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Exercises: Introductory Lectures on Resurgence

1. Lecture 1: Airy, Stokes, Borel and Trans-series

2. Lecture 2: Nonlinear Stokes, Painlevé and
Gross-Witten-Wadia Model

3. Lecture 3: QFT example: Euler-Heisenberg Effective Action

4. Lecture 4: Resurgent Extrapolation, Padé & Analytic
Continuation



Large Order/Low Order Resurgence Relations: Bessel Function

Exercise 1.1: the modified Bessel function Iν(x) has the large
x asymptotic expansion (dlmf.10.40.E5):

Iν(x) ∼ ex√
2πx

∞∑
n=0

(−1)n
αn(ν)

xn
, x→ +∞

the coefficients depend on the Bessel index parameter ν

αn(ν) = (−1)n
cos(πν)

π

Γ
(
n+ 1

2 − ν
)

Γ
(
n+ 1

2 + ν
)

2n Γ(n+ 1)

1. Show that the large-order growth (n→∞) is

αn(ν) ∼ 1

π

(−1)n(n− 1)!

2n

(
α0(ν)− 2α1(ν)

(n− 1)
+

22 α2(ν)

(n− 1)(n− 2)
− . . .

)

2. What is the significance of the cos(πν) prefactor?

https://dlmf.nist.gov/10.40.E5


Borel Singularities with a branch cut

Exercise 1.2: Consider the Borel transform B(t) = 1
(t+1)β

,
which has a branch point at t = −1, with exponent 0 < β < 1,
and a branch cut along the negative axis: t ∈ (−∞,−1]:

xβ−1 ex Γ (1− β, x) =

∫ ∞
0

dt e−x t
1

(t+ 1)β

1. Generate an expression for the x→ +∞ asymptotic
expansion of the function xβ−1 ex Γ (1− β, x).

2. Using the discontinuity of the Borel transform function
B(t) = 1

(t+1)β
across the cut, derive the general connection

formula dlmf.8.2.E10 for the incomplete gamma function:

eπ i βΓ
(
1− β, z eπi

)
− e−π i βΓ

(
1− β, z e−πi

)
=

2πi

Γ (β)

https://dlmf.nist.gov/8.2.E10


Borel Singularities and Non-perturbative Terms
Exercise 1.3: Consider the asymptotic expansion of the
trigamma function (Bn (q) is the Bernoulli polynomial)

ψ(1)

(
1 + x

2

)
∼
∞∑
n=0

2n+1Bn
(
1
2

)
xn+1

, x→ +∞

1. Use Borel summation to show that

ψ(1)

(
1 + x

2

)
= 2

∫ ∞
0

dt e−x t
t

sinh(t)

Hint: see dlmf.24.4.E27 & dlmf.24.4.E2.
Note that there is an infinite number of Borel poles.

2. Show that the real part of this function, along the
imaginary axis, has an infinite series of exponential terms

Re

[
ψ(1)

(
1 + i x

2

)]
∼ 0 −2π2

∞∑
k=1

(−1)kk e−k π x , x→ +∞

and show that these terms are required for consistency with
dlmf.5.15.E6, the non-perturbative reflection formula

http://dlmf.nist.gov/24.4.E27
http://dlmf.nist.gov/24.7.E2
https://dlmf.nist.gov/5.15.E6


Non-perturbative Bessel Connection Formula

Exercise 1.4: The modified Bessel function Kν(x) has a Borel
representation (Airy is associated with ν = 1

3) for x > 0

Kν(x) =
√

2πx e−x
∫ ∞
0

dt e−2x t 2F1

(
1

2
− ν, 1

2
+ ν, 1;−t

)
1. Derive the asymptotic expansion:

Kν (x) ∼
( π

2x

) 1
2
e−x

∞∑
k=0

ak(ν)

xk
, x→ +∞

ak(ν) =
cos(π ν)

π

(
−1

2

)k Γ
(
k + 1

2 − ν
)

Γ
(
k + 1

2 + ν
)

Γ(k + 1)

2. Use the discontinuity of the hypergeometric function
(dlmf.15.2.E3) to derive the non-perturbative connection
formula of Kν(x) (dlmf.10.34.E2):

Kν

(
zemπi

)
= e−mνπiKν (z)− πi sin (mνπ) csc (νπ) Iν (z)

https://dlmf.nist.gov/15.2.E3
https://dlmf.nist.gov/10.34.E2


Mathieu P/NP Relation

Exercise 1.5:

1. Translate standard notation for the Mathieu equation
w′′ + (a− 2q cos (2z))w = 0, from
https://dlmf.nist.gov/28.2.E1, into Schrödinger form
−~2

2
d2

dx2ψ(x) + cos(x)ψ(x) = Eψ(x).

