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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:
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The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.
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Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘
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where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].
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The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.
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Ê

c

L
,

[Êa
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where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5
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studies of non-Abelian LGTs in the context of quantum
simulation.
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The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.
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Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘
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. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa
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where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].
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fields occupy even and odd sites, respectively. The num-
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The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.
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where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
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extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
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of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
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(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].
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†(x)Û(x) (x + 1) + h.c.
i
, (2)

where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
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The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.

H
(KS)

E
corresponds to the energy stored in the electric

field,

H
(KS)

E
=

g
2
a

2

N2X

x=0

Ê(x)2. (3)

Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘

Ê2

L
= Ê2

R
. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,
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] = �i✏
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where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
(KS) = H
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I
+ H

(KS)

E
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Here, H
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where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
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The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.

H
(KS)

E
corresponds to the energy stored in the electric

field,

H
(KS)

E
=

g
2
a

2

N2X

x=0

Ê(x)2. (3)

Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘

Ê2

L
= Ê2

R
. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa

L
, Ê

b

L
] = �i✏

abc
Ê
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,

[Êa
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] = i✏

abc
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,

[Êa
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] = 0, (4)

where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
(KS) = H

(KS)

I
+ H

(KS)

E
+ H

(KS)

M
. (1)

Here, H
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denotes interactions among the fermionic
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where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
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The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.

H
(KS)

E
corresponds to the energy stored in the electric

field,

H
(KS)

E
=

g
2
a

2

N2X

x=0

Ê(x)2. (3)

Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘

Ê2

L
= Ê2

R
. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa

L
, Ê

b

L
] = �i✏

abc
Ê

c

L
,

[Êa
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, Ê

b

R
] = i✏

abc
Ê

c

R
,

[Êa

L
, Ê
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R
] = 0, (4)

where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
(KS) = H

(KS)

I
+ H

(KS)

E
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(KS)

M
. (1)

Here, H
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denotes interactions among the fermionic
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†(x)Û(x) (x + 1) + h.c.
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, (2)

where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
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The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.

H
(KS)

E
corresponds to the energy stored in the electric

field,

H
(KS)

E
=

g
2
a

2

N2X

x=0

Ê(x)2. (3)

Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘

Ê2

L
= Ê2

R
. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa

L
, Ê

b

L
] = �i✏

abc
Ê
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,
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, Ê

b

R
] = i✏

abc
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,

[Êa
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] = 0, (4)

where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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What is the vacuum of the Kogut-Susskind Hamiltonian in the U(1) case in the strong-coupling 
limit ( )? Consider both massless and massive fermions. g → ∞



EXAMPLE

What is the vacuum of the Kogut-Susskind Hamiltonian in the U(1) case in the strong-coupling 
limit ( )? Consider both massless and massive fermions. g → ∞

Since the electric-field term dominates in the strong-coupling limit, the vacuum 
corresponds to no electric field flux. In the massless limit, the vacuum is degenerate 
and consists of either  

 

or 

 

since only these two states are consistent with Gauss’s law (with no mass, even and odd 
labeling of the sites is arbitrary). 

In the massive limit, the degeneracy is lifted and the state with the least energy is that 
with the lowest mass term, which is the second option above with mass term equal to 

 where  is the number of staggered sites (even and odd labeling is no longer 

arbitrary).

( |1⟩0 ⊗ |0⟩0) ⊗ ( |0⟩1 ⊗ |0⟩1) ⊗ ( |1⟩2 ⊗ |0⟩2) ⊗ ( |0⟩2 ⊗ |0⟩2)⋯

( |0⟩0 ⊗ |0⟩0) ⊗ ( |1⟩1 ⊗ |0⟩1) ⊗ ( |0⟩2 ⊗ |0⟩2) ⊗ ( |1⟩2 ⊗ |0⟩2)⋯

−
N
2

m N



i) Hamiltonian vs. Lagrangian formulation of LGTs 
ii) Kogut-Susskind formulation: Basis states, Hilbert space, and constraints 

An Abelian case: U(1) LGT 
A non-Abelian case: SU(2) LGT 

iii) Kogut-Susskind formulation: Hamiltonian 
iv) A variety of formulations: a brief overview 
v) Classical Hamiltonian-simulation methods: a brief discussion

OUTLINE OF PART I: 
HAMILTONIAN FORMULATION OF LATTICE GAUGE THEORIES



EXAMPLE

Show that the Schwinger model Hamiltonian becomes: 

with open boundary conditions where  denote a fixed incoming electric field. This means 
that local fermion-boson formulation is replaced by a non-local fermionic formulation. 

