
Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information
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Can we classically simulate scattering of composite particles from the Standard Model?
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Lattice gauge theory methods based on Monte-Carlo sampling in Euclidean (imaginary) time have 
enabled this…but only at low energies so far…
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large quark masses. Clearly, it is the value of g
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with the physical quark masses that is of phenomenolog-
ical interest and, a priori, the quark-mass dependence of
such an LEC is unknown. Therefore, an attempt to con-
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at the quark masses of this work will likely have little
bearing on the physical value of the coupling.

Nonetheless, one may still obtain an estimate of the
value of this LEC at the quark-mass value of this work,
in which case the corresponding values of two-nucleon
scattering parameters need to be used in the matching
relation. To date, there are two classes of LQCD compu-
tations of low-energy two-nucleon spectra and scattering
parameters at m⇡ ⇡ 800 MeV via the use of Lüscher’s
finite-volume formalism. The earlier computations in-
volve asymmetric two-nucleon correlation functions, and
point to the existence of rather deep bound states in
both the spin-singlet and spin-triplet two-nucleon chan-
nels [44, 50, 52, 55, 67, 68]. These were subsequently
used to constrain the relevant LECs in electromagnetic
and weak reactions of two-nucleon systems at various
pion masses and allowed preliminary extrapolations to
the physical point [20, 21, 45, 69, 70]. However, at
the finite-volume ground-state two-nucleon energy, which
sets the kinematics of the amplitude in this work, the pi-
onless EFT converges poorly when using the values for
the e↵ective range and scattering length in those stud-
ies. Therefore, obtaining the desired 0⌫��-decay ampli-
tude using those results requires extensions of the current
leading-order matching formalism, or the use of alternate
power-counting schemes. The other set of calculations at
m⇡ ⇡ 800 MeV build symmetric correlation functions to
enable accessing the low-lying spectra via a variational
method. These lead to upper bounds on ground-state en-
ergies that are also consistent with less bound or unbound
two-nucleon systems within uncertainties [54, 62, 71]. No
bound states are seen in complementary studies using the
Bethe-Salpeter potential method [72, 73]. While the as-
sociated scattering length and e↵ective range for these
bounds allow the use of the leading-order matching for-
malism here, it is non-trivial to turn variational bounds
on the energies to bounds on the desired LEC of the EFT,
given the nonlinearity of the matching relation.

Despite these caveats, the matching to the EFT am-
plitude using the above calculation of Ann!pp, leads to
g̃

NN
⌫ (µ = m⇡ = 806 MeV) values that di↵er by a factor of

four depending on whether the non-variational determi-
nations of two-nucleon energy and scattering parameters
or those from the variational studies are used (assuming
the variational bounds are saturated). In both cases, the
extracted values are within an order of magnitude of the
phenomenological estimate of Ref. [64]. Consequently, in-
creasingly controlled determinations of the two-nucleon
quantities that are input to the matching relation are

needed for a robust determination of this LEC. For cal-
culations with physical quark masses, such two-nucleon
quantities are well determined phenomenologically, which
would ease the matching procedure.

Improving on this situation thus requires calculations
of Ann!pp and the finite-volume two-nucleon spectrum
at or near the physical quark masses. A point worth
emphasizing is that the pionless EFT converges at the
finite-volume ground-state energy of the spin-singlet two-
nucleon system, provided that the lattice volume is suf-
ficiently large, hence putting another requirement on fu-
ture calculations. For an exploration of the impact of
volume on the determination of g

NN
⌫ (µ) at the physical

values of quark masses, see Ref. [37].

V. SUMMARY AND CONCLUSION

Within the coming few decades, the sensitivity of exper-
imental neutrinoless double-beta decay searches is pro-
jected to increase by several orders of magnitude, corre-
sponding to an order of magnitude decrease in the e↵ec-
tive 0⌫�� masses that can be probed [16]. Given current
best estimates of nuclear matrix elements, these exper-
iments will likely—but not definitively—be sensitive to
the entirety of the parameter space for the inverted hi-
erarchy of neutrino masses. These searches thus have a
large discovery potential but also present the possibility
of definitively ruling out the Majorana nature of the neu-
trino if they find no such decays and if neutrino oscillation
experiments confirm the inverted mass hierarchy. Thus,
either positive or negative results in next-generation ex-
periments will shed crucial light on this problem provided
that the dominant mode of decay is via the exchange of
a light Majorana neutrino and that the corresponding
nuclear matrix elements can be computed accurately to
extract m�� from measured (bounds on) half-lives.

Starting with the low-energy constants from nuclear
e↵ective field theories, nuclear many-body theories can
provide ab initio calculations of binding energies and
0⌫�� matrix elements in light to moderate (A . 48)
nuclei [74, 75]. For heavier nuclei (16 . A . 132),
EFT-based approximations to nuclear physics can pre-
dict 0⌫�� half-lives with more control than the nuclear
models currently used [76–78]. As such, determining
these low-energy constants in the timescales relevant for
these next-generation experiments is of substantial im-
portance to the nuclear- and particle-physics communi-
ties [16, 17].

This work presents the first LQCD calculation of the
long-distance 0⌫��-decay amplitude of a nuclear system,
yielding the result

a
2Ann!pp = 0.078(16) (51)

on a single LQCD ensemble with a lattice spacing of a =
0.145 fm, a lattice volume of (L/a)3⇥T/a = 323⇥48, and
quark masses corresponding to a pion mass of m⇡ = 806

⌫e

e+

L1,A = 3.9(0.1)(1.0)(0.3)(0.9) fm3 µ = mphys.
⇡ = 140 MeV@

Savage et (ZD) [NPLQCD], Phys. Rev. Lett. 
119,062002 (2017).

TWO EXAMPLES: REACTIONS OF NUCLEONS
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Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information
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There are mainly two issues… 

i) making complicated states, i.e., high-energy protons, or heavy ions, etc., 
 ii) imaginary time nature of the classical Monte-Carlo calculations…no access to states as a 
function of Minkowski time elapsed after the collision!

What about high energies, like events at the Large Hadron Collider or the Relativistic 
Heavy-Ion Collider?
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CLASSICAL COMPUTATIONS OF NUCLEI BASED 
ON LATTICE GAUGE THEORY IS HARD.

i) The complexity of systems grows factorially with 
the number of quarks in the nucleus.

iii) Excitation energies of nuclei are orders of 
magnitudes smaller than their masses.

ii) There is a severe (exponentially bad in atomic 
number) signal-to-noise degradation.
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No access to real-time non-equilibrium dynamics of matter in heavy-ion collisions or after 
the Big Bang…

…and to a wealth of dynamical response functions, transport properties, structure functions, etc.

eiS[U,qq̄]

Path integral formulation:

U(t) = e�iHt

Hamiltonian evolution:

SIGN PROBLEM MAKES CONVENTIONAL LATTICE-GAUGE-THEORY 
METHODS INTRACTABLE.



Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information

2/23

/

Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information

2/23

Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information

2/23

Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information

2/23

STUDY HIGH-ENERGY, HIGH-DENSITY PHENOMENA 
VIA QUANTUM SIMULATION?

Bauer, ZD, Klco, and Savage, Nature 
Rev. Phys. 5 (2023) 7, 420-432.

Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information

2/23



i) Hamiltonian vs. Lagrangian formulation of LGTs 
ii) Kogut-Susskind formulation: Basis states, Hilbert space, and constraints 

An Abelian case: U(1) LGT 
A non-Abelian case: SU(2) LGT 

iii) Kogut-Susskind formulation: Hamiltonian 
iv) A variety of formulations: a brief overview 
v) Classical Hamiltonian-simulation methods: a brief discussion

OUTLINE OF PART I: 
HAMILTONIAN FORMULATION OF LATTICE GAUGE THEORIES



i) Hamiltonian vs. Lagrangian formulation of LGTs 
ii) Kogut-Susskind formulation: Basis states, Hilbert space, and constraints 

An Abelian case: U(1) LGT 
A non-Abelian case: SU(2) LGT 

iii) Kogut-Susskind formulation: Hamiltonian 
iv) A variety of formulations: a brief overview 
v) Classical Hamiltonian-simulation methods: a brief discussion

OUTLINE OF PART I: 
HAMILTONIAN FORMULATION OF LATTICE GAUGE THEORIES



Path integral (Lagrangian)

Degrees of 
freedom

Spacetime 
signature

Starting 
point

Dynamical 
quantities

Hilbert 
space

Fields and their 
derivatives

Fields and their 
conjugate variables

Often Euclidean Minkowski

Not explicitly 
constructed/relevant

Expectation 
values

Sometimes accessible with 
indirect methods, e.g., 
Luescher method.

Hamiltonian

Computational 
methods

<latexit sha1_base64="bETCvBbufwmOenG9GGapD9hWjZk=">AAACDnicbVDLSsNAFJ3UV62vqEs3g6XgQkoioi6Lbly4qGAfkIRyM520QycPZiaFEvoFbvwVNy4UcevanX/jpM1CWw8MHM659869x084k8qyvo3Syura+kZ5s7K1vbO7Z+4ftGWcCkJbJOax6PogKWcRbSmmOO0mgkLoc9rxRze53xlTIVkcPahJQr0QBhELGAGlpZ5Zc0NQQwI8u5s67hhEMmSnbgJCMeC4ELyeWbXq1gx4mdgFqaICzZ755fZjkoY0UoSDlI5tJcrL8rGE02nFTSVNgIxgQB1NIwip9LLZOVNc00ofB7HQL1J4pv7uyCCUchL6ujJfXi56ufif56QquPIyFiWpohGZfxSkHKsY59ngPhOUKD7RBIhgeldMhiCAKJ1gRYdgL568TNpndfuibt+fVxvXRRxldISO0Qmy0SVqoFvURC1E0CN6Rq/ozXgyXox342NeWjKKnkP0B8bnDwKbnLY=</latexit>

L[', @']

<latexit sha1_base64="MFLkL0EOeIdsFAkjr/sPf+5S7sI=">AAACDHicbVDLSgMxFM34rPVVdekmWARXZUZEXRbduLOCfUCnlEx624ZmMkNyRyjTfoAbf8WNC0Xc+gHu/BvTaRfaeiBwcs65JPcEsRQGXffbWVpeWV1bz23kN7e2d3YLe/s1EyWaQ5VHMtKNgBmQQkEVBUpoxBpYGEioB4PriV9/AG1EpO5xGEMrZD0luoIztFK7UPQlUz0J1I+NoCPq9xnSWzrKrr7OPJtyS24Guki8GSmSGSrtwpffiXgSgkIumTFNz42xlTKNgksY5/3EQMz4gPWgaaliIZhWmi0zpsdW6dBupO1RSDP190TKQmOGYWCTIcO+mfcm4n9eM8HuZSsVKk4QFJ8+1E0kxYhOmqEdoYGjHFrCuBb2r5T3mWYcbX95W4I3v/IiqZ2WvPOSd3dWLF/N6siRQ3JETohHLkiZ3JAKqRJOHskzeSVvzpPz4rw7H9PokjObOSB/4Hz+AH2GmqM=</latexit>

h |Ô| i
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FOCUSING ON A SIMPLE EXAMPLE: THE 1+1 DIMENSIONAL QUANTUM 
ELECTRODYNAMICS COUPLED TO MATTER (SCHWINGER MODEL)
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FIG. 9. (a) The (absolute value) of the overlap between a time-evolved string state | stri and a fully-occupied mesonic state
| mesi, Pstring!mesons ⌘ | h mes|e�iHQLMtQLM | stri |, as a function of the (scaled dimensionless) time tQLM for a lattice with
Nstag = 4 fermion sites, corresponding to N = 7 ion sites. For the dashed and dotted curves, the Hamiltonian must be
replaced with the non-exact H 0

QLM and H
00
QLM Hamiltonians, respectively. (b) The same quantity plotted for Nstag = 6 fermion

sites, corresponding to N = 11 ion sites. The graphical representations of states, both in terms of the electron, positron,
and electric-field strings and in terms of the (quasi)spins of each corresponding ions are shown for the initial string state,
and for a fully-occupied mesonic state whose probability amplitude is maximum at the points denoted. (c) The expectation
value of the lattice sum of the (absolute value of) the Gauss’s law operator between a time-evolved string state, h

P
i
|Gi|i ⌘

h str|eiHQLMtQLM 1
2Nstag�3

PNstag�1
i=1 |Gi|e�iHQLMtQLM | stri forNstag = 4 fermion sites, corresponding toN = 7 ion sites. For the

dashed and dotted curves, the Hamiltonian must be replaced with the non-exact H 0
QLM and H

00
QLM Hamiltonians, respectively.

(d) The same quantity as in (c) for Nstag = 6 fermion sites, corresponding to N = 11 ion sites. The maximum breakdown of
the Gauss’s law corresponds to h

P
i
|Gi|i = 1.

teractions. Additionally, single-spin interactions on all
ions are included to modify the mass term with uniform
coe�cients that are 10 and 5 times weaker than the true

mass. Explicitly,

H 0(00)

QLM
= HQLM +
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a physical site staggered site x+ 1staggered site x

THE BASICS

Staggering: Multi-component Dirac 
fermion field is split to single-component 
fermion fields each occupying one site. 
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THE BASICS

<latexit sha1_base64="zEFoURehTLQwO2QeFrMSEhbJj1k=">AAAB7nicbVBNSwMxEJ34WetX1aOXYBHqpeyKqMeiF48V7Ae0S8mm2TY0mw1JVixLf4QXD4p49fd489+YtnvQ1gcDj/dmmJkXKsGN9bxvtLK6tr6xWdgqbu/s7u2XDg6bJkk1ZQ2aiES3Q2KY4JI1LLeCtZVmJA4Fa4Wj26nfemTa8EQ+2LFiQUwGkkecEuukVlcZXnk665XKXtWbAS8TPydlyFHvlb66/YSmMZOWCmJMx/eUDTKiLaeCTYrd1DBF6IgMWMdRSWJmgmx27gSfOqWPo0S7khbP1N8TGYmNGceh64yJHZpFbyr+53VSG10HGZcqtUzS+aIoFdgmePo77nPNqBVjRwjV3N2K6ZBoQq1LqOhC8BdfXibN86p/WfXvL8q1mzyOAhzDCVTAhyuowR3UoQEURvAMr/CGFHpB7+hj3rqC8pkj+AP0+QPLbo83</latexit>

 (x)
<latexit sha1_base64="oXyKbF6qntfemKyTgoaH06HZzfQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahIpTdIuqx6MVjBfsh7VKyabYNTbJLkhXL0l/hxYMi Xv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1SpVkk7804pr7AA8lCRrCx0kM31qz8dOad9oolt+LOgJaJl5ESZKj3il/dfkQSQaUhHGvd8dzY+ClWhhFOJ4VuommMyQgPaMdSiQXVfjo7eIJOrNJHYaRsSYNm6u+JFAutxyKwnQKboV70puJ/Xi cx4ZWfMhknhkoyXxQmHJkITb9HfaYoMXxsCSaK2VsRGWKFibEZFWwI3uLLy6RZrXgXFe/uvFS7zuLIwxEcQxk8uIQa3EIdGkBAwDO8wpujnBfn3fmYt+acbOYQ/sD5/AGl5o+n</latexit>

 (x+ 1)



· · · · · ·

THE BASICS

<latexit sha1_base64="zEFoURehTLQwO2QeFrMSEhbJj1k=">AAAB7nicbVBNSwMxEJ34WetX1aOXYBHqpeyKqMeiF48V7Ae0S8mm2TY0mw1JVixLf4QXD4p49fd489+YtnvQ1gcDj/dmmJkXKsGN9bxvtLK6tr6xWdgqbu/s7u2XDg6bJkk1ZQ2aiES3Q2KY4JI1LLeCtZVmJA4Fa4Wj26nfemTa8EQ+2LFiQUwGkkecEuukVlcZXnk665XKXtWbAS8TPydlyFHvlb66/YSmMZOWCmJMx/eUDTKiLaeCTYrd1DBF6IgMWMdRSWJmgmx27gSfOqWPo0S7khbP1N8TGYmNGceh64yJHZpFbyr+53VSG10HGZcqtUzS+aIoFdgmePo77nPNqBVjRwjV3N2K6ZBoQq1LqOhC8BdfXibN86p/WfXvL8q1mzyOAhzDCVTAhyuowR3UoQEURvAMr/CGFHpB7+hj3rqC8pkj+AP0+QPLbo83</latexit>

 (x)
<latexit sha1_base64="oXyKbF6qntfemKyTgoaH06HZzfQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahIpTdIuqx6MVjBfsh7VKyabYNTbJLkhXL0l/hxYMi Xv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1SpVkk7804pr7AA8lCRrCx0kM31qz8dOad9oolt+LOgJaJl5ESZKj3il/dfkQSQaUhHGvd8dzY+ClWhhFOJ4VuommMyQgPaMdSiQXVfjo7eIJOrNJHYaRsSYNm6u+JFAutxyKwnQKboV70puJ/Xi cx4ZWfMhknhkoyXxQmHJkITb9HfaYoMXxsCSaK2VsRGWKFibEZFWwI3uLLy6RZrXgXFe/uvFS7zuLIwxEcQxk8uIQa3EIdGkBAwDO8wpujnBfn3fmYt+acbOYQ/sD5/AGl5o+n</latexit>

 (x+ 1)

<latexit sha1_base64="1q6BcBvF2e4EyTAsUia8x3rRI4w=">AAACB3icbVBNS8MwGE7n15xfVY+CBIcwQUYrol6EoRePE9wHrHWkadqFpWlJUnGU3bz4V7x4UMSrf8Gb/8Z060GnD4Q8eZ735c37eAmjUlnWl1Gam19YXCovV1ZW19Y3zM2ttoxTgUkLxywWXQ9JwignLUUVI91EEBR5jHS84WXud+6IkDTmN2qUEDdCIacBxUhpqW/uOhl0Eklr9weH+X3r+CgMidBvZ3xu9c2qVbcmgH+JXZAqKNDsm5+OH+M0IlxhhqTs2Vai3AwJRTEj44qTSpIgPEQh6WnKUUSkm032GMN9rfgwiIU+XMGJ+rMjQ5GUo8jTlRFSAznr5eJ/Xi9VwZmbUZ6kinA8HRSkDKoY5qFAnwqCFRtpgrCg+q8QD5BAWOnoKjoEe3blv6R9VLdP6vb1cbVxUcRRBjtgD9SADU5BA1yBJmgBDB7AE3gBr8aj8Wy8Ge/T0pJR9GyDXzA+vgFH2ZhM</latexit>

{ (x), †(x)} = 0
<latexit sha1_base64="NDYzpDPf4NReujBVQrH7hehsVpg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreVdVrXFZqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBfJWMuw==</latexit>

1

All other anticommutations are zero.