2. Hence convert the perturbative small ~ expansion from
https://dlmf.nist.gov/28.8.E1 into an expression for
the first 8 terms of the perturbative energy expansion
Epert(~, N), where N is the band label.

3. Compute the small ~ expansion of

∂Epert

∂N
exp

[
8

∫ ~

0

1

~3

(
∂Epert

∂N
− ~ +

~2

8

(
N +

1

2

))]
and compare with the leading non-perturbative Mathieu
splitting in https://dlmf.nist.gov/28.8.E2

https://dlmf.nist.gov/28.2.E1
https://dlmf.nist.gov/28.8.E1
https://dlmf.nist.gov/28.8.E2


Resurgence in Nonlinear ODEs: Painlevé II = “nonlinear Airy”

y′′(x) = x y(x) + 2 y3(x)

Exercise 2.1:

1. Show that the general Painlevé II solution has a
meromorphic expansion with only poles for moveable
singularities (those associated with boundary conditions):

y(x) =
1

x− x0
− x0

6
(x− x0)−

1

4
(x− x0)2 + h0(x− x0)3 +

x0
72

(x− x0)4 + . . .

2. Show that all the coefficients of this expansion are
expressed in terms of the pole location x0 and the
coefficient h0 of the cubic term.

3. Change the nonlinearity of the equation from y3(x) to
y4(x) and show that this Painlevé integrability condition
fails (comment: nevertheless, despite being nonintegrable,
all the subsequent resurgent trans-series analysis still holds)



Resurgence in Nonlinear ODEs: exercise

Exercise 2.2:

1. Generate many terms, and verify the large order behavior
of the coefficients of the formal x→ −∞ series for the
Painlevé II Hastings-McLeod solution

2. Numerically identify the Stokes constant to high precision

0.1466323... =
1

π

√
2

3π

3. Confirm the large-order/low-order resurgence relation



Gross-Witten-Wadia Matrix Model and Painlevé III

Exercise 2.3: Consider the Painlevé III (Okamoto form) for
the GWW model:

t2∆′′ + t∆′ +
N2∆

t2
(
1−∆2

)
=

∆

1−∆2

(
N2 − t2

(
∆′
)2)

1. Show that in the t > 1 region this equation linearizes to

t2∆′′ + t∆′ +
N2

t2
(
1− t2

)
∆ ≈ 0

which is solved by the Bessel functions JN
(
N
t

)
, YN

(
N
t

)
2. Show that for t < 1 the dominant large N solution is

algebraic, ∆(t) ∼
√

1− t, from which the formal large N
series solution can be generated.



Resurgence Relation in the GWW Model

Exercise 2.4:

1. Generate many terms of the formal large N solution for
∆(t,N) in the small t regime

∆(t,N) ∼
√

1− t
∞∑
n=0

d
(0)
n (λ)

N2n

2. Derive the form of the first non-perturbative correction to
this formal large N expansion, including the first few
fluctuation corrections:

∆NP (t,N) ∼ f(t) e−N Sweak(t)
∞∑
n=0

d
(1)
n (λ)

Nn
+ . . .

3. Show that the subleading corrections to the large n growth
of the coefficient functions d(0)n (λ) are associated with the
expansion terms d(1)n (λ) of the first non-perturbative
correction to the formal large N expansion.



Analytic Continuation of the Hurwitz Zeta Function

Exercise 3.1: Analytically continue the integral representation
of the Hurwitz zeta function (for Re(s) > 1, Re(z) > 0)

ζH(s, z) =

∞∑
n=0

1

(n+ z)s
=

1

Γ(s)

∫ ∞
0

dt e−z t
ts−1

1− e−t
(1)

into the region Re(s) > −2 to obtain

ζH(s, z) =
z1−s

s− 1
+
z−s

2
+
s z−1−s

12

+
2s−1

Γ(s)

∫ ∞
0

dt

t1−s
e−2z t

(
coth(t)− 1

t
− t

3

)
(2)

Hence show that ζH(−1, z) = − 1
12 + z

2 −
z2

2 , and

ζ ′H(−1, z) =
1

12
− z2

4
− ζH(−1, z) ln z

−1

4

∫ ∞
0

dt

t2
e−2z t

(
coth(t)− 1

t
− t

3

)
(3)



Euler-Heisenberg via the Zeta Function

Exercise 3.2: In the zeta function method we define

ln det(operator) := −ζ ′(0) where ζ(s) :=
∑

spectrumλ

1

λs

Given that the eigenvalues of the Dirac operator in a constant
magnetic field B are given by the Landau level result