ε0

PURELY FERMIONIC FORMULATION (ONLY IN 1+1 D AND WITH OPEN BCs)
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EXAMPLE

Show that the Schwinger model Hamiltonian becomes: 

with open boundary conditions where  denote a fixed incoming electric field. This means 
that local fermion-boson formulation is replaced by a non-local fermionic formulation. 

ε0

i) Let us first transform to a gauge where :U = 𝕀

PURELY FERMIONIC FORMULATION (ONLY IN 1+1 D AND WITH OPEN BCs)
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ii) Now exploit the Gauss’s law to rewrite  in terms of the matter charge :E(x) Q(x)

i) and ii) give directly the fermionic Hamiltonian above given the definition of Q(x) .



Why can we not fully remove the gauge fields in a theory with periodic 
boundary conditions? What about higher dimensions?



Interaction term

4

The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
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where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
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The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.

H
(KS)

E
corresponds to the energy stored in the electric

field,
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2
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Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘
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. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
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where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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gauge DOF, is identical to that of the LSH Hamiltonian.
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associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
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tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
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QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
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along with presenting an outlook of this work.
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clear path to the practitioner of Hamiltonian-simulation
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mulation of the SU(2) LGT in 1+1 D in connection to
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of the conclusions made for higher-dimensional cases.5
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H
(KS)

E
corresponds to the energy stored in the electric

field,

H
(KS)

E
=

g
2
a

2

N2X

x=0

Ê(x)2. (3)

Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘

Ê2

L
= Ê2

R
. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa

L
, Ê

b

L
] = �i✏

abc
Ê

c

L
,

[Êa

R
, Ê

b

R
] = i✏

abc
Ê

c

R
,

[Êa

L
, Ê

b

R
] = 0, (4)

where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.

6

mL quantum numbers satisfy �JR  mR  JR and
�JL  mL  JL, as dictated by the angular-momentum
group algebra. The action of the gauge-link operator on
this basis can be written as:

Û
(↵,�)(x)

h
· · · |JR, mRi

(x�1)
⌦ |f1, f2i

(x)
⌦ |JL, mLi

(x)

⌦ |JR, mRi
(x)

⌦ |f1, f2i
(x+1)

⌦ |JL, mLi
(x+1)

· · ·

i

= · · · |JR, mRi
(x�1)

⌦ |f1, f2i
(x)

⌦
2

4
X

j={0,
1
2 ,1,...}

s
2J + 1

2j + 1
hJ, mL;

1

2
,↵|j, mL + ↵i

hJ, mR;
1

2
,�|j, mR + �i |j, mL + ↵i

(x)
⌦ |j, mR + �i

(x)

�

⌦ |f1, f2i
(x+1)

⌦ |JL, mLi
(x+1)

· · · , (17)

where ↵,� = ±
1

2
.7 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L
= J

(x)

R

in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1, respectively.

The physical states |�i
(KS)

can be formed by identi-
fying proper linear combinations of the basis states in
Eq. (10) such that the Gauss’s laws are satisfied at each
site, and by constructing the direct product of these com-
binations for adjacent sites along the lattice, following
additional gauge and boundary conditions as is detailed
below. First, given the Gauss’s law operators defined in
Eq. (9), the physical states |�i

(KS)
are required to satisfy

G
a(x) |�i

(KS)
= 0. Explicitly,


Ĵ

a

L
(x) + Ĵ

a

R
(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the one-dimensional lattice. So the Gauss’s laws
can be simply interpreted as the angular momenta ĴL

(corresponding to ÊL), Ĵf with Ĵ2

f
= 3

4
(corresponding

to the presence of one and only one fermion), and ĴR

(corresponding to �ÊL) should add to zero at each site.
When there is no fermion present or two fermions are
present, Ĵf = 0 and the left and right angular momenta
are the same. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and the JL value at
site x = N � 1, constrain the Hilbert space to a physical
gauge-invariant one, as analyzed in Sec. III A