· · · · · ·

THE BASICS

<latexit sha1_base64="zEFoURehTLQwO2QeFrMSEhbJj1k=">AAAB7nicbVBNSwMxEJ34WetX1aOXYBHqpeyKqMeiF48V7Ae0S8mm2TY0mw1JVixLf4QXD4p49fd489+YtnvQ1gcDj/dmmJkXKsGN9bxvtLK6tr6xWdgqbu/s7u2XDg6bJkk1ZQ2aiES3Q2KY4JI1LLeCtZVmJA4Fa4Wj26nfemTa8EQ+2LFiQUwGkkecEuukVlcZXnk665XKXtWbAS8TPydlyFHvlb66/YSmMZOWCmJMx/eUDTKiLaeCTYrd1DBF6IgMWMdRSWJmgmx27gSfOqWPo0S7khbP1N8TGYmNGceh64yJHZpFbyr+53VSG10HGZcqtUzS+aIoFdgmePo77nPNqBVjRwjV3N2K6ZBoQq1LqOhC8BdfXibN86p/WfXvL8q1mzyOAhzDCVTAhyuowR3UoQEURvAMr/CGFHpB7+hj3rqC8pkj+AP0+QPLbo83</latexit>

 (x)
<latexit sha1_base64="oXyKbF6qntfemKyTgoaH06HZzfQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahIpTdIuqx6MVjBfsh7VKyabYNTbJLkhXL0l/hxYMi Xv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1SpVkk7804pr7AA8lCRrCx0kM31qz8dOad9oolt+LOgJaJl5ESZKj3il/dfkQSQaUhHGvd8dzY+ClWhhFOJ4VuommMyQgPaMdSiQXVfjo7eIJOrNJHYaRsSYNm6u+JFAutxyKwnQKboV70puJ/Xi cx4ZWfMhknhkoyXxQmHJkITb9HfaYoMXxsCSaK2VsRGWKFibEZFWwI3uLLy6RZrXgXFe/uvFS7zuLIwxEcQxk8uIQa3EIdGkBAwDO8wpujnBfn3fmYt+acbOYQ/sD5/AGl5o+n</latexit>

 (x+ 1)
<latexit sha1_base64="kgQM31VN+rJlo1jQoCQWMi5VjPw=">AAACGHicbVDLSgNBEJyNrxhfUY9eBoMQwcRdEfUiBL14jGAekA1hdtKbDJmdXWZmhbDJZ3jxV7x4UMRrbv6Nk4egiQUNRVU33V1exJnStv1lpZaWV1bX0uuZjc2t7Z3s7l5VhbGkUKEhD2XdIwo4E1DRTHOoRxJI4HGoeb3bsV97BKlYKB50P4JmQDqC+YwSbaRW9tSNFMMDH7uSiA4HfJ13Cm4buCatxD+xh8d4gP2C8+O3sjm7aE+AF4kzIzk0Q7mVHbntkMYBCE05Uarh2JFuJkRqRjkMM26sICK0RzrQMFSQAFQzmTw2xEdGaWM/lKaExhP190RCAqX6gWc6A6K7at4bi/95jVj7V82EiSjWIOh0kR9zrEM8Tgm3mQSqed8QQiUzt2LaJZJQbbLMmBCc+ZcXSfWs6FwUnfvzXOlmFkcaHaBDlEcOukQldIfKqIIoekIv6A29W8/Wq/VhfU5bU9ZsZh/9gTX6BnKsniY=</latexit>

 |fi = (1� �f,0)|f � 1i
<latexit sha1_base64="LFjn+IVq3GbHrGYb/jzHTdUVrHA=">AAACIHicbVDLSitBEO3xdTW+oi7dNAZBUcO0yNWNILpxqWBUyMRQ01MzNvb0DN09QhjzKW78FTcu7kV0p19jJ0bwdaDgcE4VVXXCXApjff/FGxoeGR37Mz5RmZyanpmtzs2fmqzQHBs8k5k+D8GgFAobVliJ57lGSEOJZ+HVQc8/u0ZtRKZObCfHVgqJErHgYJ3Urm4HuREXQQRJgprexDTQoBKJdHeFbQQRSgvtMl5n3VV6Q+M19uG3qzW/7vdBfxI2IDUywFG7+hxEGS9SVJZLMKbJ/Ny2StBWcIndSlAYzIFfQYJNRxWkaFpl/8EuXXZKRONMu1KW9tXPEyWkxnTS0HWmYC/Nd68n/uY1CxvvtEqh8sKi4u+L4kJSm9FeWjQSGrmVHUeAa+FupfwSNHDrMq24ENj3l3+S0806+1tnx1u1vf1BHONkkSyRFcLINtkjh+SINAgnt+Se/CP/vTvvwXv0nt5bh7zBzAL5Au/1Df4moZk=</latexit>

 †|fi = (1� �f,1)|f + 1i

Fermions can have occupation number zero or one.



· · · · · ·
<latexit sha1_base64="zEFoURehTLQwO2QeFrMSEhbJj1k=">AAAB7nicbVBNSwMxEJ34WetX1aOXYBHqpeyKqMeiF48V7Ae0S8mm2TY0mw1JVixLf4QXD4p49fd489+YtnvQ1gcDj/dmmJkXKsGN9bxvtLK6tr6xWdgqbu/s7u2XDg6bJkk1ZQ2aiES3Q2KY4JI1LLeCtZVmJA4Fa4Wj26nfemTa8EQ+2LFiQUwGkkecEuukVlcZXnk665XKXtWbAS8TPydlyFHvlb66/YSmMZOWCmJMx/eUDTKiLaeCTYrd1DBF6IgMWMdRSWJmgmx27gSfOqWPo0S7khbP1N8TGYmNGceh64yJHZpFbyr+53VSG10HGZcqtUzS+aIoFdgmePo77nPNqBVjRwjV3N2K6ZBoQq1LqOhC8BdfXibN86p/WfXvL8q1mzyOAhzDCVTAhyuowR3UoQEURvAMr/CGFHpB7+hj3rqC8pkj+AP0+QPLbo83</latexit>

 (x)
<latexit sha1_base64="oXyKbF6qntfemKyTgoaH06HZzfQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahIpTdIuqx6MVjBfsh7VKyabYNTbJLkhXL0l/hxYMi Xv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1SpVkk7804pr7AA8lCRrCx0kM31qz8dOad9oolt+LOgJaJl5ESZKj3il/dfkQSQaUhHGvd8dzY+ClWhhFOJ4VuommMyQgPaMdSiQXVfjo7eIJOrNJHYaRsSYNm6u+JFAutxyKwnQKboV70puJ/Xi cx4ZWfMhknhkoyXxQmHJkITb9HfaYoMXxsCSaK2VsRGWKFibEZFWwI3uLLy6RZrXgXFe/uvFS7zuLIwxEcQxk8uIQa3EIdGkBAwDO8wpujnBfn3fmYt+acbOYQ/sD5/AGl5o+n</latexit>

 (x+ 1)

<latexit sha1_base64="aBUB/Pe2iiM4Y/CPAxlDKK5G76c=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJKIqMeiCB4rmLbQhLLZbtqlm03c3RRL6O/w4kERr/4Yb/4bt20O2vpghsd7M+zsCxLOlLbtb2tpeWV1bb2wUdzc2t7ZLe3tN1ScSkJdEvNYtgKsKGeCupppTluJpDgKOG0Gg5uJ3xxSqVgsHvQooX6Ee4KFjGBtJN/LbitPJ6euad64UyrbVXsKtEicnJQhR71T+vK6MUkjKjThWKm2Yyfaz7DUjHA6LnqpogkmA9yjbUMFjqjys+nRY3RslC4KY2lKaDRVf29kOFJqFAVmMsK6r+a9ifif1051eOVnTCSppoLMHgpTjnSMJgmgLpOUaD4yBBPJzK2I9LHERJuciiYEZ/7Li6RxVnUuqs79ebl2ncdRgEM4ggo4cAk1uIM6uEDgEZ7hFd6sofVivVsfs9ElK985gD+wPn8AIhaRCg==</latexit>

{E(x), U(x)}

THE BASICS

<latexit sha1_base64="sd8FARujZMyGOURyVTQYsJ8oBmo=">AAACCXicbZDLSsNAFIYn9VbrLerSzWARWpCSiKibQqMblxVMW2hjmEwn7dDJhZmJWEK7dOOruHGhiFvfwJ1v47TNQlt/GPj4zzmcOb8XMyqkYXxruaXlldW1/HphY3Nre0ff3WuIKOGY2DhiEW95SBBGQ2JLKhlpxZygwGOk6Q2uJvXmPeGCRuGtHMbECVAvpD7FSCrL1aFdeihXyV1KUc9SOBqPS5ZrVI3jseWaVavs6kWjYkwFF8HMoAgy1V39q9ONcBKQUGKGhGibRiydFHFJMSOjQicRJEZ4gHqkrTBEARFOOr1kBI+U04V+xNULJZy6vydSFAgxDDzVGSDZF/O1iflfrZ1I/8JJaRgnkoR4tshPGJQRnMQCu5QTLNlQAcKcqr9C3EccYanCK6gQzPmTF6FxUjHPKubNabF2mcWRBwfgEJSACc5BDVyDOrABBo/gGbyCN+1Je9HetY9Za07LZvbBH2mfP66tl8U=</latexit>

U(x) = eiagA(x) (A0 = 0, A1 = A)

Picking the temporal gauge, and introducing 
the link variable U 



· · · · · ·
<latexit sha1_base64="zEFoURehTLQwO2QeFrMSEhbJj1k=">AAAB7nicbVBNSwMxEJ34WetX1aOXYBHqpeyKqMeiF48V7Ae0S8mm2TY0mw1JVixLf4QXD4p49fd489+YtnvQ1gcDj/dmmJkXKsGN9bxvtLK6tr6xWdgqbu/s7u2XDg6bJkk1ZQ2aiES3Q2KY4JI1LLeCtZVmJA4Fa4Wj26nfemTa8EQ+2LFiQUwGkkecEuukVlcZXnk665XKXtWbAS8TPydlyFHvlb66/YSmMZOWCmJMx/eUDTKiLaeCTYrd1DBF6IgMWMdRSWJmgmx27gSfOqWPo0S7khbP1N8TGYmNGceh64yJHZpFbyr+53VSG10HGZcqtUzS+aIoFdgmePo77nPNqBVjRwjV3N2K6ZBoQq1LqOhC8BdfXibN86p/WfXvL8q1mzyOAhzDCVTAhyuowR3UoQEURvAMr/CGFHpB7+hj3rqC8pkj+AP0+QPLbo83</latexit>

 (x)
<latexit sha1_base64="oXyKbF6qntfemKyTgoaH06HZzfQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahIpTdIuqx6MVjBfsh7VKyabYNTbJLkhXL0l/hxYMi Xv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1SpVkk7804pr7AA8lCRrCx0kM31qz8dOad9oolt+LOgJaJl5ESZKj3il/dfkQSQaUhHGvd8dzY+ClWhhFOJ4VuommMyQgPaMdSiQXVfjo7eIJOrNJHYaRsSYNm6u+JFAutxyKwnQKboV70puJ/Xi cx4ZWfMhknhkoyXxQmHJkITb9HfaYoMXxsCSaK2VsRGWKFibEZFWwI3uLLy6RZrXgXFe/uvFS7zuLIwxEcQxk8uIQa3EIdGkBAwDO8wpujnBfn3fmYt+acbOYQ/sD5/AGl5o+n</latexit>

 (x+ 1)

<latexit sha1_base64="aBUB/Pe2iiM4Y/CPAxlDKK5G76c=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJKIqMeiCB4rmLbQhLLZbtqlm03c3RRL6O/w4kERr/4Yb/4bt20O2vpghsd7M+zsCxLOlLbtb2tpeWV1bb2wUdzc2t7ZLe3tN1ScSkJdEvNYtgKsKGeCupppTluJpDgKOG0Gg5uJ3xxSqVgsHvQooX6Ee4KFjGBtJN/LbitPJ6euad64UyrbVXsKtEicnJQhR71T+vK6MUkjKjThWKm2Yyfaz7DUjHA6LnqpogkmA9yjbUMFjqjys+nRY3RslC4KY2lKaDRVf29kOFJqFAVmMsK6r+a9ifif1051eOVnTCSppoLMHgpTjnSMJgmgLpOUaD4yBBPJzK2I9LHERJuciiYEZ/7Li6RxVnUuqs79ebl2ncdRgEM4ggo4cAk1uIM6uEDgEZ7hFd6sofVivVsfs9ElK985gD+wPn8AIhaRCg==</latexit>

{E(x), U(x)}

THE BASICS

E and U are conjugate variable pairs. 
Not simultaneously diagonalizable! 

<latexit sha1_base64="N3Qh4R0Wqe49C6WggAK9/iMtPZM=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJKIqBehKILHCqYtpKFstpt26e4m7G6EEvojvHhQxKu/x5v/xm2bg7Y+GHi8N8PMvCjlTBvX/XaWlldW19ZLG+XNre2d3creflMnmSLUJwlPVDvCmnImqW+Y4bSdKopFxGkrGt5O/NYTVZol8tGMUhoK3JcsZgQbK7WCu1M/vPa7lapbc6dAi8QrSBUKNLqVr04vIZmg0hCOtQ48NzVhjpVhhNNxuZNpmmIyxH0aWCqxoDrMp+eO0bFVeihOlC1p0FT9PZFjofVIRLZTYDPQ895E/M8LMhNfhTmTaWaoJLNFccaRSdDkd9RjihLDR5Zgopi9FZEBVpgYm1DZhuDNv7xImmc176LmPZxX6zdFHCU4hCM4AQ8uoQ730AAfCAzhGV7hzUmdF+fd+Zi1LjnFzAH8gfP5AzZkjtY=</latexit>

[E,U ] = U

<latexit sha1_base64="LYnIQ0Zi3E8CBqLV22X9Qbkp5KQ=">AAACDXicbVDLSsNAFJ3UV62vqEs3g1WoICURUTdCVQSXFewD0lAm00k6dDIJMxOxhPyAG3/FjQtF3Lp35984bYNo9cDlHs65l5l7vJhRqSzr0yjMzM7NLxQXS0vLK6tr5vpGU0aJwKSBIxaJtockYZSThqKKkXYsCAo9Rlre4GLkt26JkDTiN2oYEzdEAac+xUhpqWvuOB1fIJzaWRpkl5W7vX0UnOnmnn7rNOuaZatqjQH/EjsnZZCj3jU/Or0IJyHhCjMkpWNbsXJTJBTFjGSlTiJJjPAABcTRlKOQSDcdX5PBXa30oB8JXVzBsfpzI0WhlMPQ05MhUn057Y3E/zwnUf6Jm1IeJ4pwPHnITxhUERxFA3tUEKzYUBOEBdV/hbiPdApKB1jSIdjTJ/8lzYOqfVS1rw/LtfM8jiLYAtugAmxwDGrgCtRBA2BwDx7BM3gxHown49V4m4wWjHxnE/yC8f4FV/ibHA==</latexit>

[
1

g
E(x), agA(x)] =

1

i

<latexit sha1_base64="hBsIDfjgB2jxjD0Lg85PBpQ9VAA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU6PbLFbfqzkFWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgdNSL9WYUDamQ+xaKmmE2s/mh07JmVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNiUbgrf88ippXVS9q6rXuKzUbvM4inACp3AOHlxDDe6hDk1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kDvD2M5Q==</latexit>

[

or:



· · · · · ·
<latexit sha1_base64="zEFoURehTLQwO2QeFrMSEhbJj1k=">AAAB7nicbVBNSwMxEJ34WetX1aOXYBHqpeyKqMeiF48V7Ae0S8mm2TY0mw1JVixLf4QXD4p49fd489+YtnvQ1gcDj/dmmJkXKsGN9bxvtLK6tr6xWdgqbu/s7u2XDg6bJkk1ZQ2aiES3Q2KY4JI1LLeCtZVmJA4Fa4Wj26nfemTa8EQ+2LFiQUwGkkecEuukVlcZXnk665XKXtWbAS8TPydlyFHvlb66/YSmMZOWCmJMx/eUDTKiLaeCTYrd1DBF6IgMWMdRSWJmgmx27gSfOqWPo0S7khbP1N8TGYmNGceh64yJHZpFbyr+53VSG10HGZcqtUzS+aIoFdgmePo77nPNqBVjRwjV3N2K6ZBoQq1LqOhC8BdfXibN86p/WfXvL8q1mzyOAhzDCVTAhyuowR3UoQEURvAMr/CGFHpB7+hj3rqC8pkj+AP0+QPLbo83</latexit>

 (x)
<latexit sha1_base64="oXyKbF6qntfemKyTgoaH06HZzfQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahIpTdIuqx6MVjBfsh7VKyabYNTbJLkhXL0l/hxYMi Xv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1SpVkk7804pr7AA8lCRrCx0kM31qz8dOad9oolt+LOgJaJl5ESZKj3il/dfkQSQaUhHGvd8dzY+ClWhhFOJ4VuommMyQgPaMdSiQXVfjo7eIJOrNJHYaRsSYNm6u+JFAutxyKwnQKboV70puJ/Xi cx4ZWfMhknhkoyXxQmHJkITb9HfaYoMXxsCSaK2VsRGWKFibEZFWwI3uLLy6RZrXgXFe/uvFS7zuLIwxEcQxk8uIQa3EIdGkBAwDO8wpujnBfn3fmYt+acbOYQ/sD5/AGl5o+n</latexit>

 (x+ 1)

