Introductory Lectures on Resurgence

Gerald Dunne

University of Connecticut

CERN Summer School: July 2024

Continuum Foundations of Lattice Gauge Theories

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Basic Introduction to Resurgence

- - Borel Summation basics
 - Recovering Non-perturbative Connection Formulas
- 2. Nonlinear Stokes Phenomenon
 - ▶ Parametric Resurgence & Phase Transitions
 - Gross-Witten-Wadia unitary matrix model
- 3. ► QFT: Euler-Heisenberg and Effective Field Theory

(ロ) (型) (E) (E) (E) (C)

- Resurgence analysis
- Inhomogeneous fields
- 4.
 Resurgent Extrapolation
 - ▶ The Physics of Padé Approximation
 - Probing the Borel Plane Numerically

Resurgence and the Nonlinear Stokes Phenomenon

- nonlinearity \Rightarrow new phenomena: e.g. "multi-instantons"
- Painlevé = "nonlinear special functions" [P. Clarkson]

	Number of (essential) parameters	Special Function	Number of Parameters	Associated Orthogonal Polynomial	Number of Parameters
$\mathbf{P}_{\mathbf{I}}$	0	-		-	
P_{II}	1	$\begin{array}{c} \operatorname{Airy} \\ \operatorname{Ai}(z) \end{array}$	0	_	
P_{III}	2	Bessel $J_{ u}(z)$	1	_	
P_{IV}	2	Parabolic cylinder $D_{\nu}(z)$	1	$\begin{array}{l} \text{Hermite} \\ \text{He}_n(z) \end{array}$	0
P_V	3	${ m Whittaker} \ M_{\kappa,\mu}(z)$	2	Associated Laguerre $L_n^{(k)}(z)$	1
P _{VI}	4	${f Hypergeometric} \ _2F_1(a,b;c;z)$	3	Jacobi $P_n^{(lpha,eta)}(z)$	2

・ロト・日本・モート モー うへで

• N.B. integrability is NOT important for resurgence

Resurgence in Nonlinear ODEs: e.g. Painlevé II = "nonlinear Airy"

Painlevé II:

$$y'' = x y(x) + 2 y^3(x)$$

- double-scaling limit in unitary matrix models
- ▶ double-scaling limit in 2d Yang-Mills
- double-scaling limit in 2d supergravity
- non-intersecting Brownian motions
- ▶ correlators in polynuclear growth; directed polymers (KPZ)
- Tracy-Widom law for statistics of maximum eigenvalue for Gaussian random matrices
- ▶ longest increasing subsequence in random permutations

... universal !

Resurgence in Nonlinear ODEs: Painlevé II = "nonlinear Airy"

$$y''(x) = x y(x) + 2 y^3(x)$$

• numerical instability: separatrix

(日) (四) (日) (日)

э

[https://dlmf.nist.gov/32.3.ii]

Resurgence in Nonlinear ODEs: Painlevé II = "nonlinear Airy"

• Hastings-McLeod: $\sigma_+ = 1$ unique real solution on \mathbb{R} that matches Ai(x) asymptotics as $x \to +\infty$ with $\sqrt{-\frac{x}{2}}$ asymptotics as $x \to -\infty$

Resurgence in Nonlinear ODEs: Painlevé II = "nonlinear Airy"

$$y''(x) = x y(x) + 2 y^{3}(x)$$

Exercise 2.1:

1. Show that the general Painlevé II solution has a meromorphic expansion with only poles for moveable singularities (those associated with boundary conditions):

$$y(x) = \frac{1}{x - x_0} - \frac{x_0}{6}(x - x_0) - \frac{1}{4}(x - x_0)^2 + \frac{h_0}{h_0}(x - x_0)^3 + \frac{x_0}{72}(x - x_0)^4 + .$$

where all coefficients are expressed in terms of the pair
 (x_0, h_0) , for any pole x_0 .