7 Note that: U11 = U(
1
2 ,� 1

2 ), U12 = U(� 1
2 ,� 1

2 ), U21 =

U(
1
2 , 1

2 ), U22 = U(� 1
2 , 1

2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraints on the Hilbert space, in essence,
leaves no dynamical gauge DOF in 1+1 D beyond possi-
ble boundary modes. In particular, with OBC where the
incoming flux of the (right) electric field is set to a fixed
value, the value of electric-field excitations throughout
the lattice is fixed. This, in fact, is a general feature of
LGTs in 1+1 D, as is evident from the proof outlined be-
low. As a result, the KS Hamiltonian acting on the phys-
ical Hilbert space can be brought to a purely fermionic
form, in which the identification of (anti)fermion config-
urations is su�cient to construct the Hilbert space. This
eliminates the need for adopting a state basis for the
gauge DOF, and for solving the complex (non-diagonal)
Gauss’s laws locally which is the case in an angular-
momentum basis. Such an elimination of gauge DOF
in LGTs in 1+1 D was first discussed in Ref. [85] and
is used in recent tensor-network simulations of the SU(2)
LGT in Ref. [91]. Here, we present a generic derivation of
such a purely fermionic representation, before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermion fields in the KS Hamiltonian:

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0
(x) =  

†(x)

"
Y

y<x

U(y)

#†

. (20)

Note that the products of gauge links are defined asQ
y<x

U(y) = U(0)U(1) · · · U(x � 1). Consequently, the
gauge links must transform as

U(x) ! U
0(x) =

"
Y

y<x

U(y)

#
U(x)

"
Y

z<x+1

U(z)

#†

, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0
(x)U 0(x) 0(x + 1) + h.c.

(22)

Now considering the unitarity condition on the gauge
links, i.e., U

†
U = I, reveals that Eq. (21) simplifies to

U
0 = I, (23)

where I is the unity matrix whose dimensionality is equal
to that of the fundamental representation of the gauge
group, e.g., two in the case of SU(2). Therefore, the
interaction Hamiltonian becomes

H
(F)

I
=

1

2a

N1X

x=0

h
 

†0
(x) 0(x + 1) + h.c.

i
, (24)

where N1 = N � 2 as noted after Eq. (6).

There is a gauge transformation 
to gauge            .
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can be formed by identi-
fying proper linear combinations of the basis states in
Eq. (10) such that the Gauss’s laws are satisfied at each
site, and by constructing the direct product of these com-
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additional gauge and boundary conditions as is detailed
below. First, given the Gauss’s law operators defined in
Eq. (9), the physical states |�i
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a

R
(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
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(corresponding to ÊL), Ĵf with Ĵ2
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(corresponding

to the presence of one and only one fermion), and ĴR

(corresponding to �ÊL) should add to zero at each site.
When there is no fermion present or two fermions are
present, Ĵf = 0 and the left and right angular momenta
are the same. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and the JL value at
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B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraints on the Hilbert space, in essence,
leaves no dynamical gauge DOF in 1+1 D beyond possi-
ble boundary modes. In particular, with OBC where the
incoming flux of the (right) electric field is set to a fixed
value, the value of electric-field excitations throughout
the lattice is fixed. This, in fact, is a general feature of
LGTs in 1+1 D, as is evident from the proof outlined be-
low. As a result, the KS Hamiltonian acting on the phys-
ical Hilbert space can be brought to a purely fermionic
form, in which the identification of (anti)fermion config-
urations is su�cient to construct the Hilbert space. This
eliminates the need for adopting a state basis for the
gauge DOF, and for solving the complex (non-diagonal)
Gauss’s laws locally which is the case in an angular-
momentum basis. Such an elimination of gauge DOF
in LGTs in 1+1 D was first discussed in Ref. [85] and
is used in recent tensor-network simulations of the SU(2)
LGT in Ref. [91]. Here, we present a generic derivation of
such a purely fermionic representation, before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermion fields in the KS Hamiltonian:

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0
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†(x)

"
Y
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U(y)

#†
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Note that the products of gauge links are defined asQ
y<x

U(y) = U(0)U(1) · · · U(x � 1). Consequently, the
gauge links must transform as

U(x) ! U
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U(x)
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Y
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such that the gauge-matter interaction Hamiltonian,
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, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0
(x)U 0(x) 0(x + 1) + h.c.