<latexit sha1_base64="aBUB/Pe2iiM4Y/CPAxlDKK5G76c=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSJUkJKIqMeiCB4rmLbQhLLZbtqlm03c3RRL6O/w4kERr/4Yb/4bt20O2vpghsd7M+zsCxLOlLbtb2tpeWV1bb2wUdzc2t7ZLe3tN1ScSkJdEvNYtgKsKGeCupppTluJpDgKOG0Gg5uJ3xxSqVgsHvQooX6Ee4KFjGBtJN/LbitPJ6euad64UyrbVXsKtEicnJQhR71T+vK6MUkjKjThWKm2Yyfaz7DUjHA6LnqpogkmA9yjbUMFjqjys+nRY3RslC4KY2lKaDRVf29kOFJqFAVmMsK6r+a9ifif1051eOVnTCSppoLMHgpTjnSMJgmgLpOUaD4yBBPJzK2I9LHERJuciiYEZ/7Li6RxVnUuqs79ebl2ncdRgEM4ggo4cAk1uIM6uEDgEZ7hFd6sofVivVsfs9ElK985gD+wPn8AIhaRCg==</latexit>

{E(x), U(x)}

THE BASICS

A discrete infinite-dimensional 
Hilbert space of a 1D quantum 
rotor: 

<latexit sha1_base64="tR0fkhhcCEkLc9f3AAj+QPqWaxc=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFclURE3QhFKbisYB/QlDKZTtqhk0mYuRFK7MqNv+LGhSJu/QZ3/o2TNgttPTBw7jn3cucePxZcg+N8WwuLS8srq4W14vrG5ta2vbPb0FGiKKvTSESq5RPNBJesDhwEa8WKkdAXrOkPrzO/ec+U5pG8g1HMOiHpSx5wSsBIXfvAGxDA1Yeqp4jsC4YvswLnVdcuOWVnAjxP3JyUUI5a1/7yehFNQiaBCqJ123Vi6KREAaeCjYteollM6JD0WdtQSUKmO+nkjDE+MkoPB5EyTwKeqL8nUhJqPQp90xkSGOhZLxP/89oJBBedlMs4ASbpdFGQCAwRzjLBPa4YBTEyhFDFzV8xHRBFKJjkiiYEd/bkedI4KbtnZff2tFS5yuMooH10iI6Ri85RBd2gGqojih7RM3pFb9aT9WK9Wx/T1gUrn9lDf2B9/gB/Hpff</latexit>

Ê|Ei = E|Ei
<latexit sha1_base64="9w5cqLJsagUKV8gpuy563945ACI=">AAACBXicbVDLSgMxFM34rPVVdamLYBEEocyIqBuhKAWXFewDOkO5k2ba0ExmSDJCmXbjxl9x40IRt/6DO//GtJ2Fth64cHLOveTe48ecKW3b39bC4tLyympuLb++sbm1XdjZrasokYTWSMQj2fRBUc4ErWmmOW3GkkLoc9rw+zdjv/FApWKRuNeDmHohdAULGAFtpHbhwO2BxrVhxZUgupziq2HlxMke7ULRLtkT4HniZKSIMlTbhS+3E5EkpEITDkq1HDvWXgpSM8LpKO8misZA+tClLUMFhFR56eSKET4ySgcHkTQlNJ6ovydSCJUahL7pDEH31Kw3Fv/zWokOLr2UiTjRVJDpR0HCsY7wOBLcYZISzQeGAJHM7IpJDyQQbYLLmxCc2ZPnSf205JyXnLuzYvk6iyOH9tEhOkYOukBldIuqqIYIekTP6BW9WU/Wi/VufUxbF6xsZg/9gfX5Ay3ul7w=</latexit>

Û |Ei = |E + 1i

<latexit sha1_base64="Qk7ffNeOLrPHE/l8GgKrgxwJvKE=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiQi1WVRBJcV7AObUCbTSTt0Mgkzk0IJ/RM3LhRx65+482+ctFlo64GBwzn3cs+cIOFMacf5tkpr6xubW+Xtys7u3v6BfXjUVnEqCW2RmMeyG2BFORO0pZnmtJtIiqOA004wvs39zoRKxWLxqKcJ9SM8FCxkBGsj9W37DnlMIC/CehQE2dOsb1edmjMHWiVuQapQoNm3v7xBTNKICk04VqrnOon2Myw1I5zOKl6qaILJGA9pz1CBI6r8bJ58hs6MMkBhLM0TGs3V3xsZjpSaRoGZzBOqZS8X//N6qQ6v/YyJJNVUkMWhMOVIxyivAQ2YpETzqSGYSGayIjLCEhNtyqqYEtzlL6+S9kXNrdfch8tq46aoowwncArn4MIVNOAemtACAhN4hld4szLrxXq3PhajJavYOYY/sD5/ANGukyU=</latexit>

E 2 Z



· · · · · ·
<latexit sha1_base64="zEFoURehTLQwO2QeFrMSEhbJj1k=">AAAB7nicbVBNSwMxEJ34WetX1aOXYBHqpeyKqMeiF48V7Ae0S8mm2TY0mw1JVixLf4QXD4p49fd489+YtnvQ1gcDj/dmmJkXKsGN9bxvtLK6tr6xWdgqbu/s7u2XDg6bJkk1ZQ2aiES3Q2KY4JI1LLeCtZVmJA4Fa4Wj26nfemTa8EQ+2LFiQUwGkkecEuukVlcZXnk665XKXtWbAS8TPydlyFHvlb66/YSmMZOWCmJMx/eUDTKiLaeCTYrd1DBF6IgMWMdRSWJmgmx27gSfOqWPo0S7khbP1N8TGYmNGceh64yJHZpFbyr+53VSG10HGZcqtUzS+aIoFdgmePo77nPNqBVjRwjV3N2K6ZBoQq1LqOhC8BdfXibN86p/WfXvL8q1mzyOAhzDCVTAhyuowR3UoQEURvAMr/CGFHpB7+hj3rqC8pkj+AP0+QPLbo83</latexit>

 (x)
<latexit sha1_base64="oXyKbF6qntfemKyTgoaH06HZzfQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahIpTdIuqx6MVjBfsh7VKyabYNTbJLkhXL0l/hxYMi Xv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1SpVkk7804pr7AA8lCRrCx0kM31qz8dOad9oolt+LOgJaJl5ESZKj3il/dfkQSQaUhHGvd8dzY+ClWhhFOJ4VuommMyQgPaMdSiQXVfjo7eIJOrNJHYaRsSYNm6u+JFAutxyKwnQKboV70puJ/Xi cx4ZWfMhknhkoyXxQmHJkITb9HfaYoMXxsCSaK2VsRGWKFibEZFWwI3uLLy6RZrXgXFe/uvFS7zuLIwxEcQxk8uIQa3EIdGkBAwDO8wpujnBfn3fmYt+acbOYQ/sD5/AGl5o+n</latexit>

 (x+ 1)

<latexit sha1_base64="tNGRjpMcOU5aQqpunIMWLqFj4XA=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquiHosiuCxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYWV1b3yhulra2d3b3yvsHLR0litAmiXikOgHWlDNJm4YZTjuxolgEnLaD8U3mtx+p0iySD2YSU1/goWQhI9hk0m316bRfrrg1dwa0TLycVCBHo1/+6g0ikggqDeFY667nxsZPsTKMcDot9RJNY0zGeEi7lkosqPbT2a1TdGKVAQojZUsaNFN/T6RYaD0Rge0U2Iz0opeJ/3ndxIRXfspknBgqyXxRmHBkIpQ9jgZMUWL4xBJMFLO3IjLCChNj4ynZELzFl5dJ66zmXdS8+/NK/TqPowhHcAxV8OAS6nAHDWgCgRE8wyu8OcJ5cd6dj3lrwclnDuEPnM8fO/CNtg==</latexit>

E(x)
<latexit sha1_base64="YezvDqflVqD/dPPNgL70iVZslgk=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahHiy7IuqxKILHCvYD2qVk02wbm02WJCuWpf/BiwdFvPp/vPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3tLyyupZfL2xsbm3vFHf3GlomitA6kVyqVoA15UzQumGG01asKI4CTpvB8HriNx+p0kyKezOKqR/hvmAhI9hYqXFTfjrxjrvFkltxp0CLxMtICTLUusWvTk+SJKLCEI61bntubPwUK8MIp+NCJ9E0xmSI+7RtqcAR1X46vXaMjqzSQ6FUtoRBU/X3RIojrUdRYDsjbAZ63puI/3ntxISXfspEnBgqyGxRmHBkJJq8jnpMUWL4yBJMFLO3IjLAChNjAyrYELz5lxdJ47TinVe8u7NS9SqLIw8HcAhl8OACqnALNagDgQd4hld4c6Tz4rw7H7PWnJPN7MMfOJ8/FqKOKA==</latexit>

E(x� 1)

<latexit sha1_base64="xo1QuT24S458jqpwePjXJUepclc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahHiy7RdRj0YvHCvZD2qVk02wbmmSXJCuWpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3srq2vpHfLGxt7+zuFfcPmjpKFKENEvFItQOsKWeSNgwznLZjRbEIOG0Fo5up33qkSrNI3ptxTH2BB5KFjGBjpYdurFn56cw77RVLbsWdAS0TLyMlyFDvFb+6/YgkgkpDONa647mx8VOsDCOcTgrdRNMYkxEe0I6lEguq/XR28ASdWKWPwkjZkgbN1N8TKRZaj0VgOwU2Q73oTcX/vE5iwis/ZTJODJVkvihMODIRmn6P+kxRYvjYEkwUs7ciMsQKE2MzKtgQvMWXl0mzWvEuKt7deal2ncWRhyM4hjJ4cAk1uIU6NICAgGd4hTdHOS/Ou/Mxb8052cwh/IHz+QOo8o+p</latexit>

 (x� 1)

THE BASICS



· · · · · ·
<latexit sha1_base64="zEFoURehTLQwO2QeFrMSEhbJj1k=">AAAB7nicbVBNSwMxEJ34WetX1aOXYBHqpeyKqMeiF48V7Ae0S8mm2TY0mw1JVixLf4QXD4p49fd489+YtnvQ1gcDj/dmmJkXKsGN9bxvtLK6tr6xWdgqbu/s7u2XDg6bJkk1ZQ2aiES3Q2KY4JI1LLeCtZVmJA4Fa4Wj26nfemTa8EQ+2LFiQUwGkkecEuukVlcZXnk665XKXtWbAS8TPydlyFHvlb66/YSmMZOWCmJMx/eUDTKiLaeCTYrd1DBF6IgMWMdRSWJmgmx27gSfOqWPo0S7khbP1N8TGYmNGceh64yJHZpFbyr+53VSG10HGZcqtUzS+aIoFdgmePo77nPNqBVjRwjV3N2K6ZBoQq1LqOhC8BdfXibN86p/WfXvL8q1mzyOAhzDCVTAhyuowR3UoQEURvAMr/CGFHpB7+hj3rqC8pkj+AP0+QPLbo83</latexit>

 (x)
<latexit sha1_base64="oXyKbF6qntfemKyTgoaH06HZzfQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahIpTdIuqx6MVjBfsh7VKyabYNTbJLkhXL0l/hxYMi Xv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1SpVkk7804pr7AA8lCRrCx0kM31qz8dOad9oolt+LOgJaJl5ESZKj3il/dfkQSQaUhHGvd8dzY+ClWhhFOJ4VuommMyQgPaMdSiQXVfjo7eIJOrNJHYaRsSYNm6u+JFAutxyKwnQKboV70puJ/Xi cx4ZWfMhknhkoyXxQmHJkITb9HfaYoMXxsCSaK2VsRGWKFibEZFWwI3uLLy6RZrXgXFe/uvFS7zuLIwxEcQxk8uIQa3EIdGkBAwDO8wpujnBfn3fmYt+acbOYQ/sD5/AGl5o+n</latexit>

 (x+ 1)

<latexit sha1_base64="tNGRjpMcOU5aQqpunIMWLqFj4XA=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquiHosiuCxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYWV1b3yhulra2d3b3yvsHLR0litAmiXikOgHWlDNJm4YZTjuxolgEnLaD8U3mtx+p0iySD2YSU1/goWQhI9hk0m316bRfrrg1dwa0TLycVCBHo1/+6g0ikggqDeFY667nxsZPsTKMcDot9RJNY0zGeEi7lkosqPbT2a1TdGKVAQojZUsaNFN/T6RYaD0Rge0U2Iz0opeJ/3ndxIRXfspknBgqyXxRmHBkIpQ9jgZMUWL4xBJMFLO3IjLCChNj4ynZELzFl5dJ66zmXdS8+/NK/TqPowhHcAxV8OAS6nAHDWgCgRE8wyu8OcJ5cd6dj3lrwclnDuEPnM8fO/CNtg==</latexit>

E(x)
<latexit sha1_base64="YezvDqflVqD/dPPNgL70iVZslgk=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahHiy7IuqxKILHCvYD2qVk02wbm02WJCuWpf/BiwdFvPp/vPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3tLyyupZfL2xsbm3vFHf3GlomitA6kVyqVoA15UzQumGG01asKI4CTpvB8HriNx+p0kyKezOKqR/hvmAhI9hYqXFTfjrxjrvFkltxp0CLxMtICTLUusWvTk+SJKLCEI61bntubPwUK8MIp+NCJ9E0xmSI+7RtqcAR1X46vXaMjqzSQ6FUtoRBU/X3RIojrUdRYDsjbAZ63puI/3ntxISXfspEnBgqyGxRmHBkJJq8jnpMUWL4yBJMFLO3IjLAChNjAyrYELz5lxdJ47TinVe8u7NS9SqLIw8HcAhl8OACqnALNagDgQd4hld4c6Tz4rw7H7PWnJPN7MMfOJ8/FqKOKA==</latexit>

E(x� 1)

<latexit sha1_base64="xo1QuT24S458jqpwePjXJUepclc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahHiy7RdRj0YvHCvZD2qVk02wbmmSXJCuWpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3srq2vpHfLGxt7+zuFfcPmjpKFKENEvFItQOsKWeSNgwznLZjRbEIOG0Fo5up33qkSrNI3ptxTH2BB5KFjGBjpYdurFn56cw77RVLbsWdAS0TLyMlyFDvFb+6/YgkgkpDONa647mx8VOsDCOcTgrdRNMYkxEe0I6lEguq/XR28ASdWKWPwkjZkgbN1N8TKRZaj0VgOwU2Q73oTcX/vE5iwis/ZTJODJVkvihMODIRmn6P+kxRYvjYEkwUs7ciMsQKE2MzKtgQvMWXl0mzWvEuKt7deal2ncWRhyM4hjJ4cAk1uIU6NICAgGd4hTdHOS/Ou/Mxb8052cwh/IHz+QOo8o+p</latexit>

 (x� 1)

THE BASICS

<latexit sha1_base64="BFr9Ubn504Z4IMhuHhDAwwJFPnI=">AAACSHicbVBLSwMxGMzWd31VPXoJFqE9WHZF1KMogkcFq4VuWbJptg3NJkvyrbSs/XlePHrzN3jxoIg304fQVgcCw8x8+ZIJE8ENuO6rk5ubX1hcWl7Jr66tb2wWtrbvjEo1ZVWqhNK1kBgmuGRV4CBYLdGMxKFg92HnYuDfPzBtuJK30EtYIyYtySNOCVgpKAQ+bSowuPQY+ZrIlmBB1j3w+thXwGNm8OPllF7+1ScGuv+Eu+XRxUGh6FbcIfBf4o1JEY1xHRRe/KaiacwkUEGMqXtuAo2MaOBUsH7eTw1LCO2QFqtbKond28iGRfTxvlWaOFLaHgl4qE5OZCQ2pheHNhkTaJtZbyD+59VTiE4bGZdJCkzS0aIoFRgUHrSKm1wzCqJnCaGa27di2iaaULDd520J3uyX/5K7w4p3XPFujopn5+M6ltEu2kMl5KETdIau0DWqIoqe0Bv6QJ/Os/PufDnfo2jOGc/soCnkcj8SyLMl</latexit>

· · · (|fix�1 ⌦ |Eix�1)⌦ (|fix ⌦ |Eix) · · ·

Therefore Hilbert space is spanned by the basis states:

However, not all 
states are physical!



