)^{n+1} \Gamma\left(2n - \frac{1}{2}\right) \left(1 - \frac{\frac{1}{8}}{\left(2n - \frac{3}{2}\right)} + \frac{\frac{9}{128}}{\left(2n - \frac{3}{2}\right)\left(2n - \frac{5}{2}\right)} + \dots\right)$$

Exercise 4.9: Painlevé I equation: $y''(x) = 6y^2(x) - x$

- 1. Find the form of the first non-perturbative correction to the perturbative *tritronquée* solution of the previous problem, and compute the first few fluctuation terms.
- 2. Show how these fluctuation terms relate to the subleading corrections of the large order growth in part 3 of the previous question.

うして ふゆ く 山 マ ふ し マ う く し マ