(22)

Now considering the unitarity condition on the gauge
links, i.e., U

†
U = I, reveals that Eq. (21) simplifies to

U
0 = I, (23)

where I is the unity matrix whose dimensionality is equal
to that of the fundamental representation of the gauge
group, e.g., two in the case of SU(2). Therefore, the
interaction Hamiltonian becomes

H
(F)

I
=

1

2a

N1X

x=0
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†0
(x) 0(x + 1) + h.c.

i
, (24)

where N1 = N � 2 as noted after Eq. (6).
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
(KS) = H

(KS)

I
+ H

(KS)

E
+ H

(KS)

M
. (1)

Here, H
(KS)

I
denotes interactions among the fermionic

and gauge DOF6

H
(KS)

I
=

1

2a

N1X

x=0

h
 

†(x)Û(x) (x + 1) + h.c.
i
, (2)

where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
�
 

1

 
2

�
.

The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.

H
(KS)

E
corresponds to the energy stored in the electric

field,

H
(KS)

E
=

g
2
a

2

N2X

x=0

Ê(x)2. (3)

Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘

Ê2

L
= Ê2

R
. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa

L
, Ê

b

L
] = �i✏

abc
Ê

c

L
,

[Êa

R
, Ê

b

R
] = i✏

abc
Ê

c

R
,

[Êa

L
, Ê

b

R
] = 0, (4)

where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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mL quantum numbers satisfy �JR  mR  JR and
�JL  mL  JL, as dictated by the angular-momentum
group algebra. The action of the gauge-link operator on
this basis can be written as:

Û
(↵,�)(x)

h
· · · |JR, mRi

(x�1)
⌦ |f1, f2i

(x)
⌦ |JL, mLi

(x)

⌦ |JR, mRi
(x)

⌦ |f1, f2i
(x+1)

⌦ |JL, mLi
(x+1)

· · ·

i

= · · · |JR, mRi
(x�1)

⌦ |f1, f2i
(x)

⌦
2

4
X

j={0,
1
2 ,1,...}

s
2J + 1

2j + 1
hJ, mL;

1

2
,↵|j, mL + ↵i

hJ, mR;
1

2
,�|j, mR + �i |j, mL + ↵i

(x)
⌦ |j, mR + �i

(x)

�

⌦ |f1, f2i
(x+1)

⌦ |JL, mLi
(x+1)

· · · , (17)

where ↵,� = ±
1

2
.7 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L
= J

(x)

R

in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1, respectively.

The physical states |�i
(KS)

can be formed by identi-
fying proper linear combinations of the basis states in
Eq. (10) such that the Gauss’s laws are satisfied at each
site, and by constructing the direct product of these com-
binations for adjacent sites along the lattice, following
additional gauge and boundary conditions as is detailed
below. First, given the Gauss’s law operators defined in
Eq. (9), the physical states |�i

(KS)
are required to satisfy

G
a(x) |�i

(KS)
= 0. Explicitly,


Ĵ

a

L
(x) + Ĵ

a

R
(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the one-dimensional lattice. So the Gauss’s laws
can be simply interpreted as the angular momenta ĴL

(corresponding to ÊL), Ĵf with Ĵ2

f
= 3

4
(corresponding

to the presence of one and only one fermion), and ĴR

(corresponding to �ÊL) should add to zero at each site.
When there is no fermion present or two fermions are
present, Ĵf = 0 and the left and right angular momenta
are the same. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and the JL value at
site x = N � 1, constrain the Hilbert space to a physical
gauge-invariant one, as analyzed in Sec. III A

7 Note that: U11 = U(
1
2 ,� 1

2 ), U12 = U(� 1
2 ,� 1

2 ), U21 =

U(
1
2 , 1

2 ), U22 = U(� 1
2 , 1

2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraints on the Hilbert space, in essence,
leaves no dynamical gauge DOF in 1+1 D beyond possi-
ble boundary modes. In particular, with OBC where the
incoming flux of the (right) electric field is set to a fixed
value, the value of electric-field excitations throughout
the lattice is fixed. This, in fact, is a general feature of
LGTs in 1+1 D, as is evident from the proof outlined be-
low. As a result, the KS Hamiltonian acting on the phys-
ical Hilbert space can be brought to a purely fermionic
form, in which the identification of (anti)fermion config-
urations is su�cient to construct the Hilbert space. This
eliminates the need for adopting a state basis for the
gauge DOF, and for solving the complex (non-diagonal)
Gauss’s laws locally which is the case in an angular-
momentum basis. Such an elimination of gauge DOF
in LGTs in 1+1 D was first discussed in Ref. [85] and
is used in recent tensor-network simulations of the SU(2)
LGT in Ref. [91]. Here, we present a generic derivation of
such a purely fermionic representation, before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermion fields in the KS Hamiltonian:

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0
(x) =  

†(x)

"
Y

y<x

U(y)

#†

. (20)

Note that the products of gauge links are defined asQ
y<x

U(y) = U(0)U(1) · · · U(x � 1). Consequently, the
gauge links must transform as

U(x) ! U
0(x) =

"
Y

y<x

U(y)

#
U(x)

"
Y

z<x+1

U(z)

#†

, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0
(x)U 0(x) 0(x + 1) + h.c.

(22)

Now considering the unitarity condition on the gauge
links, i.e., U

†
U = I, reveals that Eq. (21) simplifies to

U
0 = I, (23)

where I is the unity matrix whose dimensionality is equal
to that of the fundamental representation of the gauge
group, e.g., two in the case of SU(2). Therefore, the
interaction Hamiltonian becomes

H
(F)

I
=

1

2a

N1X

x=0

h
 

†0
(x) 0(x + 1) + h.c.

i
, (24)

where N1 = N � 2 as noted after Eq. (6).
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
(KS) = H

(KS)

I
+ H

(KS)

E
+ H

(KS)

M
. (1)

Here, H
(KS)

I
denotes interactions among the fermionic

and gauge DOF6

H
(KS)

I
=

1

2a

N1X

x=0

h
 

†(x)Û(x) (x + 1) + h.c.
i
, (2)

where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
�
 

1

 
2

�
.

The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.

H
(KS)

E
corresponds to the energy stored in the electric

field,

H
(KS)

E
=

g
2
a

2

N2X

x=0

Ê(x)2. (3)

Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘

Ê2

L
= Ê2

R
. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa

L
, Ê

b

L
] = �i✏

abc
Ê

c

L
,

[Êa

R
, Ê

b

R
] = i✏

abc
Ê

c

R
,

[Êa

L
, Ê

b

R
] = 0, (4)

where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5
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simulation.
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. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa
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where ✏abc is the Levi-Civita tensor and the spatial de-
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Using Gauss’s laws and transforming 
to gauge            :

6

mL quantum numbers satisfy �JR  mR  JR and
�JL  mL  JL, as dictated by the angular-momentum
group algebra. The action of the gauge-link operator on
this basis can be written as:

Û
(↵,�)(x)

h
· · · |JR, mRi

(x�1)
⌦ |f1, f2i

(x)
⌦ |JL, mLi

(x)

⌦ |JR, mRi
(x)

⌦ |f1, f2i
(x+1)

⌦ |JL, mLi
(x+1)

· · ·

i

= · · · |JR, mRi
(x�1)

⌦ |f1, f2i
(x)

⌦
2

4
X

j={0,
1
2 ,1,...}

s
2J + 1

2j + 1
hJ, mL;

1

2
,↵|j, mL + ↵i

hJ, mR;
1

2
,�|j, mR + �i |j, mL + ↵i

(x)
⌦ |j, mR + �i

(x)

�

⌦ |f1, f2i
(x+1)

⌦ |JL, mLi
(x+1)

· · · , (17)

where ↵,� = ±
1

2
.7 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L
= J

(x)

R

in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1, respectively.

The physical states |�i
(KS)

can be formed by identi-
fying proper linear combinations of the basis states in
Eq. (10) such that the Gauss’s laws are satisfied at each
site, and by constructing the direct product of these com-
binations for adjacent sites along the lattice, following
additional gauge and boundary conditions as is detailed
below. First, given the Gauss’s law operators defined in
Eq. (9), the physical states |�i

(KS)
are required to satisfy

G
a(x) |�i

(KS)
= 0. Explicitly,


Ĵ

a

L
(x) + Ĵ

a

R
(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the one-dimensional lattice. So the Gauss’s laws
can be simply interpreted as the angular momenta ĴL