· · · · · ·
<latexit sha1_base64="zEFoURehTLQwO2QeFrMSEhbJj1k=">AAAB7nicbVBNSwMxEJ34WetX1aOXYBHqpeyKqMeiF48V7Ae0S8mm2TY0mw1JVixLf4QXD4p49fd489+YtnvQ1gcDj/dmmJkXKsGN9bxvtLK6tr6xWdgqbu/s7u2XDg6bJkk1ZQ2aiES3Q2KY4JI1LLeCtZVmJA4Fa4Wj26nfemTa8EQ+2LFiQUwGkkecEuukVlcZXnk665XKXtWbAS8TPydlyFHvlb66/YSmMZOWCmJMx/eUDTKiLaeCTYrd1DBF6IgMWMdRSWJmgmx27gSfOqWPo0S7khbP1N8TGYmNGceh64yJHZpFbyr+53VSG10HGZcqtUzS+aIoFdgmePo77nPNqBVjRwjV3N2K6ZBoQq1LqOhC8BdfXibN86p/WfXvL8q1mzyOAhzDCVTAhyuowR3UoQEURvAMr/CGFHpB7+hj3rqC8pkj+AP0+QPLbo83</latexit>

 (x)
<latexit sha1_base64="oXyKbF6qntfemKyTgoaH06HZzfQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahIpTdIuqx6MVjBfsh7VKyabYNTbJLkhXL0l/hxYMi Xv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTR0litAGiXik2gHWlDNJG4YZTtuxolgEnLaC0c3Ubz1SpVkk7804pr7AA8lCRrCx0kM31qz8dOad9oolt+LOgJaJl5ESZKj3il/dfkQSQaUhHGvd8dzY+ClWhhFOJ4VuommMyQgPaMdSiQXVfjo7eIJOrNJHYaRsSYNm6u+JFAutxyKwnQKboV70puJ/Xi cx4ZWfMhknhkoyXxQmHJkITb9HfaYoMXxsCSaK2VsRGWKFibEZFWwI3uLLy6RZrXgXFe/uvFS7zuLIwxEcQxk8uIQa3EIdGkBAwDO8wpujnBfn3fmYt+acbOYQ/sD5/AGl5o+n</latexit>

 (x+ 1)

<latexit sha1_base64="tNGRjpMcOU5aQqpunIMWLqFj4XA=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquiHosiuCxgv2AdinZNNuGJtklyYpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYWV1b3yhulra2d3b3yvsHLR0litAmiXikOgHWlDNJm4YZTjuxolgEnLaD8U3mtx+p0iySD2YSU1/goWQhI9hk0m316bRfrrg1dwa0TLycVCBHo1/+6g0ikggqDeFY667nxsZPsTKMcDot9RJNY0zGeEi7lkosqPbT2a1TdGKVAQojZUsaNFN/T6RYaD0Rge0U2Iz0opeJ/3ndxIRXfspknBgqyXxRmHBkIpQ9jgZMUWL4xBJMFLO3IjLCChNj4ynZELzFl5dJ66zmXdS8+/NK/TqPowhHcAxV8OAS6nAHDWgCgRE8wyu8OcJ5cd6dj3lrwclnDuEPnM8fO/CNtg==</latexit>

E(x)
<latexit sha1_base64="YezvDqflVqD/dPPNgL70iVZslgk=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahHiy7IuqxKILHCvYD2qVk02wbm02WJCuWpf/BiwdFvPp/vPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3tLyyupZfL2xsbm3vFHf3GlomitA6kVyqVoA15UzQumGG01asKI4CTpvB8HriNx+p0kyKezOKqR/hvmAhI9hYqXFTfjrxjrvFkltxp0CLxMtICTLUusWvTk+SJKLCEI61bntubPwUK8MIp+NCJ9E0xmSI+7RtqcAR1X46vXaMjqzSQ6FUtoRBU/X3RIojrUdRYDsjbAZ63puI/3ntxISXfspEnBgqyGxRmHBkJJq8jnpMUWL4yBJMFLO3IjLAChNjAyrYELz5lxdJ47TinVe8u7NS9SqLIw8HcAhl8OACqnALNagDgQd4hld4c6Tz4rw7H7PWnJPN7MMfOJ8/FqKOKA==</latexit>

E(x� 1)

<latexit sha1_base64="xo1QuT24S458jqpwePjXJUepclc=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahHiy7RdRj0YvHCvZD2qVk02wbmmSXJCuWpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3srq2vpHfLGxt7+zuFfcPmjpKFKENEvFItQOsKWeSNgwznLZjRbEIOG0Fo5up33qkSrNI3ptxTH2BB5KFjGBjpYdurFn56cw77RVLbsWdAS0TLyMlyFDvFb+6/YgkgkpDONa647mx8VOsDCOcTgrdRNMYkxEe0I6lEguq/XR28ASdWKWPwkjZkgbN1N8TKRZaj0VgOwU2Q73oTcX/vE5iwis/ZTJODJVkvihMODIRmn6P+kxRYvjYEkwUs7ciMsQKE2MzKtgQvMWXl0mzWvEuKt7deal2ncWRhyM4hjJ4cAk1uIU6NICAgGd4hTdHOS/Ou/Mxb8052cwh/IHz+QOo8o+p</latexit>

 (x� 1)

THE BASICS

Gauss’s law constraint stating that the flux of the electric field is 
equal to the staggered electric charge.

<latexit sha1_base64="bqaQ1kHSOaMXib9hNlA9Zer/u30=">AAACCXicbVA9SwNBEN3z2/h1ammzGARtjjsRtRGCFloqmCjkQtjbzCWLe3vH7pwknGlt/Cs2ForY+g/s/DduPgq/Hgw83pthZl6USWHQ9z+dicmp6ZnZufnSwuLS8oq7ulYzaa45VHkqU30dMQNSKKiiQAnXmQaWRBKuopuTgX91C9qIVF1iL4NGwtpKxIIztFLTpafb3R16F2ZGhJqptoRmiNDFIuv0jNc/8ptu2ff8IehfEoxJmYxx3nQ/wlbK8wQUcsmMqQd+ho2CaRRcQr8U5gYyxm9YG+qWKpaAaRTDT/p0yyotGqfalkI6VL9PFCwxppdEtjNh2DG/vYH4n1fPMT5sFEJlOYLio0VxLimmdBALbQkNHGXPEsa1sLdS3mGacbThlWwIwe+X/5Larhfse8HFXrlyPI5jjmyQTbJNAnJAKuSMnJMq4eSePJJn8uI8OE/Oq/M2ap1wxjPr5Aec9y8Nd5nx</latexit>

G(x)| iphys. = 0
<latexit sha1_base64="a+hxvT4raLUdX3tAUPR+K2sKmRs="></latexit>

G(x) = E(x)� E(x� 1) +  †(x) (x)� 1� (�1)x

2



EXAMPLE

Consider a two-site theory with periodic boundary conditions. Impose a cutoff  on the 
electric field such that .   

a) How many basis states are there? 

      There are  basis states. 

b) What are the physical states? Identify the particle content of states. 

c) What is the value of the total electric charge for each state? 

      Recall that , so  for all physical states. 

Λ = 1
E ∈ [−Λ, Λ]

22 × 32 = 36

Q(x) = − ψ†(x)ψ(x) + 1 − (−1)x

2 Q(0) + Q(1) = 0

      There are only 5 states consistent with the Gauss’s law: 



EXAMPLE

x = 0 x = 1

<latexit sha1_base64="uCC8IinMHsvKtOwIVn+yltQNo4Y=">AAACM3icbVDLSsNAFJ34rPUVdelmsAjtpiQi6rIogriqYB/QhDCZTtqhk0mYmQgl7T+58UdcCOJCEbf+g9M2Sm17YOBwzrncucePGZXKsl6NpeWV1bX13EZ+c2t7Z9fc26/LKBGY1HDEItH0kSSMclJTVDHSjAVBoc9Iw+9djfzGAxGSRvxe9WPihqjDaUAxUlryzNviIHAE4h1GPAs6kaIhkXBw/aeVfrWpoL0gaJc8s2CVrTHgPLEzUgAZqp757LQjnISEK8yQlC3bipWbIqEoZmSYdxJJYoR7qENamnKkN7rp+OYhPNZKGwaR0I8rOFanJ1IUStkPfZ0MkerKWW8kLvJaiQou3JTyOFGE48miIGFQRXBUIGxTQbBifU0QFlT/FeIuEggrXXNel2DPnjxP6idl+6xs350WKpdZHTlwCI5AEdjgHFTADaiCGsDgEbyAd/BhPBlvxqfxNYkuGdnMAfgH4/sH59aqdg==</latexit>

(|fi0 ⌦ |Ei0)⌦ (|fi1 ⌦ |Ei1)

<latexit sha1_base64="uCC8IinMHsvKtOwIVn+yltQNo4Y=">AAACM3icbVDLSsNAFJ34rPUVdelmsAjtpiQi6rIogriqYB/QhDCZTtqhk0mYmQgl7T+58UdcCOJCEbf+g9M2Sm17YOBwzrncucePGZXKsl6NpeWV1bX13EZ+c2t7Z9fc26/LKBGY1HDE ItH0kSSMclJTVDHSjAVBoc9Iw+9djfzGAxGSRvxe9WPihqjDaUAxUlryzNviIHAE4h1GPAs6kaIhkXBw/aeVfrWpoL0gaJc8s2CVrTHgPLEzUgAZqp757LQjnISEK8yQlC3bipWbIqEoZmSYdxJJYoR7qENamnKkN7rp+ OYhPNZKGwaR0I8rOFanJ1IUStkPfZ0MkerKWW8kLvJaiQou3JTyOFGE48miIGFQRXBUIGxTQbBifU0QFlT/FeIuEggrXXNel2DPnjxP6idl+6xs350WKpdZHTlwCI5AEdjgHFTADaiCGsDgEbyAd/BhPBlvxqfxNYkuGdnMAfgH4/sH59aqdg==</latexit>

(|fi0 ⌦ |Ei0)⌦ (|fi1 ⌦ |Ei1)

<latexit sha1_base64="ylEItDWUmdS5FCidR9OztbbPmUo=">AAACNXicbZDLSgMxFIYzXmu9jbp0EyxCu7BMRNRl0Y0LFxXsBdoyZNJMG5pJhiQjlLYv5cb3cKULF4q49RVMLxZt+0Pg5zvncHL+IOZMG897dZaWV1bX1lMb6c2t7Z1dd2+/rGWiCC0RyaWqBlhTzgQtGWY4rcaK4ijgtBJ0rof1ygNVmklxb7oxbUS4JVjICDYW+e5ttu/VFRYtTn0P1qVhEdWwf4KmMPcLs/0pRIs6Uc53M17eGwnOGzQxGTBR0Xef601JkogKQzjWuoa82DR6WBlGOB2k64mmMSYd3KI1awW2Kxu90dUDeGxJE4ZS2ScMHNG/Ez0cad2NAtsZYdPWs7UhXFSrJSa8bPSYiBNDBRkvChMOjYTDCGGTKUoM71qDiWL2r5C0scLE2KDTNgQ0e/K8KZ/m0Xke3Z1lCleTOFLgEByBLEDgAhTADSiCEiDgEbyAd/DhPDlvzqfzNW5dciYzB+CfnO8f7FqqUQ==</latexit>

(|0i0 ⌦ |� 1i0)⌦ (|1i1 ⌦ |� 1i1)
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(|0i0 ⌦ |0i0)⌦ (|1i1 ⌦ |0i1)
<latexit sha1_base64="R2O2h+s2nXqIcHxdbQQ1qQTQ0xI=">AAACM3icbZDLSgMxFIYz9VbrbdSlm2AR2k2ZiKjLohtxVcFeoB1KJs20oZlkSDJCaftObnwRF4K4UMSt72B68db2h8DPd87h5PxBzJk2nvfspJaWV1bX0uuZjc2t7R13d6+iZaIILRPJpaoFWFPOBC0bZjitxYriKOC0GnQvR/XqHVWaSXFrejH1I9wWLGQEG4ua7nVu4DUUFm1Omx5sSMMiquEA/bD8N8v9QrSgEeWbbtYreGPBeYOmJgumKjXdx0ZLkiSiwhCOta4jLzZ+HyvDCKfDTCPRNMaki9u0bq3AdqPfH988hEeWtGAolX3CwDH9O9HHkda9KLCdETYdPVsbwUW1emLCc7/PRJwYKshkUZhwaCQcBQhbTFFieM8aTBSzf4WkgxUmxsacsSGg2ZPnTeW4gE4L6OYkW7yYxpEGB+AQ5AACZ6AIrkAJlAEB9+AJvII358F5cd6dj0lrypnO7IN/cj6/AO8HqeM=</latexit>

(|0i0 ⌦ |1i0)⌦ (|1i1 ⌦ |1i1)
<latexit sha1_base64="ymsVmKqZWUwuUQh8MdWZC68VZlg=">AAACM3icbZDLSgMxFIYzXmu9jbp0EyxCuykTEXVZdCOuKtgLdMqQSdM2NJMZkoxQpn0nN76IC0FcKOLWdzBtx1Zbfwj8fOccTs7vR5wp7Tgv1tLyyuraemYju7m1vbNr7+1XVRhLQisk5KGs+1hRzgStaKY5rUeS4sDntOb3rkb12j2VioXiTvcj2gxwR7A2I1gb5Nk3+QFyJRYdTj0HuqFmAVVw4ExZ4YflZxDNGqfDqODZOafojAUXDUpNDqQqe/aT2wpJHFChCcdKNZAT6WaCpWaE02HWjRWNMOnhDm0YK7DZ2EzGNw/hsSEt2A6leULDMf09keBAqX7gm84A666ar43gf7VGrNsXzYSJKNZUkMmidsyhDuEoQNhikhLN+8ZgIpn5KyRdLDHRJuasCQHNn7xoqidFdFZEt6e50mUaRwYcgiOQBwicgxK4BmVQAQQ8gGfwBt6tR+vV+rA+J61LVjpzAP7I+voG7Xmp4g==</latexit>

(|1i0 ⌦ |0i0)⌦ (|0i1 ⌦ |1i1)
<latexit sha1_base64="Wc9RK0U/EvjC6QAD1eLC6Ug0bVM=">AAACNHicbZDLSsNAFIYnXmu9RV26GSxCu7AkIuqy6EZwU8FeoAlhMp20QyeTMDMRStqHcuODuBHBhSJufQanbUq19YeBn++cw5nz+zGjUlnWq7G0vLK6tp7byG9ube/smnv7dRklApMajlgkmj6ShFFOaooqRpqxICj0GWn4vetRvfFAhKQRv1f9mLgh6nAaUIyURp55WxzYjkC8w4hnQSdSNCQSDk5msDSFxYE1hfasc8ZKnlmwytZYcNHYmSmATFXPfHbaEU5CwhVmSMqWbcXKTZFQFDMyzDuJJDHCPdQhLW050hvddHz0EB5r0oZBJPTjCo7p74kUhVL2Q193hkh15XxtBP+rtRIVXLop5XGiCMeTRUHCoIrgKEHYpoJgxfraICyo/ivEXSQQVjrnvA7Bnj950dRPy/Z52b47K1Susjhy4BAcgSKwwQWogBtQBTWAwSN4Ae/gw3gy3oxP42vSumRkMwfgj4zvH2iAqhk=</latexit>

(|1i0 ⌦ |� 1i0)⌦ (|0i1 ⌦ |0i1)
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FIG. 9. (a) The (absolute value) of the overlap between a time-evolved string state | stri and a fully-occupied mesonic state
| mesi, Pstring!mesons ⌘ | h mes|e�iHQLMtQLM | stri |, as a function of the (scaled dimensionless) time tQLM for a lattice with
Nstag = 4 fermion sites, corresponding to N = 7 ion sites. For the dashed and dotted curves, the Hamiltonian must be
replaced with the non-exact H 0

QLM and H
00
QLM Hamiltonians, respectively. (b) The same quantity plotted for Nstag = 6 fermion

sites, corresponding to N = 11 ion sites. The graphical representations of states, both in terms of the electron, positron,
and electric-field strings and in terms of the (quasi)spins of each corresponding ions are shown for the initial string state,
and for a fully-occupied mesonic state whose probability amplitude is maximum at the points denoted. (c) The expectation
value of the lattice sum of the (absolute value of) the Gauss’s law operator between a time-evolved string state, h

P
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|Gi|i ⌘

h str|eiHQLMtQLM 1
2Nstag�3

PNstag�1
i=1 |Gi|e�iHQLMtQLM | stri forNstag = 4 fermion sites, corresponding toN = 7 ion sites. For the

dashed and dotted curves, the Hamiltonian must be replaced with the non-exact H 0
QLM and H

00
QLM Hamiltonians, respectively.

(d) The same quantity as in (c) for Nstag = 6 fermion sites, corresponding to N = 11 ion sites. The maximum breakdown of
the Gauss’s law corresponds to h

P
i
|Gi|i = 1.

teractions. Additionally, single-spin interactions on all
ions are included to modify the mass term with uniform
coe�cients that are 10 and 5 times weaker than the true

mass. Explicitly,

H 0(00)

QLM
= HQLM +

x

g0(00)

2Nstag�1X

j,k=1

j 6=k

⇥
�+

j
��

k
+ h.c.

⇤
+

µ

g0(00)

2Nstag�1X

j=1

�z

j
, (30)

No matter

No matter

No matter
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Nstag = 4 fermion sites, corresponding to N = 7 ion sites. For the dashed and dotted curves, the Hamiltonian must be
replaced with the non-exact H 0

QLM and H
00
QLM Hamiltonians, respectively. (b) The same quantity plotted for Nstag = 6 fermion

sites, corresponding to N = 11 ion sites. The graphical representations of states, both in terms of the electron, positron,
and electric-field strings and in terms of the (quasi)spins of each corresponding ions are shown for the initial string state,
and for a fully-occupied mesonic state whose probability amplitude is maximum at the points denoted. (c) The expectation
value of the lattice sum of the (absolute value of) the Gauss’s law operator between a time-evolved string state, h
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i=1 |Gi|e�iHQLMtQLM | stri forNstag = 4 fermion sites, corresponding toN = 7 ion sites. For the

dashed and dotted curves, the Hamiltonian must be replaced with the non-exact H 0
QLM and H

00
QLM Hamiltonians, respectively.

(d) The same quantity as in (c) for Nstag = 6 fermion sites, corresponding to N = 11 ion sites. The maximum breakdown of
the Gauss’s law corresponds to h

P
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|Gi|i = 1.

teractions. Additionally, single-spin interactions on all
ions are included to modify the mass term with uniform
coe�cients that are 10 and 5 times weaker than the true

mass. Explicitly,

H 0(00)

QLM
= HQLM +

x

g0(00)

2Nstag�1X

j,k=1

j 6=k

⇥
�+

j
��

k
+ h.c.

⇤
+

µ

g0(00)

2Nstag�1X

j=1

�z

j
, (30)

Consider a two-site theory with periodic boundary conditions. Impose a cutoff  on the 
electric field such that .   

a) How many basis states are there? 

      There are  basis states. 

b) What are the physical states? Identify the particle content of states. 

c) What is the value of the total electric charge for each state? 

      Recall that , so  for all physical states. 

Λ = 1
E ∈ [−Λ, Λ]

22 × 32 = 36

Q(x) = − ψ†(x)ψ(x) + 1 − (−1)x

2 Q(0) + Q(1) = 0

      There are only 5 states consistent with the Gauss’s law: 



How many different electric-charge sectors exist for lattice Schwinger 
model with periodic boundary conditions (with no background charges)? 
What about with open boundary conditions?



i) Hamiltonian vs. Lagrangian formulation of LGTs 
ii) Kogut-Susskind formulation: Basis states, Hilbert space, and constraints 

An Abelian case: U(1) LGT 
A non-Abelian case: SU(2) LGT 

iii) Kogut-Susskind formulation: Hamiltonian 
iv) A variety of formulations: a brief overview 
v) Classical Hamiltonian-simulation methods: a brief discussion

OUTLINE OF PART I: 
HAMILTONIAN FORMULATION OF LATTICE GAUGE THEORIES



EXAMPLE: LET US CONSIDER THE CASE OF SU(2) LGT IN 1+1 D.