2. Change the nonlinearity of the equation from $y^3(x)$ to $y^4(x)$ and show that this Painlevé integrability condition fails (comment: nevertheless, despite being nonintegrable, all the subsequent resurgent trans-series analysis still holds for such an equation)

Painlevé II: trans-series analysis as $x \to +\infty$: $y''(x) = 2y^3 + xy$

• exact integral equation:

$$y(x) = \sigma_{+}\operatorname{Ai}(x) + 2\pi \int_{x}^{\infty} dz \, y^{3}(z) \left[\operatorname{Ai}(x)\operatorname{Bi}(z) - \operatorname{Ai}(z)\operatorname{Bi}(x)\right]$$

• iterate \rightarrow trans-series ("trans-series parameter": σ_+)

$$y_+(x) \sim \sum_{n=0}^{\infty} \sigma_+^{2n+1} Y_{[2n+1]}(x) \quad , \quad x \to +\infty$$

$$\begin{split} Y_{[1]}(x) &= \operatorname{Ai}(x) \\ Y_{[3]}(x) &= 2\pi \left(\operatorname{Ai}(x) \int_{x}^{\infty} \operatorname{Ai}^{3}(z) \operatorname{Bi}(z) \, dz - \operatorname{Bi}(x) \int_{x}^{\infty} \operatorname{Ai}^{4}(z) \, dz \right) \\ Y_{[5]}(x) &= 6\pi \left(\operatorname{Ai}(x) \int_{x}^{\infty} Y_{[3]}(z) \left(Y_{[1]}(z) \right)^{2} \operatorname{Bi}(z) \, dz \right) \\ &- \operatorname{Bi}(x) \int_{x}^{\infty} Y_{[3]}(z) \left(Y_{[1]}(z) \right)^{2} \operatorname{Ai}(z) \, dz \right) \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Painlevé II: trans-series analysis as $x \to -\infty$

• now consider the opposite direction: $x \to -\infty$

$$y''(x) = x y(x) + 2 y^3(x)$$

 \bullet "smoothness" and separatrix as $x \to -\infty \Rightarrow$

$$0 \approx x y(x) + 2 y^3(x) \quad , \quad x \to -\infty$$

• formal series solution

$$y_{-}(x) \sim \sqrt{\frac{-x}{2}} \left(1 - \frac{1}{8(-x)^3} - \frac{73}{128(-x)^6} - \frac{10567}{1024(-x)^9} - \dots \right)$$

- no parameter! \Rightarrow something is missing (non-perturbative corrections)
- <u>non-alternating</u> factorially divergent \Rightarrow something is missing (non-perturbative corrections)

Painlevé II: trans-series analysis as $x \to -\infty$

• first non-perturbative correction "beyond all orders":

$$y_{[1]}'' = \left(6 y_{[0]}^2 + x\right) y_{[1]} \sim \left(-\frac{2}{3}x - \frac{3}{4x^2} + \dots\right) y_{[1]}$$

• exponential ansatz (using Écalle critical variable):

$$y_{[1]}(x) \sim (-x)^{\beta} e^{-\gamma(-x)^{\frac{3}{2}}} (1 + \dots)$$

• matching terms \Rightarrow

$$y_{[1]}(x) \sim \frac{\sigma_{-}}{(-x)^{1/4}} e^{-\sqrt{2}\frac{2}{3}(-x)^{3/2}} \left(1 - \frac{\frac{17}{72}}{\sqrt{2}\frac{2}{3}(-x)^{3/2}} + \frac{\frac{1513}{10368}}{(\sqrt{2}\frac{2}{3}(-x)^{3/2})^2} - \dots \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• the $\sqrt{2}$ factor is not a misprint !

Resurgence Relation for Painlevé II

• recall formal perturbative series as $x \to -\infty$

$$y_{[0]}(x) \sim \sqrt{\frac{-x}{2}} \left(1 - \frac{1}{8(-x)^3} - \frac{73}{128(-x)^6} - \frac{10567}{1024(-x)^9} - \dots \right)$$

• large order growth of coefficients as $n \to \infty$

$$c_n^{[0]} \sim -\frac{1}{\pi} \sqrt{\frac{2}{3\pi}} \frac{\Gamma\left(2n - \frac{1}{2}\right)}{\left(\frac{2\sqrt{2}}{3}\right)^{2n}} \left(1 - \frac{\frac{17}{72}}{(2n - \frac{3}{2})} + \frac{\frac{1513}{10368}}{(2n - \frac{3}{2})(2n - \frac{5}{2})} - \dots\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Resurgence Relation for Painlevé II

