OUTLINE OF PART I:
1 HAMILTONIAN FORMULATION OF LATTICE GAUGE THEORIES

i) Hamiltonian vs. Lagrangian formulation of LGTs

ii) Kogut-Susskind formulation: Basis states, Hilbert space, and constraints
An Abelian case: U(1) LGT
A non-Abelian case: SU(2) LGT

iii) Kogut-Susskind formulation: Hamiltonian

iv) A variety of formulations: a brief overview

v) Classical Hamiltonian-simulation methods: a brief discussion
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[Hopping terms in the y and z directions with site-dependent
coupling if you consider > 1+1 D.]
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,_[ EXAMPLE }

What is the vacuum of the Kogut-Susskind Hamiltonian in the U(1) case in the strong-coupling
limit (g = 00)? Consider both massless and massive fermions.




,_[ EXAMPLE }

What is the vacuum of the Kogut-Susskind Hamiltonian in the U(1) case in the strong-coupling
limit (g = 00)? Consider both massless and massive fermions.

( )

Since the electric-field term dominates in the strong-coupling limit, the vacuum
corresponds to no electric field flux. In the massless limit, the vacuum is degenerate
and consists of either

(1) ®10)) ® (10, ® 10)) ® (1 1), ® [0)) ® (|0), ® |0),)--

or

(10)® 10)9) ® (1), ® 0)) ® (10), ® [0)) ® (| 1), ® [0),)-

since only these two states are consistent with Gauss’s law (with no mass, even and odd
labeling of the sites is arbitrary).

In the massive limit, the degeneracy is lifted and the state with the least energy is that

with the lowest mass term, which is the second option above with mass term equal to

N
—Em where N is the number of staggered sites (even and odd labeling is no longer

arbitrary).
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[ PURELY FERMIONIC FORMULATION (ONLY IN 1+1 D AND WITH OPEN BCs) }

,_[ EXAMPLE }

Show that the Schwinger model Hamiltonian becomes:

H = % Z [T (z)y(z +1) + hee] + g Z {60 — Z

T T y=0

W (y)(y) — #

} +m Y (1) (2)y ()

with open boundary conditions where g, denote a fixed incoming electric field. This means
that local fermion-boson formulation is replaced by a non-local fermionic formulation.
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,_[ EXAMPLE }

Show that the Schwinger model Hamiltonian becomes:

H = Qlasz( J¥(z + 1) + h.c.] +gZ{SOZ

T y=0

B ()(y) — = (2_1)y

} +m Y (1) (2)y ()

with open boundary conditions where g, denote a fixed incoming electric field. This means
that local fermion-boson formulation is replaced by a non-local fermionic formulation.

s

i) Let us first transform to a gauge where U = [:

P(z) = P () = <H U(y))y(z)

Yl () = ¥ =[] Uy
Uz) = U'(x) = <H U(y))U(z)( H U(y))t =
y<zx y<x—+1

ii) Now exploit the Gauss’s law to rewrite E(x) in terms of the matter charge Q(x):
E(0) = 0 +Q(0)
E(1) =E0)+Q(1 )=<‘5o +Q(0) +Q(1)
E(x)=E@—-1)+Q(z)=c + Y Q)

y<x
i) and ii) give directly the fermionic Hamiltonian above given the definition of Q(x) .




Why can we not fully remove the gauge fields in a theory with periodic
boundary conditions? What about higher dimensions?




[ PURELY FERMIONIC FORMULATION FOR THE SU(2) LGT IN 1+1 D }
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[ PURELY FERMIONIC FORMULATION FOR THE SU(2) LGT IN 1+1 D }
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[ Transforming to gauge U’ = I: }

l

HE =m > (-1 (@) (x)

Mass term

...all this only works in 1+1 D and with open boundary conditions.



In the example of the two-site theory in the SU(2) model, we found out that
there are 4 physical basis states in the v = 1 sector with open boundary
conditions with Jj, = 0 and with up to J = 1/2 angular momentum. How
many physical basis states are there in the fully fermionic formulation? Do
you see a mismatch? How do you explain it? Convince yourself that the
two theories have exactly the same spectrum.




IN GENERAL, MANY HAMILTONIAN FORMULATIONS OF GAUGE THEORIES EXIST... WHICH ONE TO PICK?

So far, we only considered the electric or irreducible representation (irrep) basis in which only Hy is diagonal!

KS (KS) (KS) (KS) (KS)
In the group-element basis, only H; and Hy are diagonal.
In the magnetic or dual basis Hj is diagonal.
KS
HES) o g g gKS) 1 ies)

The imposition of Gauss's law is simplest in the electric-field basis. On the other hand, toward the continuum
limit (ag — 0), many electric field excitations need to be kept and a large Hilbert space may need to be
considered.

Recall while [Hy « 1/g7.
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,{ EXAMPLES OF CLASSICAL-COMPUTING METHODS W

i) Analytical methods such as strong-coupling expansion
See e.g., Bank et al, PRD 13, 1043 (1976). It has limited scope but can give intuitive insight.

ii) Exact numerical methods, i.e., exact diagonalization (ED)
It is ideal but costly and often unpractical even for small LGT problems.

iif) Approximate numerical methods such as tensor-networks (TN)

Very efficient for certain quantities such as low-energy spectrum, but limited in scope when entanglement
grows beyond area law, such as in real-time problems. Limited studies in higher dimensions. See e.g. this
Ph.D. thesis by S. Kuhn for an overview of TN methods in high-energy physics.

[ STAY TUNED TO THE NEXT PART FOR
{ QUANTUM-COMPUTING METHODS!




TO BE CONTINUED...
QUESTIONS?