ZD, Raychowdhury, and Shaw, Phys. Rev. D 
104, 074505, arXiv:2009.11802 [hep-lat]



· · · · · ·

staggered site x+ 1staggered site x

THE BASICS

6

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G
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= 0.
Explicitly,
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for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation
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formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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such that the gauge-matter interaction Hamiltonian,
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I
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
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this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

U(0)

staggered site i = 0 staggered site i = 1

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
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straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
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A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
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compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
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Gauss’s law for states subsequently. Such a cost analy-
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
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⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n � 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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B. Purely fermionic formulation
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the mass of each component of the fermions.
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
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straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
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A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
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Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
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other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
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sidered. Such questions are studied in various depth in
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the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
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for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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limit can be taken.
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eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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unitary matrix which emanates from site n along the spa-
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
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interpreted as the angular momenta JL (corresponding
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and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.
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tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i
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are required to satisfy G
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Explicitly,
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for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,

H
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I
, remains invariant:
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†0(x)U 0(x) 0(x + 1) + h.c.

(22)

6

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

U(0)

staggered site i = 0 staggered site i = 1

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G
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= 0.
Explicitly,
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(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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A question worth addressing is how beneficial it is,
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lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
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sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
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A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
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B. Purely fermionic formulation
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in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.
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Note that the products of gauge links are defined asQ
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such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:
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†0(x)U 0(x) 0(x + 1) + h.c.

(22)

THE BASICS



· · · · · ·

6

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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gauge theories is to diagonalize the Gauss’s law operator
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that sustains a simple mapping of the the Hilbert space
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Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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B. Purely fermionic formulation
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In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
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Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
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straint when expressed in the electric-field basis. A major
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gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
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A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
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sis is presented in Sec. ??, but it requires understanding
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
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for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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The physical states |�i
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can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
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to EL), Jf with J2
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4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i
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Explicitly,
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for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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(n�1)
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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where ↵,� = ±
1

2
.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0(x) =  
†(x)

"
Y

y<x

U(y)

#†

. (20)

Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as

U(x) ! U
0(x) =

"
Y

y<x

U(y)

#
U(x)

"
Y

z<x+1

U(z)

#†

, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0(x)U 0(x) 0(x + 1) + h.c.

(22)
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
(KS) = H

(KS)

I
+ H

(KS)

E
+ H

(KS)

M
. (1)

Here, H
(KS)

I
denotes interactions among the fermionic

and gauge DOF6

H
(KS)

I
=

1

2a

N1X

x=0

h
 

†(x)Û(x) (x + 1) + h.c.
i
, (2)

where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
�
 

1

 
2

�
.

The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.

H
(KS)

E
corresponds to the energy stored in the electric

field,

H
(KS)

E
=

g
2
a

2

N2X

x=0

Ê(x)2. (3)

Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘

Ê2

L
= Ê2

R
. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa

L
, Ê

b

L
] = �i✏

abc
Ê

c

L
,

[Êa

R
, Ê

b

R
] = i✏

abc
Ê

c

R
,

[Êa

L
, Ê

b

R
] = 0, (4)

where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢
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[⇢a
, ] = �T
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 , (7)

G
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a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
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A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
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compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.
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formulation can be represented as
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
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rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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for the sake of computation is to map the vacuum and
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1 + 1D LGTs, the most e�cient basis is formed out of
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eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
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that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
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Eq. ??. In other words, the Gauss’s law constrains the
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straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
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sis is presented in Sec. ??, but it requires understanding
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i
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for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
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limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

U(0)

staggered site i = 0 staggered site i = 1

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
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or the Gauss’s law constraint, that must be imposed on
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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The physical states |�i
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can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i
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for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,
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Here, N1 = N�1 for both PBC and OBC, and m denotes
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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(x)
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in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
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= 0.
Explicitly,
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�
|�i
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(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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#
 (x), (19)
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Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as
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, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0(x)U 0(x) 0(x + 1) + h.c.

(22)
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
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straint when expressed in the electric-field basis. A major
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locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
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A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
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that sustains a simple mapping of the the Hilbert space
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sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
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limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
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the physical Hilbert space, see Sec. IIIA. To arrive at
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the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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For convenience, the Hamiltonian in Eq. (1) can be
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a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
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limit can be taken.
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III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.
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straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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where ↵,� = ±
1

2
.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0(x) =  
†(x)

"
Y

y<x

U(y)

#†

. (20)

Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as

U(x) ! U
0(x) =

"
Y

y<x

U(y)

#
U(x)

"
Y

z<x+1

U(z)

#†

, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0(x)U 0(x) 0(x + 1) + h.c.

(22)
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
(KS) = H

(KS)

I
+ H

(KS)

E
+ H

(KS)

M
. (1)

Here, H
(KS)

I
denotes interactions among the fermionic

and gauge DOF6

H
(KS)

I
=

1

2a

N1X

x=0

h
 

†(x)Û(x) (x + 1) + h.c.
i
, (2)

where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
�
 

1

 
2

�
.

The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.

H
(KS)

E
corresponds to the energy stored in the electric

field,

H
(KS)

E
=

g
2
a

2

N2X

x=0

Ê(x)2. (3)

Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘

Ê2

L
= Ê2

R
. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa

L
, Ê

b

L
] = �i✏

abc
Ê

c

L
,

[Êa

R
, Ê

b

R
] = i✏

abc
Ê

c

R
,

[Êa

L
, Ê

b

R
] = 0, (4)

where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as

|�i
(x)

(KS)
= |JR, mRi

(x�1)
⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:

 
1
|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)

 
1†

|f1, f2i = (1 � �f1,1) |f1 + 1, f2i , (12)

at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy

Ĵ2

R
|JR, mRi = JR(JR + 1) |JR, mRi (13)

Ĵ2

L
|JL, mLi = JL(JL + 1) |JL, mLi (14)

and

Ĵ
3

R
|JR, mRi = mR |JR, mRi (15)

Ĵ
3

L
|JL, mLi = mL |JL, mLi (16)

at each site x, where for brevity the site indices are
suppressed. Here, JL, JR = 0,

1

2
, 1,

3

2
, · · · , and mR and
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢
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For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J
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 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
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Eq. ??. In other words, the Gauss’s law constrains the
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straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
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compared with the formulations (e.g., KS formulation)
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sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
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the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
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sidered. Such questions are studied in various depth in
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formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

U(0)

staggered site i = 0 staggered site i = 1

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

staggered site n + 1staggered site n

U(n)
· · · · · · · · · · · ·

a physical site

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n � 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
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A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
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Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
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ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
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as a function of the lattice size and the cuto↵ on the
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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can be formed by identify-
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and boundary condition as is detailed below. First, given
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and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
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site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.
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In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

U(0)

staggered site i = 0 staggered site i = 1

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

staggered site n + 1staggered site n

U(n)
· · · · · · · · · · · ·

a physical site

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n � 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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the mass of each component of the fermions.
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tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

U(0)

staggered site i = 0 staggered site i = 1

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

staggered site n + 1staggered site n

U(n)
· · · · · · · · · · · ·

a physical site

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n � 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


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a
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a
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 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0(x) =  
†(x)

"
Y

y<x

U(y)

#†

. (20)

Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as

U(x) ! U
0(x) =

"
Y

y<x

U(y)

#
U(x)

"
Y

z<x+1

U(z)

#†

, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0(x)U 0(x) 0(x + 1) + h.c.

(22)
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
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denotes interactions among the fermionic

and gauge DOF6
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where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
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The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.
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corresponds to the energy stored in the electric

field,
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Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘
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. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,
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where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X
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(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as
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= |JR, mRi

(x�1)
⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:

 
1
|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)

 
1†

|f1, f2i = (1 � �f1,1) |f1 + 1, f2i , (12)

at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy

Ĵ2
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|JR, mRi = JR(JR + 1) |JR, mRi (13)
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and
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at each site x, where for brevity the site indices are
suppressed. Here, JL, JR = 0,
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
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a

L
(x) + Ê
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi
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. (10)
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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The physical states |�i
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can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i
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for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,
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I
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the mass of each component of the fermions.
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tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i
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are required to satisfy G
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Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.
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At each site i, the electric-field basis states for the KS
formulation can be represented as
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straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
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locally to form the physical Hilbert space, as otherwise
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A question worth addressing is how beneficial it is,
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sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
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of the Hilbert space and its physical subsector changes
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formulation can be represented as
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

ER(x � 1)

EL(x)

ER(x)

EL(x + 1)

�  1
(x)

 2
(x)

�

�  1
(x+1)

 2
(x+1)

�

where ↵,� = ±
1

2
.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0(x) =  
†(x)

"
Y

y<x

U(y)

#†

. (20)

Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as

U(x) ! U
0(x) =

"
Y

y<x

U(y)

#
U(x)

"
Y

z<x+1

U(z)

#†

, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0(x)U 0(x) 0(x + 1) + h.c.

(22)

6

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
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possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
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Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
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the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
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this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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where ↵,� = ±
1

2
.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0(x) =  
†(x)

"
Y

y<x

U(y)

#†

. (20)

Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as

U(x) ! U
0(x) =

"
Y

y<x

U(y)

#
U(x)

"
Y

z<x+1

U(z)

#†

, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0(x)U 0(x) 0(x + 1) + h.c.

(22)

An `Abelian’ Gauss’s law
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
(KS) = H

(KS)

I
+ H

(KS)

E
+ H

(KS)

M
. (1)

Here, H
(KS)

I
denotes interactions among the fermionic

and gauge DOF6

H
(KS)

I
=

1

2a

N1X

x=0

h
 

†(x)Û(x) (x + 1) + h.c.
i
, (2)

where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
�
 

1

 
2

�
.

The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.

H
(KS)

E
corresponds to the energy stored in the electric

field,

H
(KS)

E
=

g
2
a

2

N2X

x=0

Ê(x)2. (3)

Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘

Ê2

L
= Ê2

R
. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa

L
, Ê

b

L
] = �i✏

abc
Ê

c

L
,

[Êa

R
, Ê

b

R
] = i✏

abc
Ê

c

R
,

[Êa

L
, Ê

b

R
] = 0, (4)

where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
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from a computational perspective, to work with a formu-
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that sustains a simple mapping of the the Hilbert space
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Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
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of the Hilbert space and its physical subsector changes
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electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.
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At each site i, the electric-field basis states for the KS
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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are equal, and as such we have defined J ⌘ J
(x)

L = J
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in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
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= 0.
Explicitly,
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a
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 (x)

�
|�i
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= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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Y
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#
 (x), (19)
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Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as
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, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0(x)U 0(x) 0(x + 1) + h.c.

(22)
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.
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that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
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the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
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the physical Hilbert space, see Sec. IIIA. To arrive at
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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each site. Moreover, as mentioned before, JL and JR
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one, as analyzed in Sec. III A
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B. Purely fermionic formulation
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(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
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LGT in Ref. []. Here, we present a generic derivation of
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tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
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and boundary condition as is detailed below. First, given
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each site. Moreover, as mentioned before, JL and JR
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imposed on the JR value at site x = 0 and JL value at
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one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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where ↵,� = ±
1

2
.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  
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"
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#†

. (20)

Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as

U(x) ! U
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"
Y
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U(y)

#
U(x)

"
Y

z<x+1

U(z)

#†

, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0(x)U 0(x) 0(x + 1) + h.c.

(22)
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as

|�i
(x)

(KS)
= |JR, mRi

(x�1)
⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:

 
1
|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)

 
1†

|f1, f2i = (1 � �f1,1) |f1 + 1, f2i , (12)

at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
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and a right electric field, as indexed in the figure.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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rection equal to unity, leading to a “constant of motion”,
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to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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each site. Moreover, as mentioned before, JL and JR
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one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
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proof outlined below. As a result, the KS Hamiltonian
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a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
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(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.
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tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
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and boundary condition as is detailed below. First, given
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each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
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site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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The physical states |�i
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can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i
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for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0(x)U 0(x) 0(x + 1) + h.c.

(22)

U(x)

6

2
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


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 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
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tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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A question worth addressing is how beneficial it is,
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lation that solves the Gauss’s law at the level of opera-
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that sustains a simple mapping of the the Hilbert space
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,

 (x) !  
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"
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#
 (x), (19)
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Note that the products of gauge links are defined asQ
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such that the gauge-matter interaction Hamiltonian,

H
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I
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as
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⌦|JL, mLi
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, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:
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|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)

 
1†
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at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy
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at each site x, where for brevity the site indices are
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1

2
, 1,

3

2
, · · · , and mR and
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

U(0)

staggered site i = 0 staggered site i = 1

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

staggered site n + 1staggered site n

U(n)
· · · · · · · · · · · ·

a physical site

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n � 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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are equal, and as such we have defined J ⌘ J
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in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
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= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
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(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
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such that the gauge-matter interaction Hamiltonian,
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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[Êa

L
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a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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For convenience, the Hamiltonian in Eq. (1) can be
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
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sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
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is chosen which sets the gauge link along the temporal di-
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the physical Hilbert space, see Sec. IIIA. To arrive at
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field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
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sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
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quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
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one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,
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[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term
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(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê
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L
(x) + Ê
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R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2
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= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as
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for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:
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at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
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and a right electric field, as indexed in the figure.
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[Êa

L
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a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.
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LGTs, the most e�cient basis is formed out of eigen-
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the fermionic eigenstates and the electric-field eigenstates
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field basis, or the strong-coupling basis, i.e., in the g ! 1
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field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i
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are required to satisfy G
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Explicitly,
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for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,
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I
, remains invariant:
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
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Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

ER(x � 1)

EL(x)

ER(x)

EL(x + 1)

�  1
(x)

 2
(x)

�

�  1
(x+1)

 2
(x+1)

�

where ↵,� = ±
1

2
.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0(x) =  
†(x)

"
Y

y<x

U(y)

#†

. (20)

Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as

U(x) ! U
0(x) =

"
Y

y<x

U(y)

#
U(x)

"
Y

z<x+1

U(z)

#†

, (21)
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

U(0)

staggered site i = 0 staggered site i = 1

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
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as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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2
.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
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†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,

H
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I
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as
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⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:
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|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)

 
1†
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at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy
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Ĵ
3

R
|JR, mRi = mR |JR, mRi (15)

Ĵ
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at each site x, where for brevity the site indices are
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.
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tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
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A question worth addressing is how beneficial it is,
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Here, N1 = N�1 for both PBC and OBC, and m denotes
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,

 (x) !  
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"
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U(y)

#
 (x), (19)
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Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as
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#
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U(z)
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, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0(x)U 0(x) 0(x + 1) + h.c.

(22)

5

FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as
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for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:
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at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
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Ĵ2

R
|JR, mRi = JR(JR + 1) |JR, mRi (13)

Ĵ2
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the mass of each component of the fermions.
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is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
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and boundary condition as is detailed below. First, given
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�
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for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
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4
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1
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1
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
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possible boundary modes. In particular with OBCs,
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basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
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such that the gauge-matter interaction Hamiltonian,
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,
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, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term
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(KS)
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N3X
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(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as
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= |JR, mRi

(x�1)
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for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:

 
1
|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)

 
1†

|f1, f2i = (1 � �f1,1) |f1 + 1, f2i , (12)

at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy

Ĵ2

R
|JR, mRi = JR(JR + 1) |JR, mRi (13)

Ĵ2
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,
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which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,
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Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê
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As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
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on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as

|�i
(x)

(KS)
= |JR, mRi

(x�1)
⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,
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which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,
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Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,
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excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
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2, each taking values
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Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
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which satisfies the SU(2) Lie algebra. It further satisfies
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Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
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= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as

|�i
(x)

(KS)
= |JR, mRi

(x�1)
⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +
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2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0(x) =  
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"
Y

y<x
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#†

. (20)

Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as

U(x) ! U
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Y
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#
U(x)
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Y

z<x+1

U(z)

#†

, (21)
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or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
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sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
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A question worth addressing is how beneficial it is,
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tors as opposed to states (e.g., in the LSH formulation)
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that sustains a simple mapping of the the Hilbert space
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Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
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sis is presented in Sec. ??, but it requires understanding
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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2
.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1
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†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,

H
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as
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⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:
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at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy
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Ĵ
3

R
|JR, mRi = mR |JR, mRi (15)

Ĵ
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.
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the mass of each component of the fermions.
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rection equal to unity, leading to a “constant of motion”,
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the physical Hilbert space, see Sec. IIIA. To arrive at
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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1

2
.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,

 (x) !  
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"
Y
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U(y)

#
 (x), (19)
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#†

. (20)

Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as
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#
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"
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, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0(x)U 0(x) 0(x + 1) + h.c.

(22)
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as

|�i
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(KS)
= |JR, mRi

(x�1)
⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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the computation is prohibitively costly even in small sys-
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A question worth addressing is how beneficial it is,
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straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G
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= 0.
Explicitly,
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= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,
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a
Û ,
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R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê
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L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as
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⌦|f1, f2i

(x)
⌦|JL, mLi
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for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:

 
1
|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)

 
1†

|f1, f2i = (1 � �f1,1) |f1 + 1, f2i , (12)

at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy
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Ĵ
3

R
|JR, mRi = mR |JR, mRi (15)

Ĵ
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Ĝ
a(x) = �Ê
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The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
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states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
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Given this correspondence, one may write the electric-
field basis states for the KS formulation as
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for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:
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 . Here, � denotes the Kronecker-delta symbol. Further-
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at each site x, where for brevity the site indices are
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mL quantum numbers satisfy �JR  mR  JR and
�JL  mL  JL, as dictated by the angular-momentum
group algebra. The action of the gauge-link operator on
this basis can be written as:

Û
(↵,�)(x)

h
· · · |JR, mRi
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⌦ |f1, f2i
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where ↵,� = ±
1

2
.7 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L
= J

(x)

R

in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1, respectively.