(corresponding to ÊL), Ĵf with Ĵ2

f
= 3

4
(corresponding

to the presence of one and only one fermion), and ĴR

(corresponding to �ÊL) should add to zero at each site.
When there is no fermion present or two fermions are
present, Ĵf = 0 and the left and right angular momenta
are the same. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and the JL value at
site x = N � 1, constrain the Hilbert space to a physical
gauge-invariant one, as analyzed in Sec. III A

7 Note that: U11 = U(
1
2 ,� 1

2 ), U12 = U(� 1
2 ,� 1

2 ), U21 =

U(
1
2 , 1

2 ), U22 = U(� 1
2 , 1

2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraints on the Hilbert space, in essence,
leaves no dynamical gauge DOF in 1+1 D beyond possi-
ble boundary modes. In particular, with OBC where the
incoming flux of the (right) electric field is set to a fixed
value, the value of electric-field excitations throughout
the lattice is fixed. This, in fact, is a general feature of
LGTs in 1+1 D, as is evident from the proof outlined be-
low. As a result, the KS Hamiltonian acting on the phys-
ical Hilbert space can be brought to a purely fermionic
form, in which the identification of (anti)fermion config-
urations is su�cient to construct the Hilbert space. This
eliminates the need for adopting a state basis for the
gauge DOF, and for solving the complex (non-diagonal)
Gauss’s laws locally which is the case in an angular-
momentum basis. Such an elimination of gauge DOF
in LGTs in 1+1 D was first discussed in Ref. [85] and
is used in recent tensor-network simulations of the SU(2)
LGT in Ref. [91]. Here, we present a generic derivation of
such a purely fermionic representation, before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermion fields in the KS Hamiltonian:

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0
(x) =  

†(x)

"
Y

y<x

U(y)

#†

. (20)

Note that the products of gauge links are defined asQ
y<x

U(y) = U(0)U(1) · · · U(x � 1). Consequently, the
gauge links must transform as

U(x) ! U
0(x) =

"
Y

y<x

U(y)

#
U(x)

"
Y

z<x+1

U(z)

#†

, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0
(x)U 0(x) 0(x + 1) + h.c.

(22)

Now considering the unitarity condition on the gauge
links, i.e., U

†
U = I, reveals that Eq. (21) simplifies to

U
0 = I, (23)

where I is the unity matrix whose dimensionality is equal
to that of the fundamental representation of the gauge
group, e.g., two in the case of SU(2). Therefore, the
interaction Hamiltonian becomes

H
(F)

I
=

1

2a

N1X

x=0

h
 

†0
(x) 0(x + 1) + h.c.

i
, (24)

where N1 = N � 2 as noted after Eq. (6).
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Now given the relation among the gauge link and
the left and right electric fields belonging to the same
link [106],

ER(x) = U
†(x)EL(x)U(x), (25)

one obtains the following relation in the new gauge:

ER(x) = EL(x). (26)

This relation, combined with the OBC set to E
a

R
(�1) =

✏
a

0
for a = 1, 2, 3, and the Gauss’s laws G

a
|�i

(KS)
= 0

with G
a defined in Eq. (9), fully fixes the values of EL

and ER at all sites on the one-dimensional lattice in the
physical Hilbert space:

E
a

L
(x) = ✏

a

0
+

xX

y=0

⇢
a(y) = E

a

R
(x), (27)

with ⇢
a defined in Eq. (7). Consequently, the electric-

field Hamiltonian H
(KS)

E
becomes8

H
(F)

E
=

g
2
a

2

N2X

x=0

3X

a=1

"
✏
a

0
+

xX

y=0

 
†0

(y)T a
 

0(y)

#2

, (28)

where N2 = N � 2 for OBC as noted after Eq. (3). The
consequence of applying Gauss’s laws to arrive at Eq. (28)
is that the local electric-field Hamiltonian in the origi-
nal formulation is replaced with arbitrary-range fermion-
fermion interactions in the fermionic Hamiltonian.

Finally, the mass term in the new gauge remains the
same, as is expected from gauge invariance:

H
(F)

M
= m

N3X

x=0

(�1)x
 

†0
(x) 0(x), (29)

where N3 = N � 1 as noted after Eq. (6). Note that
upon expanding Eq. (28), terms with a fermionic struc-
ture similar to the mass term arise, e↵ectively modifying
the mass in the new representation.