• recall formal perturbative series as $x \to -\infty$

$$y_{[0]}(x) \sim \sqrt{\frac{-x}{2}} \left(1 - \frac{1}{8(-x)^3} - \frac{73}{128(-x)^6} - \frac{10567}{1024(-x)^9} - \dots \right)$$

• large order growth of coefficients as $n \to \infty$

$$c_n^{[0]} \sim -\frac{1}{\pi} \sqrt{\frac{2}{3\pi}} \frac{\Gamma\left(2n - \frac{1}{2}\right)}{\left(\frac{2\sqrt{2}}{3}\right)^{2n}} \left(1 - \frac{\frac{17}{72}}{(2n - \frac{3}{2})} + \frac{\frac{1513}{10368}}{(2n - \frac{3}{2})(2n - \frac{5}{2})} - \dots\right)$$

• compare with fluctuations around the first exponential:

$$y_{[1]}(x) \sim \frac{\sigma_{-}}{(-x)^{1/4}} e^{-\sqrt{2}\frac{2}{3}(-x)^{\frac{3}{2}}} \left(1 - \frac{\frac{17}{72}}{\sqrt{2}\frac{2}{3}(-x)^{\frac{3}{2}}} + \frac{\frac{1513}{10368}}{(\sqrt{2}\frac{2}{3}(-x)^{\frac{3}{2}})^2} - \dots \right)$$

• large-order/low-order resurgence relation (*cf.* Airy)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Exercise 2.2:

- 1. Generate many terms, and verify the large order behavior of the coefficients of the formal $x \to -\infty$ series, $y_{[0]}(x)$, for the Painlevé II Hastings-McLeod solution
- 2. Numerically identify the Stokes constant to high precision

$$0.1466323... = \frac{1}{\pi} \sqrt{\frac{2}{3\pi}}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

3. Confirm the first large-order/low-order resurgence relation

Transmutation of a trans-series

- different trans-series solutions for $x \to \pm \infty$
- $\bullet \ x \to +\infty$

$$y_+(x) \sim \sum_{k=0}^{\infty} \left(\frac{\sigma_+ e^{-\frac{2}{3}x^{3/2}}}{2\sqrt{\pi}x^{1/4}} \right)^{2k+1} \mathcal{F}_{[2k+1]}(x)$$

•
$$x \to -\infty$$

$$y_{-}(x) \sim \sqrt{\frac{-x}{2}} \sum_{k=0}^{\infty} \left(\frac{\sigma_{-} e^{-\frac{2\sqrt{2}}{3}(-x)^{3/2}}}{2\sqrt{\pi} (-x)^{1/4}} \right)^{k} \mathcal{Y}_{[k]}(x)$$

- non-linear Stokes phenomenon
- "condensation of instantons" across the transition
- "trans-asymptotic analysis" describes the transition

Transmutation of a trans-series

• there are other more general solutions ...

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Gross-Witten-Wadia = 2d U(N) Lattice Gauge Theory

• 3rd order phase transition at $N = \infty$, t = 1 (universal)

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

 N^2 , as a function of λ (temperature).

Gross-Witten-Wadia Matrix Model

• "order parameter" $\Delta(t, N) \equiv \langle \det U \rangle$ satisfies a nonlinear ODE

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Rossi equation (Painlevé III):

$$t^{2}\Delta'' + t\Delta' + \frac{N^{2}\Delta}{t^{2}}\left(1 - \Delta^{2}\right) = \frac{\Delta}{1 - \Delta^{2}}\left(N^{2} - t^{2}\left(\Delta'\right)^{2}\right)$$

Gross-Witten-Wadia Matrix Model

- "order parameter" $\Delta(t, N) \equiv \langle \det U \rangle$ satisfies a nonlinear ODE
- Rossi equation (Painlevé III):

$$t^{2}\Delta'' + t\Delta' + \frac{N^{2}\Delta}{t^{2}}\left(1 - \Delta^{2}\right) = \frac{\Delta}{1 - \Delta^{2}}\left(N^{2} - t^{2}\left(\Delta'\right)^{2}\right)$$

• non-perturbative large N effects from the ODE

$$\Delta(t,N) = \sum_{n} \frac{c_n^{(0)}(t)}{N^{2n}} + e^{-NS(t)} \sum_{n} \frac{c_n^{(1)}(t)}{N^n} + e^{-2NS(t)} \sum_{n} \frac{c_n^{(2)}(t)}{N^n} + \dots$$