The physical states |�i
(KS)

can be formed by identi-
fying proper linear combinations of the basis states in
Eq. (10) such that the Gauss’s laws are satisfied at each
site, and by constructing the direct product of these com-
binations for adjacent sites along the lattice, following
additional gauge and boundary conditions as is detailed
below. First, given the Gauss’s law operators defined in
Eq. (9), the physical states |�i

(KS)
are required to satisfy

G
a(x) |�i

(KS)
= 0. Explicitly,


Ĵ

a

L
(x) + Ĵ

a

R
(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the one-dimensional lattice. So the Gauss’s laws
can be simply interpreted as the angular momenta ĴL

(corresponding to ÊL), Ĵf with Ĵ2

f
= 3

4
(corresponding

to the presence of one and only one fermion), and ĴR

(corresponding to �ÊL) should add to zero at each site.
When there is no fermion present or two fermions are
present, Ĵf = 0 and the left and right angular momenta
are the same. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and the JL value at
site x = N � 1, constrain the Hilbert space to a physical
gauge-invariant one, as analyzed in Sec. III A

7 Note that: U11 = U(
1
2 ,� 1

2 ), U12 = U(� 1
2 ,� 1

2 ), U21 =

U(
1
2 , 1

2 ), U22 = U(� 1
2 , 1

2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraints on the Hilbert space, in essence,
leaves no dynamical gauge DOF in 1+1 D beyond possi-
ble boundary modes. In particular, with OBC where the
incoming flux of the (right) electric field is set to a fixed
value, the value of electric-field excitations throughout
the lattice is fixed. This, in fact, is a general feature of
LGTs in 1+1 D, as is evident from the proof outlined be-
low. As a result, the KS Hamiltonian acting on the phys-
ical Hilbert space can be brought to a purely fermionic
form, in which the identification of (anti)fermion config-
urations is su�cient to construct the Hilbert space. This
eliminates the need for adopting a state basis for the
gauge DOF, and for solving the complex (non-diagonal)
Gauss’s laws locally which is the case in an angular-
momentum basis. Such an elimination of gauge DOF
in LGTs in 1+1 D was first discussed in Ref. [85] and
is used in recent tensor-network simulations of the SU(2)
LGT in Ref. [91]. Here, we present a generic derivation of
such a purely fermionic representation, before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermion fields in the KS Hamiltonian:

 (x) !  
0(x) =

"
Y

y<x

U(y)
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 (x), (19)
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such that the gauge-matter interaction Hamiltonian,
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I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0
(x)U 0(x) 0(x + 1) + h.c.

(22)

Now considering the unitarity condition on the gauge
links, i.e., U

†
U = I, reveals that Eq. (21) simplifies to

U
0 = I, (23)

where I is the unity matrix whose dimensionality is equal
to that of the fundamental representation of the gauge
group, e.g., two in the case of SU(2). Therefore, the
interaction Hamiltonian becomes

H
(F)

I
=

1

2a

N1X

x=0

h
 

†0
(x) 0(x + 1) + h.c.

i
, (24)

where N1 = N � 2 as noted after Eq. (6).
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where N1 = N � 2 as noted after Eq. (6).
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The physical states |�i
(KS)

can be formed by identi-
fying proper linear combinations of the basis states in
Eq. (10) such that the Gauss’s laws are satisfied at each
site, and by constructing the direct product of these com-
binations for adjacent sites along the lattice, following
additional gauge and boundary conditions as is detailed
below. First, given the Gauss’s law operators defined in
Eq. (9), the physical states |�i
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are required to satisfy
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along the one-dimensional lattice. So the Gauss’s laws
can be simply interpreted as the angular momenta ĴL

(corresponding to ÊL), Ĵf with Ĵ2
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= 3

4
(corresponding

to the presence of one and only one fermion), and ĴR

(corresponding to �ÊL) should add to zero at each site.
When there is no fermion present or two fermions are
present, Ĵf = 0 and the left and right angular momenta
are the same. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and the JL value at
site x = N � 1, constrain the Hilbert space to a physical
gauge-invariant one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
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ble boundary modes. In particular, with OBC where the
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LGTs in 1+1 D, as is evident from the proof outlined be-
low. As a result, the KS Hamiltonian acting on the phys-
ical Hilbert space can be brought to a purely fermionic
form, in which the identification of (anti)fermion config-
urations is su�cient to construct the Hilbert space. This
eliminates the need for adopting a state basis for the
gauge DOF, and for solving the complex (non-diagonal)
Gauss’s laws locally which is the case in an angular-
momentum basis. Such an elimination of gauge DOF
in LGTs in 1+1 D was first discussed in Ref. [85] and
is used in recent tensor-network simulations of the SU(2)
LGT in Ref. [91]. Here, we present a generic derivation of
such a purely fermionic representation, before analyzing
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5

FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
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Ĵ2

R
|JR, mRi = JR(JR + 1) |JR, mRi (13)

Ĵ2
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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the mass of each component of the fermions.
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rection equal to unity, leading to a “constant of motion”,
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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B. Purely fermionic formulation
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Here, N1 = N�1 for both PBC and OBC, and m denotes
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
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to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
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and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
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along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
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each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
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one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


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�
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= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
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[Êa

L
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, Û ] = ÛT
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
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unitary matrix which emanates from site n along the spa-
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In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
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sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
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field basis to form the full Hilbert space. This is called
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the electric-field operator vanish, and the Hamiltonian
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ical, and can be classified into sectors corresponding to
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Eq. ??. In other words, the Gauss’s law constrains the
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to the zero eignevalue of G. In contrast to the U(1) LGT,
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tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
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f = 3

4
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two requirements, in addition to the boundary conditions
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site x = N � 1, constrain the Hilbert space to a physical
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B. Purely fermionic formulation
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angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.
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fermions in the KS Hamiltonian,

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0(x) =  
†(x)

"
Y

y<x

U(y)

#†

. (20)

Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as

U(x) ! U
0(x) =

"
Y

y<x

U(y)

#
U(x)

"
Y

z<x+1

U(z)

#†

, (21)

such that the gauge-matter interaction Hamiltonian,
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,
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where T
a = 1

2
⌧
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th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.
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in Eq. (1) is a staggered mass term
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Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,
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which satisfies the SU(2) Lie algebra. It further satisfies
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Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
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a

R
(x � 1) + ⇢̂
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As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
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for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
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1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.
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formulation can be represented as
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.
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from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
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sidered. Such questions are studied in various depth in
this section for various formulations.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
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this constraint, one needs to inspect the commutation
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G
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= 0.
Explicitly,
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for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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1
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U(� 1
2 ,� 1

2 ), U22 = U(� 1
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1
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as
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⌦|JL, mLi
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for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:
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|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)
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at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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Û ,

[Êa
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, Û ] = ÛT
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as

|�i
(x)

(KS)
= |JR, mRi

(x�1)
⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:

 
1
|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)

 
1†

|f1, f2i = (1 � �f1,1) |f1 + 1, f2i , (12)

at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy

Ĵ2
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

U(0)

staggered site i = 0 staggered site i = 1

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

staggered site n + 1staggered site n

U(n)
· · · · · · · · · · · ·

a physical site

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n � 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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can be formed by identify-
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each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
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site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
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set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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can be formed by identify-
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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the mass of each component of the fermions.
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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2
.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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#
 (x), (19)
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Note that the products of gauge links are defined asQ
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gauge links must transform as
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#
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such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0(x)U 0(x) 0(x + 1) + h.c.

(22)
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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the electric-field basis, or the strong-coupling basis, since
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complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
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A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
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Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
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as a function of the lattice size and the cuto↵ on the
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becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
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tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
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for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
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4
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and JR (corresponding to �EL) should add to zero at
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0(x) =  
†(x)

"
Y

y<x

U(y)

#†

. (20)

Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as

U(x) ! U
0(x) =

"
Y

y<x

U(y)

#
U(x)

"
Y

z<x+1

U(z)

#†

, (21)

such that the gauge-matter interaction Hamiltonian,
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
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Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.
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As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation
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of the magnetic Hamiltonian, which is the case in 1+1 D
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation
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The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
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sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
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in SU(2) LGT the Gauss’s law is not a single algebraic
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tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
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A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
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tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
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A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
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the dimensionality of the Hilbert spaces involved. An-
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as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
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the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
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= 0.
Explicitly,
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for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A
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1
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
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M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as
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= |JR, mRi

(x�1)
⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:
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|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)

 
1†
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at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy
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suppressed. Here, JL, JR = 0,

1

2
, 1,

3

2
, · · · , and mR and

5

FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as

|�i
(x)

(KS)
= |JR, mRi

(x�1)
⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:

 
1
|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)

 
1†

|f1, f2i = (1 � �f1,1) |f1 + 1, f2i , (12)

at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy

Ĵ2

R
|JR, mRi = JR(JR + 1) |JR, mRi (13)

Ĵ2
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
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The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.
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A question worth addressing is how beneficial it is,
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that sustains a simple mapping of the the Hilbert space
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sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
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electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.
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formulation can be represented as
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
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rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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B. Purely fermionic formulation
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tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
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relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(0)
ER(1)
EL(0)
EL(1)�  1(0)

 2(0)

�
�  1(1)

 2(1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

U(0)

staggered site i = 0 staggered site i = 1

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
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the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
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Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
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straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
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A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
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sis is presented in Sec. ??, but it requires understanding
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this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n + 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

staggered site n + 1staggered site n

U(n)
· · · · · · · · · · · ·

a physical site

2

Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢

a(n) ⌘  
†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E

a
L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

n=0

⇥
 

†(n)U(n) (n + 1) + h.c.
⇤
+

N2X

n=0

E2 + µ

N3X

n=0

(�1)n
 

†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n � 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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2
.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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 (x), (19)
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such that the gauge-matter interaction Hamiltonian,

H
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I
, remains invariant:
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as
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(x�1)
⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:

 
1
|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)

 
1†

|f1, f2i = (1 � �f1,1) |f1 + 1, f2i , (12)

at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy
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at each site x, where for brevity the site indices are
suppressed. Here, JL, JR = 0,
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2
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3
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, · · · , and mR and
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m
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jectory in parameter space along which the continuum
limit can be taken.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the
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such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
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(22)
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
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M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)
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Ĵ
3

R
|JR, mRi = mR |JR, mRi (15)

Ĵ
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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the computation is prohibitively costly even in small sys-
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A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
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Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
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tial direction, as shown in Fig. ??. The temporal gauge
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unitary matrix which emanates from site n along the spa-
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is chosen which sets the gauge link along the temporal di-
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rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢
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†(n)T a

 (n)

[⇢a
, ] = �T

a
 , (7)

G
a(n) = �E
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L(n) + E

a
R(n � 1) + ⇢

a(n), (8)

For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled

Hamiltonian H
0(KS) can be defined,

H
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ag2
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†(n)U(n) (n + 1) + h.c.
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N2X

n=0
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†(n) (n) (9)

where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.

ER(n)
ER(n � 1)
EL(n)
EL(n + 1)�  1(n)

 2(n)

�
�  1(n+1)

 2(n+1)

�

B. Purely fermionic formulation

C. Purely bosonic formulation

D. Loop-String-Hadron formulation

E. Quantum-Link-Model formulation

III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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where ↵,� = ±
1

2
.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


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�
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= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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 (x), (19)
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Note that the products of gauge links are defined asQ
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, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:
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†0(x)U 0(x) 0(x + 1) + h.c.

(22)
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as
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⌦|f1, f2i

(x)
⌦|JL, mLi
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, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:

 
1
|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)

 
1†

|f1, f2i = (1 � �f1,1) |f1 + 1, f2i , (12)

at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,
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which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,
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Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,
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the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.
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The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
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Given this correspondence, one may write the electric-
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for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:
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and a right electric field, as indexed in the figure.
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Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,
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 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,
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Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,
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As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.
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The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
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field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
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on each link.
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for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
⇢
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 , (7)
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For convenience, the Hamiltonian in Eq. (1) can be
multiplied by 2

ag2 such that a dimensionless rescaled
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0(KS) can be defined,
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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III. PHYSICAL HILBERT SPACE ANALYSIS

The first step in forming the Hilbert space of a LGT
for the sake of computation is to map the vacuum and
the excitations of the fields to a states basis. In the ab-
sence of the magnetic Hamiltonian, which is the case in
1 + 1D LGTs, the most e�cient basis is formed out of
eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0(x) =  
†(x)

"
Y

y<x

U(y)

#†

. (20)

Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as

U(x) ! U
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
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compared with the formulations (e.g., KS formulation)
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the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
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sidered. Such questions are studied in various depth in
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unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
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A question worth addressing is how beneficial it is,
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lation that solves the Gauss’s law at the level of opera-
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that sustains a simple mapping of the the Hilbert space
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sis is presented in Sec. ??, but it requires understanding
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sis is presented in Sec. ??, but it requires understanding
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as a function of the lattice size and the cuto↵ on the
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formulation can be represented as
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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2
.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1
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†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,
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such that the gauge-matter interaction Hamiltonian,

H
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as
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⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:
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1†
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at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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where x = 1

a2g2 and µ = 2m
g2a . The limit x ! 0 corre-

sponds to the strong-coupling vacuum of the theory (see
Sec. III), while limit x ! 1 at a fixed m

g provides a tra-
jectory in parameter space along which the continuum
limit can be taken.
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eigenstates of the electric-field operator. The fermionic
eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
that involves transitions between di↵erent eigenvalues of
the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
ity of states formed in this way are, however, not phys-
ical, and can be classified into sectors corresponding to
each of the eigenvalues of the Gauss’s law operator G in
Eq. ??. In other words, the Gauss’s law constrains the
local Hilbert space of a LGT to the sector corresponding
to the zero eignevalue of G. In contrast to the U(1) LGT,
in SU(2) LGT the Gauss’s law is not a single algebraic
constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.
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formulation can be represented as
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the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
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that sustains a simple mapping of the the Hilbert space
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.
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1

2
.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,

 (x) !  
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"
Y
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U(y)

#
 (x), (19)

 
†(x) !  
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#†

. (20)

Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as
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#
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"
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U(z)

#†

, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0(x)U 0(x) 0(x + 1) + h.c.

(22)
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as

|�i
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(KS)
= |JR, mRi

(x�1)
⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
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Here, N1 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In SU(2) LGT in 1+1D, the gauge link U(n) is a 2⇥ 2
unitary matrix which emanates from site n along the spa-
tial direction, as shown in Fig. ??. The temporal gauge
is chosen which sets the gauge link along the temporal di-
rection equal to unity, leading to a “constant of motion”,
or the Gauss’s law constraint, that must be imposed on
the physical Hilbert space, see Sec. IIIA. To arrive at
this constraint, one needs to inspect the commutation
relations among the field.
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1 + 1D LGTs, the most e�cient basis is formed out of
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eignestates are then direct producted into this electric-
field basis to form the full Hilbert space. This is called
the electric-field basis, or the strong-coupling basis, since
in the g ! 1 limit (i.e., x ! 0 limit), the hoping terms
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the electric-field operator vanish, and the Hamiltonian
becomes diagonal in the electric-field basis. The major-
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ical, and can be classified into sectors corresponding to
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Eq. ??. In other words, the Gauss’s law constrains the
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straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
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Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
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as a function of the lattice size and the cuto↵ on the
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sidered. Such questions are studied in various depth in
this section for various formulations.
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constraint on the eigenvalues of the electric-field opera-
tor, but instead mixes states with di↵erent electric-field
quantum numbers, and is therefore a non-diagonal con-
straint when expressed in the electric-field basis. A major
complexity in Hamiltonian formulation of non-Abelian
gauge theories is to diagonalize the Gauss’s law operator
locally to form the physical Hilbert space, as otherwise
the computation is prohibitively costly even in small sys-
tems.

A question worth addressing is how beneficial it is,
from a computational perspective, to work with a formu-
lation that solves the Gauss’s law at the level of opera-
tors as opposed to states (e.g., in the LSH formulation)
compared with the formulations (e.g., KS formulation)
that sustains a simple mapping of the the Hilbert space
to operators in the Hamiltonian but requires solving the
Gauss’s law for states subsequently. Such a cost analy-
sis is presented in Sec. ??, but it requires understanding
and analyzing in more detail the steps involved in form-
ing the physical Hilbert space in each formulation and
the dimensionality of the Hilbert spaces involved. An-
other interesting question is how fast the dimensionality
of the Hilbert space and its physical subsector changes
as a function of the lattice size and the cuto↵ on the
electric-field excitations in each of the formulations con-
sidered. Such questions are studied in various depth in
this section for various formulations.

A. Kogut and Susskind formulation

At each site i, the electric-field basis states for the KS
formulation can be represented as

|�i
(n)

(KS)
= |JR, mRi

(n�1)
⌦|f1, f2i

(n)
⌦|JL, mLi

(n)
. (10)

FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

ER(x � 1)

EL(x)

ER(x)

EL(x + 1)

�  1
(x)

 2
(x)

�

�  1
(x+1)

 2
(x+1)

�

where ↵,� = ±
1

2
.6 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L = J
(x)

R
in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1.

The physical states |�i
(KS)

can be formed by identify-
ing proper linear combinations of basis states in Eq. (10)
such that Gauss’s law is satisfied at each site, and by
constructing the direct product of these combinations for
adjacent sites along the lattice following additional gauge
and boundary condition as is detailed below. First, given
the Gauss’s law operator defined in Eq. (9), the physical
states |�i

(KS)
are required to satisfy G

a(x) |�i
(KS)

= 0.
Explicitly,


J

a
L(x) + J

a
R(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the 1D lattice. So the Gauss’s law can be simply
interpreted as the angular momenta JL (corresponding
to EL), Jf with J2

f = 3

4
(corresponding to the fermions),

and JR (corresponding to �EL) should add to zero at
each site. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and JL value at
site x = N � 1, constrain the Hilbert space to a physical
one, as analyzed in Sec. III A

6 Note that: U11 = U( 1
2 ,� 1

2 ), U12 = U( 1
2 ,

1
2 ), U21 =

U(� 1
2 ,� 1

2 ), U22 = U(� 1
2 ,

1
2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraint on the Hilbert space, in essence,
leaves no dynamical gauge-field DOF in 1+1 D beyond
possible boundary modes. In particular with OBCs,
where the incoming flux of the (right) electric field is
set to a fixed value, the value of electric-field excitations
throughout the lattice can be fixed. This, in fact, is a
general feature of LGTs in 1+1 D, as is evident from the
proof outlined below. As a result, the KS Hamiltonian
acting on the physical Hilbert space can be brought to
a purely fermionic form, in which the identification of
(anti)fermion configurations is su�cient to construct the
Hilbert space. This eliminates the need for adopting a
basis state for the gauge DOF, and to solve the complex
(non-diagonal) Gauss’s laws locally, for example, in an
angular-momentum basis. Such an elimination of gauge-
field DOF in LGTs in 1+1 D is discussed in Refs. [] and
in used in recent tensor-network simulations of the SU(2)
LGT in Ref. []. Here, we present a generic derivation of
such a purely fermionic representation before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermions in the KS Hamiltonian,

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0(x) =  
†(x)

"
Y

y<x

U(y)

#†

. (20)

Note that the products of gauge links are defined asQ
y<x U(y) = U(0)U(1) · · · U(x � 1). Consequently, the

gauge links must transform as

U(x) ! U
0(x) =

"
Y

y<x

U(y)

#
U(x)

"
Y

z<x+1

U(z)

#†

, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0(x)U 0(x) 0(x + 1) + h.c.