λ±n = m2 + p2⊥ + eB(2n+ 1± 1) , n = 0, 1, 2, ...

with the Landau degeneracy factor eB
2π , derive the

Euler-Heisenberg effective action L by showing that

L =
e2B2

2π2

{
ζ ′H

(
−1,

m2

2eB

)
+ ζH

(
−1,

m2

2eB

)
ln

(
m2

2eB

)
− 1

12
+

1

4

(
m2

2eB

)2
}

(4)



Euler-Heisenberg and the Barnes Gamma Function

Exercise 3.3:

1. Show that the Euler-Heisenberg effective action can be
expressed in terms of the log of the Barnes gamma function
(https://dlmf.nist.gov/5.17)

L(b) =
b2

2π2

[
− log(A) +

1

16b2
+

(
− 1

8b2
+

1

4b
− 1

12

)
log

(
1

2b

)
− log

(
G

(
1

2b

))
−
(

1− 1

2b

)
log

(
Γ

(
1

2b

))]
where b ≡ eB

m2 .

2. Hence study the small b and large b expansions, showing
that the strong field expansion has a finite radius of
convergence.

https://dlmf.nist.gov/5.17


Euler-Heisenberg for Scalar QED

Exercise 3.4: For scalar QED the spectrum of the
Klein-Gordon operator in a constant B field has no spin
projection term, so it is given by

λn = m2 + p2⊥ + eB(2n+ 1) , n = 0, 1, 2, ...

1. Hence use the zeta function method to show that the EH
effective action for scalar QED has the integral
representation

Lscalar =
e2B2

16π2

∫ ∞
0

ds
1

s2

(
1

sinh(s)
− 1

s
+
s

6

)
2. Generate the asymptotic weak field expansion of the scalar

QED effective action and comparee the large-order behavior
of the expansion coefficients with the spinor QED case.

3. Compute the leading strong-field behavior by inspection of
the Borel integral representation, and relate this to the
scalar QED beta function.



Resurgence in the Locally Constant Field Approximation (LCFA)

Exercise 3.5: Consider an electric field, directed in the z
direction, with a one-dimensional cosine inhomogeneity:
E(t) = E cos(ωt).

1. Compute the LCFA effective action by integrating the
Euler-Heisenberg effective action over one period of the
field, with the constant field replaced by its time-dependent
form.

2. Show that the coefficients of the weak field expansion grow
factorially with perturbative order, and with subleading
corrections of both power-law and exponential form.
Compute the first few power-law correction terms.

3. Demonstrate the resurgence relation by showing that the
power-law corrections in the previous part are related to
the fluctuations about the instanton factors for the
imaginary part of the effective action.



Worldline Instantons in the Euler-Heisenberg Effective Action

Exercise 3.6: Consider the classical Euclidean equations of
motion for scalar QED in a (generally inhomogeneous)
background electromagnetic field :

ẍµ = 2ieFµν(x) ẋν

where the dots refers to derivatives wrt the proper-time and xµ
is the 4 dim spacetime coordinate.

1. Show that for any solution ẋ2cl is a constant of motion.

2. Show that the closed trajectory (with period T ) for a
constant E field is a circle, and evaluate the classical action.

3. Show that for a time dependent (but spatially constant)
linearly polarized electric field, with Euclidean vector
potential A3 = −iEω f(ω x4), where ω is a frequency scale
parameter, the classical action can be expressed as

S[xcl](T ) = −
ẋ2cl
4
T +

1

2

∫ T

0
dτ (ẋcl4 )2



Resurgent form of large order growth

Exercise 4.1: In resurgence it is convenient to re-write a
factorial large order growth expression, with power-law
corrections, as an expansion in "diminishing" factorials:

bn ∼ Γ(n+ a)

∞∑
m=0

dm
nm

, n→ +∞

can be written as

bn ∼
∞∑
k=0

ck Γ(n+ a− k) , n→ +∞

where the coefficients ck are expressed in terms of the dm via
the Stirling numbers of the first kind (hint: dlmf.26.8.ii):

ck =

k∑
l=0

S(1)(k, l)

l∑
j=0

(−a)l
(
j − l
j

)
dl−j

Verify this with some examples.

https://dlmf.nist.gov/26.8.ii


Numerical Exploration of Large Order Growth

Exercise 4.2: The perturbative expansion C(x) ∼
∑∞

n=1 cn x
n

determines the anomalous dimension in the Hopf algebraic
renormalization of 4 dimensional Yukawa theory. The
coefficients cn are positive integers, enumerating combinatorial
objects known as "connected chord diagrams". This sequence is
listed on the OEIS as https://oeis.org/A000699.