- all physical observables inherit this trans-series structure
- phase transition = nonlinear Stokes phenomenon

Gross-Witten-Wadia Matrix Model and Painlevé III

Exercise 2.3: Consider the GWW model Rossi equation (Painlevé III in Okamoto form):

$$t^{2}\Delta'' + t\Delta' + \frac{N^{2}\Delta}{t^{2}}\left(1 - \Delta^{2}\right) = \frac{\Delta}{1 - \Delta^{2}}\left(N^{2} - t^{2}\left(\Delta'\right)^{2}\right)$$

1. Show that in the t > 1 region this equation linearizes to

$$t^{2}\Delta'' + t\Delta' + \frac{N^{2}}{t^{2}}\left(1 - t^{2}\right)\Delta \approx 0$$

and this is solved by the Bessel functions $J_N\left(\frac{N}{t}\right), Y_N\left(\frac{N}{t}\right)$.

- 2. Hence show that a solution decreasing at large t can be written as an exact integral equation, which can be iterated to generate the t > 1 large N trans-series.
- 3. Show that for t < 1 the dominant large N solution is algebraic, $\Delta(t) \sim \sqrt{1-t}$, from which the formal large N series solution can be generated.

Resurgence: Large N at Strong 't Hooft Coupling

• large N trans-series at strong coupling (t > 1)

$$\Delta(t,N) \approx \sigma_{\text{strong}} J_N\left(\frac{N}{t}\right) \sim \sigma_{\text{strong}} \frac{\sqrt{t} e^{-NS_{\text{strong}}(t)}}{\sqrt{2\pi N} (t^2 - 1)^{1/4}} \sum_{n=0}^{\infty} \frac{U_n(t)}{N^n} + \dots$$

.

 \bullet strong-coupling large N instanton action

$$S_{\text{strong}}(t) = \operatorname{arccosh}(t) - \sqrt{1 - \frac{1}{t^2}}$$

Resurgence: Large N at Strong 't Hooft Coupling

• large N trans-series at strong coupling (t > 1)

$$\Delta(t,N) \approx \sigma_{\text{strong}} J_N\left(\frac{N}{t}\right) \sim \sigma_{\text{strong}} \frac{\sqrt{t} e^{-NS_{\text{strong}}(t)}}{\sqrt{2\pi N} (t^2 - 1)^{1/4}} \sum_{n=0}^{\infty} \frac{U_n(t)}{N^n} + \dots$$

 \bullet strong-coupling large N instanton action

$$S_{\text{strong}}(t) = \operatorname{arccosh}(t) - \sqrt{1 - \frac{1}{t^2}}$$

• nonlinearity \Rightarrow trans-series with all odd powers of

$$\sigma_{\rm strong} \frac{e^{-NS_{\rm strong}(t)}}{\sqrt{S'_{\rm strong}(t)}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Resurgence: Large N at Weak 't Hooft Coupling

• large N trans-series at weak-coupling (t < 1)

$$\Delta(t,N) \sim \sqrt{1-t} \sum_{n=0}^{\infty} \frac{d_n^{(0)}(t)}{N^{2n}} - \frac{\sigma_{\text{weak}}}{2\sqrt{2\pi N}} \frac{t \, e^{-NS_{\text{weak}}(t)}}{(1-t)^{1/4}} \sum_{n=0}^{\infty} \frac{d_n^{(1)}(t)}{N^n} + \dots$$

 \bullet weak-coupling large N instanton action

$$S_{\text{weak}}(t) = \frac{2\sqrt{1-t}}{t} - 2\operatorname{arctanh}\left(\sqrt{1-t}\right)$$

Resurgence: Large N at Weak 't Hooft Coupling

• large N trans-series at weak-coupling (t < 1)

$$\Delta(t,N) \sim \sqrt{1-t} \sum_{n=0}^{\infty} \frac{d_n^{(0)}(t)}{N^{2n}} - \frac{\sigma_{\text{weak}}}{2\sqrt{2\pi N}} \frac{t \, e^{-NS_{\text{weak}}(t)}}{(1-t)^{1/4}} \sum_{n=0}^{\infty} \frac{d_n^{(1)}(t)}{N^n} + \dots$$