(22)
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as

|�i
(x)

(KS)
= |JR, mRi

(x�1)
⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:

 
1
|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)

 
1†

|f1, f2i = (1 � �f1,1) |f1 + 1, f2i , (12)

at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy

Ĵ2

R
|JR, mRi = JR(JR + 1) |JR, mRi (13)

Ĵ2

L
|JL, mLi = JL(JL + 1) |JL, mLi (14)

and

Ĵ
3

R
|JR, mRi = mR |JR, mRi (15)

Ĵ
3

L
|JL, mLi = mL |JL, mLi (16)

at each site x, where for brevity the site indices are
suppressed. Here, JL, JR = 0,

1

2
, 1,

3

2
, · · · , and mR and
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as

|�i
(x)

(KS)
= |JR, mRi

(x�1)
⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:

 
1
|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)

 
1†

|f1, f2i = (1 � �f1,1) |f1 + 1, f2i , (12)

at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy

Ĵ2

R
|JR, mRi = JR(JR + 1) |JR, mRi (13)

Ĵ2

L
|JL, mLi = JL(JL + 1) |JL, mLi (14)

and

Ĵ
3

R
|JR, mRi = mR |JR, mRi (15)

Ĵ
3

L
|JL, mLi = mL |JL, mLi (16)

at each site x, where for brevity the site indices are
suppressed. Here, JL, JR = 0,

1

2
, 1,

3

2
, · · · , and mR and
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mL quantum numbers satisfy �JR  mR  JR and
�JL  mL  JL, as dictated by the angular-momentum
group algebra. The action of the gauge-link operator on
this basis can be written as:

Û
(↵,�)(x)

h
· · · |JR, mRi

(x�1)
⌦ |f1, f2i

(x)
⌦ |JL, mLi

(x)

⌦ |JR, mRi
(x)

⌦ |f1, f2i
(x+1)

⌦ |JL, mLi
(x+1)

· · ·

i

= · · · |JR, mRi
(x�1)

⌦ |f1, f2i
(x)

⌦
2

4
X

j={0,
1
2 ,1,...}

s
2J + 1

2j + 1
hJ, mL;

1

2
,↵|j, mL + ↵i

hJ, mR;
1

2
,�|j, mR + �i |j, mL + ↵i

(x)
⌦ |j, mR + �i

(x)

�

⌦ |f1, f2i
(x+1)

⌦ |JL, mLi
(x+1)

· · · , (17)

where ↵,� = ±
1

2
.7 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L
= J

(x)

R

in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1, respectively.

The physical states |�i
(KS)

can be formed by identi-
fying proper linear combinations of the basis states in
Eq. (10) such that the Gauss’s laws are satisfied at each
site, and by constructing the direct product of these com-
binations for adjacent sites along the lattice, following
additional gauge and boundary conditions as is detailed
below. First, given the Gauss’s law operators defined in
Eq. (9), the physical states |�i

(KS)
are required to satisfy

G
a(x) |�i

(KS)
= 0. Explicitly,


Ĵ

a

L
(x) + Ĵ

a

R
(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the one-dimensional lattice. So the Gauss’s laws
can be simply interpreted as the angular momenta ĴL

(corresponding to ÊL), Ĵf with Ĵ2

f
= 3

4
(corresponding

to the presence of one and only one fermion), and ĴR

(corresponding to �ÊL) should add to zero at each site.
When there is no fermion present or two fermions are
present, Ĵf = 0 and the left and right angular momenta
are the same. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and the JL value at
site x = N � 1, constrain the Hilbert space to a physical
gauge-invariant one, as analyzed in Sec. III A

7 Note that: U11 = U(
1
2 ,� 1

2 ), U12 = U(� 1
2 ,� 1

2 ), U21 =

U(
1
2 , 1

2 ), U22 = U(� 1
2 , 1

2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraints on the Hilbert space, in essence,
leaves no dynamical gauge DOF in 1+1 D beyond possi-
ble boundary modes. In particular, with OBC where the
incoming flux of the (right) electric field is set to a fixed
value, the value of electric-field excitations throughout
the lattice is fixed. This, in fact, is a general feature of
LGTs in 1+1 D, as is evident from the proof outlined be-
low. As a result, the KS Hamiltonian acting on the phys-
ical Hilbert space can be brought to a purely fermionic
form, in which the identification of (anti)fermion config-
urations is su�cient to construct the Hilbert space. This
eliminates the need for adopting a state basis for the
gauge DOF, and for solving the complex (non-diagonal)
Gauss’s laws locally which is the case in an angular-
momentum basis. Such an elimination of gauge DOF
in LGTs in 1+1 D was first discussed in Ref. [85] and
is used in recent tensor-network simulations of the SU(2)
LGT in Ref. [91]. Here, we present a generic derivation of
such a purely fermionic representation, before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermion fields in the KS Hamiltonian:

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0
(x) =  

†(x)

"
Y

y<x

U(y)

#†

. (20)

Note that the products of gauge links are defined asQ
y<x

U(y) = U(0)U(1) · · · U(x � 1). Consequently, the
gauge links must transform as

U(x) ! U
0(x) =

"
Y

y<x

U(y)

#
U(x)

"
Y

z<x+1

U(z)

#†

, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0
(x)U 0(x) 0(x + 1) + h.c.

(22)

Now considering the unitarity condition on the gauge
links, i.e., U

†
U = I, reveals that Eq. (21) simplifies to

U
0 = I, (23)

where I is the unity matrix whose dimensionality is equal
to that of the fundamental representation of the gauge
group, e.g., two in the case of SU(2). Therefore, the
interaction Hamiltonian becomes

H
(F)

I
=

1

2a

N1X

x=0

h
 

†0
(x) 0(x + 1) + h.c.

i
, (24)

where N1 = N � 2 as noted after Eq. (6).

PHYSICAL CONSTRAINTS



EXAMPLE

Consider a two-site theory with open boundary conditions. Impose a cutoff  on the total 
angular momentum on each link such that only  values are allowed. The incoming angular 
momentum is set to zero.  

a) How many basis states are there? 

There are  basis states (4 fermionic states  at each site and 5 angular momentum 
states  on the only link.). 

b) What are the physical states in the sector with  where ? 

Λ = 1/2
J = 0,1/2

42 × 5 = 80 | f1, f2⟩
|J, mL⟩ ⊗ |J, mL⟩

ν = 1 ν ≡ 1
2 ∑

x
ψ†(x)ψ(x)

x = 0 x = 1

<latexit sha1_base64="hUtEm0F7eJLe/WO6VhFqja9vwj8=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqBch6EU8RTAPSJYwO5kkQ2Zn15neYFjyHV48KOLVj/Hm3zhJ9qDRgoaiqpvuriCWwqDrfjm5peWV1bX8emFjc2t7p7i7VzdRohmvsUhGuhlQw6VQvIYCJW/GmtMwkLwRDK+nfmPEtRGRusdxzP2Q9pXoCUbRSv5tp438EVOhJpdup1hyy+4M5C/xMlKCDNVO8bPdjVgScoVMUmNanhujn1KNgkk+KbQTw2PKhrTPW5YqGnLjp7OjJ+TIKl3Si7QthWSm/pxIaWjMOAxsZ0hxYBa9qfif10qwd+Hbj+IEuWLzRb1EEozINAHSFZozlGNLKNPC3krYgGrK0OZUsCF4iy//JfWTsndW9u5OS5WrLI48HMAhHIMH51CBG6hCDRg8wBO8wKszcp6dN+d93ppzspl9+AXn4xuqEZII</latexit>

Jin = 0

15

3)
1

p
6


|0, 0i |1, 0i |

1

2
, �

1

2
i

�(0)

⌦


|
1

2
,
1

2
i |1, 0i |1, �1i

�(1)

�
1

2
p

3


|0, 0i |1, 0i |

1

2
, �

1

2
i

�(0)

⌦


|
1

2
,
1

2
i |0, 1i |1, 0i

�(1)

�
1

2
p

3


|0, 0i |1, 0i |

1

2
, �

1

2
i

�(0)

⌦


|
1

2
, �

1

2
i |1, 0i |1, 0i

�(1)

+
1

p
6


|0, 0i |1, 0i |

1

2
, �

1

2
i

�(0)

⌦


|
1

2
, �

1

2
i |0, 1i |1, 1i

�(1)

�
1

p
6


|0, 0i |0, 1i |

1

2
,
1

2
i

�(0)

⌦


|
1

2
,
1

2
i |1, 0i |1, �1i

�(1)

+
1

2
p

3


|0, 0i |0, 1i |

1

2
,
1

2
i

�(0)

⌦


|
1

2
,
1

2
i |0, 1i |1, 0i

�(1)

+
1

2
p

3


|0, 0i |0, 1i |

1

2
,
1

2
i

�(0)

⌦


|
1

2
, �

1

2
i |1, 0i |1, 0i

�(1)

�
1

p
6


|0, 0i |0, 1i |

1

2
,
1

2
i

�(0)

⌦


|
1

2
, �

1

2
i |0, 1i |1, 1i

�(1)

,

4) [|0, 0i |1, 1i |0, 0i](0) ⌦ [|0, 0i |0, 0i |0, 0i](1) , (70)

where each triplet in the square brackets denotes
[|JR, mRi ⌦ |f1, f2i ⌦ |JL, mLi](x) at the corresponding
site x, and the direct product symbol is suppressed in
such triplets for brevity. On the other hand, in the purely
fermionic representation of the same theory, the six basis
states are

1) |0, 0i
(0)

⌦ |1, 1i
(1)

,

2) |0, 1i
(0)

⌦ |0, 1i
(1)

,

3) |0, 1i
(0)

⌦ |1, 0i
(1)

,

4) |1, 0i
(0)

⌦ |0, 1i
(1)

,

5) |1, 0i
(0)

⌦ |1, 0i
(1)

,

6) |1, 1i
(0)

⌦ |0, 0i
(1)

. (71)

As is seen, while all the six possible fermionic configura-
tions in the ⌫ = 1 sector are present in the physical basis
states of the KS formulation in the angular-momentum
basis, only two proper linear combinations of states 2)-5)
in the fermionic formulation appear in the KS formula-
tion in the angular-momentum basis. Further inspection
of the two representations reveals that the spectrum of
both theories matches exactly for all values of the cou-
plings, but with degeneracies present in the fermionic
case. To conclude, the fermionic representation of the
SU(2) LGT in 1+1 D with OBC has redundancies in the
representation compared with the KS formulation in the
angular-momentum basis, however it avoids complex lin-
ear combinations of basis states that arise in the latter
due to the imposition of the Gauss’s laws. As will be
discussed in Sec. III D, the LSH formulation of the SU(2)
LGT is free from the redundancies of the fermionic for-
mulation, while at the same time it does not involve a
cumbersome physical Hilbert-space construction.
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FIG. 10. The upper panel depicts the ratio of the dimension
of the Hilbert space in the fully fermionic formulation with
OBC to the dimension of the physical Hilbert space within the
KS (and LSH) formulation without removing the gauge DOF
(but with a su�ciently large cuto↵ such that the dimension of
the Hilbert space saturates to a fixed value), for several values
of the lattice size, N . The middle panel depicts the density of
the Hamiltonian matrix within the physical Hilbert space for
each theory. The lower panel is the ratio of the Hamiltonian
matrix densities multiplied by the square of the ratio of the
size of the Hilbert spaces in each theory. This latter quantity
enters the analysis of the computational complexity of matrix
manipulation in Sec. V. The numerical values associated with
these plots are listed in Supplemental Material.

C. Purely bosonic formulation

The physical basis states of the bosonized SU(2) the-
ory with OBC are, at the first sight, the direct product
of the physical basis states of the KS theory discussed
in Sec. IIIA and the electric-field basis states satisfying
the extra U(1) Gauss’s law. Recall that the U(1) sym-
metry was introduced in the bosonized form to allow the
elimination of fermionic DOF in favor of bosonic DOE
in the SU(2) theory. The statement above is only true
if the cuto↵ on the U(1) electric field is set su�ciently
high such that all fermionic configurations allowed in the
physical Hilbert space of the SU(2) theory can be real-
ized. To make this statement more explicit, consider the
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FIG. 8. Shown in blue is the same as in Fig. 6-a, i.e., the
coe�cient of the lattice size, N , in the exponent of M ⇠ e
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for several values of ⇤, where M denotes the dimension of the
physical Hilbert space within the KS (and LSH) formulation
with PBC. The same quantity can be plotted for the dimen-
sion of the full Hilbert space, as shown in orange, along with
an empirical functional form obtained from a fit to the points.
The numerical values associated with these plots are listed in
Supplemental Material.

Implementing the physical constraints, nonetheless,
introduces further complexity at the onset of the
calculation and amounts to an additional prepro-
cessing cost. We will come back to this point when
comparing the simulation cost between the KS and
LSH formulations in Sec. V.

. A physical basis state is generally a superposition
of the original angular-momentum basis states, see
e.g., the example in Eqs. (70) below. The number
of terms in each superposition can become expo-
nentially large in system’s size. This creates sig-
nificant complexity when generating the Hamilto-
nian matrix, due to the need to keep track of the
Hamiltonian action on each constituent basis state.
The maximum number of terms in a physical state
is plotted in Fig. 9 as a function of ⇤ for PBC,
demonstrating this exponential growth. We will
come back to this feature in Sec. V when analyzing
the computational cost of the Hamiltonian simula-
tion.

B. Purely fermionic formulation

As discussed in Sec. II B, the basis states that represent
the Hilbert space of the purely fermionic representation
of the KS formulation with OBC consist of the direct
product of on-site fermionic states, see Eq. (30), giving
rise to M = 4N basis states, where N denotes the size
of the lattice in 1+1 D as before. The dimension of the
Hilbert space of the fermionic theory is larger than the
dimension of the physical Hilbert space of the KS for-
mulation in the angular momentum (and LSH) basis for
cuto↵ values that allow the full physical Hilbert space to
be constructed with OBC (i.e., ⇤ � N + 2✏0). The ratio
of the former to the latter is shown in Fig. 10 for various
N , along with an empirical fit form to the ratio as a func-
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FIG. 9. Each physical state in the KS formulation in the
angular-momentum basis is, in general, a linear combination
of multiple basis states in Eq. (10). Shown is the number of
terms in the longest linear combination formed to represent
a physical state in the KS theory with PBC, as a function of
the cuto↵, ⇤, for various number of lattice sizes N . This num-
ber grows polynomially with ⇤ for a fixed N , while it grows
exponentially with N for a fixed ⇤, with the form shown.

tion of the lattice size. This form shows that the ratio
of the dimensions of the two Hilbert spaces asymptotes
slowly to a fixed number.

To understand this mismatch between the number of
(physical) states in both formulations, despite the fact
the fermionic formulation is constructed to fully represent
the physical Hilbert space, inspecting the following exam-
ple will be illuminating. Consider the N = 2 theory in
the ⌫ = 1 sector, where ⌫ denotes the normalized fermion
occupation number on the lattice defined in Eq. (76) be-
low. In the KS formulation in the angular-momentum
basis, the only four physical basis states are:17
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17 Such states are constructed e�ciently in Ref. [90] by acting by
the interacting Hamiltonian on the strong-coupling vacuum, i.e.,
state 1) shown, but they di↵er in relative signs with the states
presented here. Nonetheless, only the signs denoted here give
rise to gauge-invariant states as can be checked by acting by the
Gauss’s law operators in Eq. (9) on the states shown.
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4) [|0, 0i |1, 1i |0, 0i](0) ⌦ [|0, 0i |0, 0i |0, 0i](1) , (70)

where each triplet in the square brackets denotes
[|JR, mRi ⌦ |f1, f2i ⌦ |JL, mLi](x) at the corresponding
site x, and the direct product symbol is suppressed in
such triplets for brevity. On the other hand, in the purely
fermionic representation of the same theory, the six basis
states are

1) |0, 0i
(0)

⌦ |1, 1i
(1)

,

2) |0, 1i
(0)

⌦ |0, 1i
(1)

,

3) |0, 1i
(0)

⌦ |1, 0i
(1)

,

4) |1, 0i
(0)

⌦ |0, 1i
(1)

,

5) |1, 0i
(0)

⌦ |1, 0i
(1)

,

6) |1, 1i
(0)

⌦ |0, 0i
(1)

. (71)

As is seen, while all the six possible fermionic configura-
tions in the ⌫ = 1 sector are present in the physical basis
states of the KS formulation in the angular-momentum
basis, only two proper linear combinations of states 2)-5)
in the fermionic formulation appear in the KS formula-
tion in the angular-momentum basis. Further inspection
of the two representations reveals that the spectrum of
both theories matches exactly for all values of the cou-
plings, but with degeneracies present in the fermionic
case. To conclude, the fermionic representation of the
SU(2) LGT in 1+1 D with OBC has redundancies in the
representation compared with the KS formulation in the
angular-momentum basis, however it avoids complex lin-
ear combinations of basis states that arise in the latter
due to the imposition of the Gauss’s laws. As will be
discussed in Sec. III D, the LSH formulation of the SU(2)
LGT is free from the redundancies of the fermionic for-
mulation, while at the same time it does not involve a
cumbersome physical Hilbert-space construction.
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FIG. 10. The upper panel depicts the ratio of the dimension
of the Hilbert space in the fully fermionic formulation with
OBC to the dimension of the physical Hilbert space within the
KS (and LSH) formulation without removing the gauge DOF
(but with a su�ciently large cuto↵ such that the dimension of
the Hilbert space saturates to a fixed value), for several values
of the lattice size, N . The middle panel depicts the density of
the Hamiltonian matrix within the physical Hilbert space for
each theory. The lower panel is the ratio of the Hamiltonian
matrix densities multiplied by the square of the ratio of the
size of the Hilbert spaces in each theory. This latter quantity
enters the analysis of the computational complexity of matrix
manipulation in Sec. V. The numerical values associated with
these plots are listed in Supplemental Material.