1. Generate 100 terms using the recursion formula listed on
the OEIS and then analyze them using Richardson
acceleration to show that

cn ∼
2
n+1

2 Γ
(
n + 1

2

)
e
√

2π

1−
5
2

2
(
n− 1

2

) − 43
8

22
(
n− 1

2

) (
n− 3

2

) + O

(
1

n3

)

2. C(x) satisfies a nonlinear ODE: C(x)
(
1− 2x d

dx

)
C(x) = x− C(x).

Show that the first non-perturbative correction term Cnp(x)
satisfies a linear ODE d

dx ln (C(x)Cnp(x)/x) = 1
2xC(x) .

Therefore Cnp(x) is immediately solved in terms of C(x).

3. Hence expand Cnp(x) at small x and compare with part 1.

https://oeis.org/A000699


Darboux Theorem

Exercise 4.3:

1. investigate Darboux’s theorem numerically for the
hypergeometric function, which has a branch point at t = 1

2F1 (a, b, c; t) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(n+ a)Γ(n+ b)

Γ(n+ c)n!
tn

2. Compare with the exact expansion of the hypergeometric
function about t = 1 (see dlmf.15.8)

3. What happens if a+ b− c = integer?

https://dlmf.nist.gov/15.8


Exploring Padé Approximations

Exercise 4.4: Explore the Padé pole structures for various
functions with interesting singularities.



Analyzing Perturbative data from the Bender-Wu Package

Exercise 4.5: Use the BenderWu package of Sulejmanpasic and
Ünsal (https://arxiv.org/abs/1608.08256) to compute many
terms of the perturbative expansion of the ground state energy
of the anharmonic oscillator, and of the symmetric double-well
potential, and use various extrapolation methods to explore the
Borel plane structure of the (truncated) Borel transform
functions. Comment on the physical meaning of what you
find.

https://arxiv.org/abs/1608.08256


Comparing Resummation methods

Exercise 4.6: Generate a finite amount (e.g. 50 orders) of
perturbative data by expanding the function x−

1
3 ex Γ

(
1
3 , x
)
as

x→ +∞, and use this as input for resummation using the
following methods:
(i) optimal truncation; (ii) Padé in the x plane; (iii) Padé in the
Borel plane; (iv) Padé in the Borel plane after a conformal map
into the unit disc; (v) Padé in the Borel plane after a
uniformizing map.
Explore how things change as you change the amount of
perturbative data.
Comment on the similarities and differences between the
resulting reconstructions of the function.



Comparing Extrapolation Methods

Exercise 4.7: Generate a finite amount (e.g. 20 orders) of
perturbative data by expanding the Borel transform B(p) of the
Airy function: B(p) = 2F1

(
1
6 ,

5
6 , 1;−p

)
, and use this as input

for extrapolation using the following methods. Probe specifically
the vicinity of the branch point at p = −1 and cut p ∈ (−∞,−1]

1. Padé

2. Padé after a conformal map into the unit disc

p =
4z

(1− z)2
←→ z =

√
1 + p− 1√
1 + p+ 1

3. Padé after a uniformizing map via the elliptic nome
function

p = −ϕ(z) = −16z+128z2−704z3+...←→ z = exp

[
−π K(1 + p)

K(−p)

]
where ϕ(z) = InverseEllipticNomeQ[z] in Mathematica.



Summation & extrapolation of Painlevé I

Exercise 4.8: Painlevé I equation: y′′(x) = 6 y2(x)− x

1. Show that the Écalle critical variable is (24x)5/4

30

2. With the tritronquée ansatz

y(x) ∼ −
√
x

6

1 +

∞∑
n=1

cn

(
30

(24x)5/4

)2n
 , x→ +∞

show that the coefficients cn satisfy the recursion formula:

cn = −4(n− 1)2cn−1 −
1

2

n−2∑
m=2

cm cn−m , n ≥ 3

with c1 = 4
25 and c2 = −392

625 .

3. Show that the large order growth of the coefficients is

cn ∼
1

π

√
6

5π
(−1)n+1Γ

(
2n− 1

2

)(
1−

1
8(

2n− 3
2

) +
9

128(
2n− 3

2

) (
2n− 5

2

) + . . .

)



Summation & extrapolation of Painlevé I

Exercise 4.9: Painlevé I equation: y′′(x) = 6 y2(x)− x

1. Find the form of the first non-perturbative correction to the
perturbative tritronquée solution of the previous problem,
and compute the first few fluctuation terms.

2. Show how these fluctuation terms relate to the subleading
corrections of the large order growth in part 3 of the
previous question.