 \bullet weak-coupling large N instanton action

$$S_{\text{weak}}(t) = \frac{2\sqrt{1-t}}{t} - 2\operatorname{arctanh}\left(\sqrt{1-t}\right)$$

• large-order growth of perturbative coefficients ($\forall t < 1$):

$$d_n^{(0)}(t) \sim \frac{-1}{\sqrt{2}(1-t)^{3/4}\pi^{3/2}} \frac{\Gamma(2n-\frac{5}{2})}{(S_{\text{weak}}(t))^{2n-\frac{5}{2}}} \left[1 + \frac{(3t^2-12t-8)}{96(1-t)^{3/2}} \frac{S_{\text{weak}}(t)}{(2n-\frac{7}{2})} + \dots \right]$$

• (parametric) resurgence relations, for all t:

$$\sum_{n=0}^{\infty} \frac{d_n^{(1)}(t)}{N^n} = 1 + \frac{(3t^2 - 12t - 8)}{96(1 - t)^{3/2}} \frac{1}{N} + \dots$$

Resurgence Relation in the GWW Model

Exercise 2.4:

1. Generate many terms of the formal large N solution for $\Delta(t, N)$ in the small t regime

$$\Delta(t,N) \sim \sqrt{1-t} \sum_{n=0}^{\infty} \frac{d_n^{(0)}(\lambda)}{N^{2n}}$$

2. Derive the form of the first non-perturbative correction to this formal large N expansion, including the first few fluctuation corrections:

$$\Delta_{NP}(t,N) \sim f(t) e^{-N S_{\text{weak}}(t)} \sum_{n=0}^{\infty} \frac{d_n^{(1)}(\lambda)}{N^n} + \dots$$

3. Show that the subleading corrections to the large n growth of the coefficient functions $d_n^{(0)}(\lambda)$ are associated with the expansion terms $d_n^{(1)}(\lambda)$ of the first non-perturbative correction to the formal large N expansion.

Resurgence in GWW: double-scaling limit = Painlevé II

• uniform limit of Bessel function:

$$\lim_{N \to \infty} J_N(N - N^{1/3}\kappa) = \left(\frac{2}{N}\right)^{1/3} \operatorname{Ai}\left(2^{1/3}\kappa\right)$$

• scaling of $J_N(N/t)$ as $t \to 1$: $N \to \infty$ with x fixed

$$t \sim 1 + \frac{x}{(2N^2)^{1/3}}$$
; $\Delta(t, N) = \left(\frac{2t}{N}\right)^{1/3} y(x)$

$$\Delta$$
 PIII equation $\longrightarrow \frac{d^2y}{dx^2} = x y(x) + 2 y^3(x)$ (PII)

Resurgence in GWW: double-scaling limit = Painlevé II

• uniform limit of Bessel function:

$$\lim_{N \to \infty} J_N(N - N^{1/3}\kappa) = \left(\frac{2}{N}\right)^{1/3} \operatorname{Ai}\left(2^{1/3}\kappa\right)$$

• scaling of $J_N(N/t)$ as $t \to 1$: $N \to \infty$ with x fixed

$$t \sim 1 + \frac{x}{(2N^2)^{1/3}}$$
; $\Delta(t, N) = \left(\frac{2t}{N}\right)^{1/3} y(x)$

 Δ PIII equation $\longrightarrow \frac{d^2y}{dx^2} = x y(x) + 2 y^3(x)$ (PII)

• near
$$t_c = 1^+$$
, $S_{\text{strong}} \sim \frac{2\sqrt{2}}{3}(t-1)^{3/2}$

$$N S_{\text{strong}} \sim N \frac{2\sqrt{2}}{3} \frac{x^{3/2}}{\sqrt{2}N} = \frac{2}{3} x^{3/2}$$

• near $t_c = 1^-, S_{\text{weak}} \sim \frac{4}{3}(1-t)^{3/2}$

$$N S_{\text{weak}} \sim N \frac{4}{3} \frac{(-x)^{3/2}}{\sqrt{2} N} = \frac{2\sqrt{2}}{3} (-x)^{3/2}$$

Gross-Witten-Wadia Phase Transition and Lee-Yang zeros

Lee-Yang: complex zeros of Z pinch the real axis at the phase transition point in the thermodynamic limit

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()