C. Purely bosonic formulation

The physical basis states of the bosonized SU(2) the-
ory with OBC are, at the first sight, the direct product
of the physical basis states of the KS theory discussed
in Sec. IIIA and the electric-field basis states satisfying
the extra U(1) Gauss’s law. Recall that the U(1) sym-
metry was introduced in the bosonized form to allow the
elimination of fermionic DOF in favor of bosonic DOE
in the SU(2) theory. The statement above is only true
if the cuto↵ on the U(1) electric field is set su�ciently
high such that all fermionic configurations allowed in the
physical Hilbert space of the SU(2) theory can be real-
ized. To make this statement more explicit, consider the
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FIG. 8. Shown in blue is the same as in Fig. 6-a, i.e., the
coe�cient of the lattice size, N , in the exponent of M ⇠ e
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for several values of ⇤, where M denotes the dimension of the
physical Hilbert space within the KS (and LSH) formulation
with PBC. The same quantity can be plotted for the dimen-
sion of the full Hilbert space, as shown in orange, along with
an empirical functional form obtained from a fit to the points.
The numerical values associated with these plots are listed in
Supplemental Material.

Implementing the physical constraints, nonetheless,
introduces further complexity at the onset of the
calculation and amounts to an additional prepro-
cessing cost. We will come back to this point when
comparing the simulation cost between the KS and
LSH formulations in Sec. V.

. A physical basis state is generally a superposition
of the original angular-momentum basis states, see
e.g., the example in Eqs. (70) below. The number
of terms in each superposition can become expo-
nentially large in system’s size. This creates sig-
nificant complexity when generating the Hamilto-
nian matrix, due to the need to keep track of the
Hamiltonian action on each constituent basis state.
The maximum number of terms in a physical state
is plotted in Fig. 9 as a function of ⇤ for PBC,
demonstrating this exponential growth. We will
come back to this feature in Sec. V when analyzing
the computational cost of the Hamiltonian simula-
tion.

B. Purely fermionic formulation

As discussed in Sec. II B, the basis states that represent
the Hilbert space of the purely fermionic representation
of the KS formulation with OBC consist of the direct
product of on-site fermionic states, see Eq. (30), giving
rise to M = 4N basis states, where N denotes the size
of the lattice in 1+1 D as before. The dimension of the
Hilbert space of the fermionic theory is larger than the
dimension of the physical Hilbert space of the KS for-
mulation in the angular momentum (and LSH) basis for
cuto↵ values that allow the full physical Hilbert space to
be constructed with OBC (i.e., ⇤ � N + 2✏0). The ratio
of the former to the latter is shown in Fig. 10 for various
N , along with an empirical fit form to the ratio as a func-
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FIG. 9. Each physical state in the KS formulation in the
angular-momentum basis is, in general, a linear combination
of multiple basis states in Eq. (10). Shown is the number of
terms in the longest linear combination formed to represent
a physical state in the KS theory with PBC, as a function of
the cuto↵, ⇤, for various number of lattice sizes N . This num-
ber grows polynomially with ⇤ for a fixed N , while it grows
exponentially with N for a fixed ⇤, with the form shown.

tion of the lattice size. This form shows that the ratio
of the dimensions of the two Hilbert spaces asymptotes
slowly to a fixed number.

To understand this mismatch between the number of
(physical) states in both formulations, despite the fact
the fermionic formulation is constructed to fully represent
the physical Hilbert space, inspecting the following exam-
ple will be illuminating. Consider the N = 2 theory in
the ⌫ = 1 sector, where ⌫ denotes the normalized fermion
occupation number on the lattice defined in Eq. (76) be-
low. In the KS formulation in the angular-momentum
basis, the only four physical basis states are:17

1) [|0, 0i |0, 0i |0, 0i](0) ⌦ [|0, 0i |1, 1i |0, 0i](1) ,
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17 Such states are constructed e�ciently in Ref. [90] by acting by
the interacting Hamiltonian on the strong-coupling vacuum, i.e.,
state 1) shown, but they di↵er in relative signs with the states
presented here. Nonetheless, only the signs denoted here give
rise to gauge-invariant states as can be checked by acting by the
Gauss’s law operators in Eq. (9) on the states shown.



EXAMPLE

Consider a two-site theory with open boundary conditions. Impose a cutoff  on the total 
angular momentum on each link such that only  values are allowed. The incoming angular 
momentum is set to zero.  

a) How many basis states are there? 

There are  basis states (4 fermionic states  at each site and 5 angular momentum 
states  on the only link.). 

b) What are the physical states in the sector with  where ? 

Λ = 1/2
J = 0,1/2

42 × 5 = 80 | f1, f2⟩
|J, mL⟩ ⊗ |J, mL⟩

ν = 1 ν ≡ 1
2 ∑

x
ψ†(x)ψ(x)
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4) [|0, 0i |1, 1i |0, 0i](0) ⌦ [|0, 0i |0, 0i |0, 0i](1) , (70)

where each triplet in the square brackets denotes
[|JR, mRi ⌦ |f1, f2i ⌦ |JL, mLi](x) at the corresponding
site x, and the direct product symbol is suppressed in
such triplets for brevity. On the other hand, in the purely
fermionic representation of the same theory, the six basis
states are

1) |0, 0i
(0)

⌦ |1, 1i
(1)

,

2) |0, 1i
(0)

⌦ |0, 1i
(1)

,

3) |0, 1i
(0)

⌦ |1, 0i
(1)

,

4) |1, 0i
(0)

⌦ |0, 1i
(1)

,

5) |1, 0i
(0)

⌦ |1, 0i
(1)

,

6) |1, 1i
(0)

⌦ |0, 0i
(1)

. (71)

As is seen, while all the six possible fermionic configura-
tions in the ⌫ = 1 sector are present in the physical basis
states of the KS formulation in the angular-momentum
basis, only two proper linear combinations of states 2)-5)
in the fermionic formulation appear in the KS formula-
tion in the angular-momentum basis. Further inspection
of the two representations reveals that the spectrum of
both theories matches exactly for all values of the cou-
plings, but with degeneracies present in the fermionic
case. To conclude, the fermionic representation of the
SU(2) LGT in 1+1 D with OBC has redundancies in the
representation compared with the KS formulation in the
angular-momentum basis, however it avoids complex lin-
ear combinations of basis states that arise in the latter
due to the imposition of the Gauss’s laws. As will be
discussed in Sec. III D, the LSH formulation of the SU(2)
LGT is free from the redundancies of the fermionic for-
mulation, while at the same time it does not involve a
cumbersome physical Hilbert-space construction.
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FIG. 10. The upper panel depicts the ratio of the dimension
of the Hilbert space in the fully fermionic formulation with
OBC to the dimension of the physical Hilbert space within the
KS (and LSH) formulation without removing the gauge DOF
(but with a su�ciently large cuto↵ such that the dimension of
the Hilbert space saturates to a fixed value), for several values
of the lattice size, N . The middle panel depicts the density of
the Hamiltonian matrix within the physical Hilbert space for
each theory. The lower panel is the ratio of the Hamiltonian
matrix densities multiplied by the square of the ratio of the
size of the Hilbert spaces in each theory. This latter quantity
enters the analysis of the computational complexity of matrix
manipulation in Sec. V. The numerical values associated with
these plots are listed in Supplemental Material.

C. Purely bosonic formulation

The physical basis states of the bosonized SU(2) the-
ory with OBC are, at the first sight, the direct product
of the physical basis states of the KS theory discussed
in Sec. IIIA and the electric-field basis states satisfying
the extra U(1) Gauss’s law. Recall that the U(1) sym-
metry was introduced in the bosonized form to allow the
elimination of fermionic DOF in favor of bosonic DOE
in the SU(2) theory. The statement above is only true
if the cuto↵ on the U(1) electric field is set su�ciently
high such that all fermionic configurations allowed in the
physical Hilbert space of the SU(2) theory can be real-
ized. To make this statement more explicit, consider the
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for several values of ⇤, where M denotes the dimension of the
physical Hilbert space within the KS (and LSH) formulation
with PBC. The same quantity can be plotted for the dimen-
sion of the full Hilbert space, as shown in orange, along with
an empirical functional form obtained from a fit to the points.
The numerical values associated with these plots are listed in
Supplemental Material.

Implementing the physical constraints, nonetheless,
introduces further complexity at the onset of the
calculation and amounts to an additional prepro-
cessing cost. We will come back to this point when
comparing the simulation cost between the KS and
LSH formulations in Sec. V.

. A physical basis state is generally a superposition
of the original angular-momentum basis states, see
e.g., the example in Eqs. (70) below. The number
of terms in each superposition can become expo-
nentially large in system’s size. This creates sig-
nificant complexity when generating the Hamilto-
nian matrix, due to the need to keep track of the
Hamiltonian action on each constituent basis state.
The maximum number of terms in a physical state
is plotted in Fig. 9 as a function of ⇤ for PBC,
demonstrating this exponential growth. We will
come back to this feature in Sec. V when analyzing
the computational cost of the Hamiltonian simula-
tion.

B. Purely fermionic formulation

As discussed in Sec. II B, the basis states that represent
the Hilbert space of the purely fermionic representation
of the KS formulation with OBC consist of the direct
product of on-site fermionic states, see Eq. (30), giving
rise to M = 4N basis states, where N denotes the size
of the lattice in 1+1 D as before. The dimension of the
Hilbert space of the fermionic theory is larger than the
dimension of the physical Hilbert space of the KS for-
mulation in the angular momentum (and LSH) basis for
cuto↵ values that allow the full physical Hilbert space to
be constructed with OBC (i.e., ⇤ � N + 2✏0). The ratio
of the former to the latter is shown in Fig. 10 for various
N , along with an empirical fit form to the ratio as a func-
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FIG. 9. Each physical state in the KS formulation in the
angular-momentum basis is, in general, a linear combination
of multiple basis states in Eq. (10). Shown is the number of
terms in the longest linear combination formed to represent
a physical state in the KS theory with PBC, as a function of
the cuto↵, ⇤, for various number of lattice sizes N . This num-
ber grows polynomially with ⇤ for a fixed N , while it grows
exponentially with N for a fixed ⇤, with the form shown.

tion of the lattice size. This form shows that the ratio
of the dimensions of the two Hilbert spaces asymptotes
slowly to a fixed number.

To understand this mismatch between the number of
(physical) states in both formulations, despite the fact
the fermionic formulation is constructed to fully represent
the physical Hilbert space, inspecting the following exam-
ple will be illuminating. Consider the N = 2 theory in
the ⌫ = 1 sector, where ⌫ denotes the normalized fermion
occupation number on the lattice defined in Eq. (76) be-
low. In the KS formulation in the angular-momentum
basis, the only four physical basis states are:17
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17 Such states are constructed e�ciently in Ref. [90] by acting by
the interacting Hamiltonian on the strong-coupling vacuum, i.e.,
state 1) shown, but they di↵er in relative signs with the states
presented here. Nonetheless, only the signs denoted here give
rise to gauge-invariant states as can be checked by acting by the
Gauss’s law operators in Eq. (9) on the states shown.
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4) [|0, 0i |1, 1i |0, 0i](0) ⌦ [|0, 0i |0, 0i |0, 0i](1) , (70)

where each triplet in the square brackets denotes
[|JR, mRi ⌦ |f1, f2i ⌦ |JL, mLi](x) at the corresponding
site x, and the direct product symbol is suppressed in
such triplets for brevity. On the other hand, in the purely
fermionic representation of the same theory, the six basis
states are

1) |0, 0i
(0)

⌦ |1, 1i
(1)

,
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,
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. (71)

As is seen, while all the six possible fermionic configura-
tions in the ⌫ = 1 sector are present in the physical basis
states of the KS formulation in the angular-momentum
basis, only two proper linear combinations of states 2)-5)
in the fermionic formulation appear in the KS formula-
tion in the angular-momentum basis. Further inspection
of the two representations reveals that the spectrum of
both theories matches exactly for all values of the cou-
plings, but with degeneracies present in the fermionic
case. To conclude, the fermionic representation of the
SU(2) LGT in 1+1 D with OBC has redundancies in the
representation compared with the KS formulation in the
angular-momentum basis, however it avoids complex lin-
ear combinations of basis states that arise in the latter
due to the imposition of the Gauss’s laws. As will be
discussed in Sec. III D, the LSH formulation of the SU(2)
LGT is free from the redundancies of the fermionic for-
mulation, while at the same time it does not involve a
cumbersome physical Hilbert-space construction.
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FIG. 10. The upper panel depicts the ratio of the dimension
of the Hilbert space in the fully fermionic formulation with
OBC to the dimension of the physical Hilbert space within the
KS (and LSH) formulation without removing the gauge DOF
(but with a su�ciently large cuto↵ such that the dimension of
the Hilbert space saturates to a fixed value), for several values
of the lattice size, N . The middle panel depicts the density of
the Hamiltonian matrix within the physical Hilbert space for
each theory. The lower panel is the ratio of the Hamiltonian
matrix densities multiplied by the square of the ratio of the
size of the Hilbert spaces in each theory. This latter quantity
enters the analysis of the computational complexity of matrix
manipulation in Sec. V. The numerical values associated with
these plots are listed in Supplemental Material.

C. Purely bosonic formulation

The physical basis states of the bosonized SU(2) the-
ory with OBC are, at the first sight, the direct product
of the physical basis states of the KS theory discussed
in Sec. IIIA and the electric-field basis states satisfying
the extra U(1) Gauss’s law. Recall that the U(1) sym-
metry was introduced in the bosonized form to allow the
elimination of fermionic DOF in favor of bosonic DOE
in the SU(2) theory. The statement above is only true
if the cuto↵ on the U(1) electric field is set su�ciently
high such that all fermionic configurations allowed in the
physical Hilbert space of the SU(2) theory can be real-
ized. To make this statement more explicit, consider the
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for several values of ⇤, where M denotes the dimension of the
physical Hilbert space within the KS (and LSH) formulation
with PBC. The same quantity can be plotted for the dimen-
sion of the full Hilbert space, as shown in orange, along with
an empirical functional form obtained from a fit to the points.
The numerical values associated with these plots are listed in
Supplemental Material.

Implementing the physical constraints, nonetheless,
introduces further complexity at the onset of the
calculation and amounts to an additional prepro-
cessing cost. We will come back to this point when
comparing the simulation cost between the KS and
LSH formulations in Sec. V.

. A physical basis state is generally a superposition
of the original angular-momentum basis states, see
e.g., the example in Eqs. (70) below. The number
of terms in each superposition can become expo-
nentially large in system’s size. This creates sig-
nificant complexity when generating the Hamilto-
nian matrix, due to the need to keep track of the
Hamiltonian action on each constituent basis state.
The maximum number of terms in a physical state
is plotted in Fig. 9 as a function of ⇤ for PBC,
demonstrating this exponential growth. We will
come back to this feature in Sec. V when analyzing
the computational cost of the Hamiltonian simula-
tion.

B. Purely fermionic formulation

As discussed in Sec. II B, the basis states that represent
the Hilbert space of the purely fermionic representation
of the KS formulation with OBC consist of the direct
product of on-site fermionic states, see Eq. (30), giving
rise to M = 4N basis states, where N denotes the size
of the lattice in 1+1 D as before. The dimension of the
Hilbert space of the fermionic theory is larger than the
dimension of the physical Hilbert space of the KS for-
mulation in the angular momentum (and LSH) basis for
cuto↵ values that allow the full physical Hilbert space to
be constructed with OBC (i.e., ⇤ � N + 2✏0). The ratio
of the former to the latter is shown in Fig. 10 for various
N , along with an empirical fit form to the ratio as a func-
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terms in the longest linear combination formed to represent
a physical state in the KS theory with PBC, as a function of
the cuto↵, ⇤, for various number of lattice sizes N . This num-
ber grows polynomially with ⇤ for a fixed N , while it grows
exponentially with N for a fixed ⇤, with the form shown.

tion of the lattice size. This form shows that the ratio
of the dimensions of the two Hilbert spaces asymptotes
slowly to a fixed number.

To understand this mismatch between the number of
(physical) states in both formulations, despite the fact
the fermionic formulation is constructed to fully represent
the physical Hilbert space, inspecting the following exam-
ple will be illuminating. Consider the N = 2 theory in
the ⌫ = 1 sector, where ⌫ denotes the normalized fermion
occupation number on the lattice defined in Eq. (76) be-
low. In the KS formulation in the angular-momentum
basis, the only four physical basis states are:17
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17 Such states are constructed e�ciently in Ref. [90] by acting by
the interacting Hamiltonian on the strong-coupling vacuum, i.e.,
state 1) shown, but they di↵er in relative signs with the states
presented here. Nonetheless, only the signs denoted here give
rise to gauge-invariant states as can be checked by acting by the
Gauss’s law operators in Eq. (9) on the states shown.

x = 0 x = 1

<latexit sha1_base64="hUtEm0F7eJLe/WO6VhFqja9vwj8=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqBch6EU8RTAPSJYwO5kkQ2Zn15neYFjyHV48KOLVj/Hm3zhJ9qDRgoaiqpvuriCWwqDrfjm5peWV1bX8emFjc2t7p7i7VzdRohmvsUhGuhlQw6VQvIYCJW/GmtMwkLwRDK+nfmPEtRGRusdxzP2Q9pXoCUbRSv5tp438EVOhJpdup1hyy+4M5C/xMlKCDNVO8bPdjVgScoVMUmNanhujn1KNgkk+KbQTw2PKhrTPW5YqGnLjp7OjJ+TIKl3Si7QthWSm/pxIaWjMOAxsZ0hxYBa9qfif10qwd+Hbj+IEuWLzRb1EEozINAHSFZozlGNLKNPC3krYgGrK0OZUsCF4iy//JfWTsndW9u5OS5WrLI48HMAhHIMH51CBG6hCDRg8wBO8wKszcp6dN+d93ppzspl9+AXn4xuqEZII</latexit>

Jin = 0



Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information

2/23

TO BE CONTINUED… 
QUESTIONS?