The procedure outlined above establishes that any ex-
plicit dependence on the gauge link and electric fields are
eliminated in the KS Hamiltonian with OBC, giving rise
to a purely fermionic Hamiltonian whose terms are speci-
fied in Eqs. (24), (28), and (29), and which is identical to
the original KS Hamiltonian only in the physical Hilbert
space. As a result, any state in this formulation can
be written in terms of a complete fermionic occupation-
number basis,

|�i
(KS,F)

=
N�1Y

x=0

|f1, f2i
(x)

, (30)

where as before, f1 and f2 refer to the occupation number
of the two components of the (anti)matter field,  1 and
 2, respectively, each taking values 0 or 1.

8 Note that  †(x) (x) =  †0
(x) 0(x).

C. Purely bosonic formulation

Gauge transformation, along with the imposition of the
local Gauss’s laws with OBC, led to the elimination of the
gauge DOF in the previous section. Unfortunately, this
procedure can obtain a purely fermionic theory only in
1+1 D, as in higher dimensions the number of constraints
at each lattice site is not su�cient to eliminate the gauge
DOF in all spatial directions. One could reversely con-
sider eliminating the fermionic DOF with the use of the
Gauss’s laws, as proposed in Ref. [93], to obtain a fully
bosonic theory. This protocol works in all dimensions,
but in the case of SU(2N ) theories, requires enlarging
the gauge group to U(2N ) to accommodate a su�cient
number of constraints needed to eliminate the fermions.9

One further needs to keep track of the fermionic statistics
by encoding in the purely bosonic interactions, the non-
trivial signs associated with the anti-commuting nature
of the fermions [94]. The extended theory can be shown
to be equivalent to the original theory for all physical pur-
poses, as long as the cuto↵ on the new gauge DOF of the
extended symmetry is set su�ciently high, see Sec. III C.
In the following, the bosonized form of the SU(2) LGT
in 1+1 D is derived, following the procedure outlined in
Ref. [93] for general dimensions.

Consider the Gauss’s laws in the KS formulation of
the SU(2) LGT in 1+1 D, given in Eq. (18). Although
there exist three Gauss’s laws at each site, only the
Gauss’s law corresponding to the a = 3 component of
Gauss’s law operator in Eq. (9) provides a diagonal re-
lation in the angular momentum/fermionic basis. In
other words, two of the Gauss’s laws mix basis states
with di↵erent quantum numbers, and only one of the
Gauss’s laws leads to an algebraic relation among the
gauge and fermionic DOF. Explicitly, for a basis state
|JR, mRi

(x�1)
⌦ |f1, f2i

(x)
⌦ |JL, mLi

(x) at site x, this
relation reads

mL(x) + mR(x � 1) = �
1

2
(f1(x) � f2(x)). (31)

However, in order to fully express the {f1, f2} quantum
numbers at each site in terms of the {JR, mR, JL, mL}

quantum numbers surrounding the site, at least one more
independent relation is needed. Such a relation can be
obtained by adding an extra U(1) symmetry to enlarge
the gauge group, e↵ectively modifying each link on the
lattice by a U(1) link U0, i.e., U(x) ! U(x) ⇥ U0(x),
where U is the SU(2) link. This introduces a staggered

9 As shown in Ref. [93] for the case of the SU(2N + 1) theory,
the introduction of an auxiliary Z2 gauge field on each link on
the lattice is su�cient to eliminate the fermions, without the
need to enlarge the group to U(2N +1). This enhancement also
takes care of the fermionic statistics when fermions are replaced
with the hardcore bosons and are subsequently eliminated. Since
the focus of this work is the SU(2) theory, this case will not be
analyzed here further.
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gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.
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size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].
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Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:
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The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.
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corresponds to the energy stored in the electric
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[Êa

L
, Ê

b

R
] = 0, (4)

where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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Now given the relation among the gauge link and
the left and right electric fields belonging to the same
link [106],

ER(x) = U
†(x)EL(x)U(x), (25)

one obtains the following relation in the new gauge:

ER(x) = EL(x). (26)

This relation, combined with the OBC set to E
a

R
(�1) =

✏
a

0
for a = 1, 2, 3, and the Gauss’s laws G

a
|�i

(KS)
= 0

with G
a defined in Eq. (9), fully fixes the values of EL

and ER at all sites on the one-dimensional lattice in the
physical Hilbert space:

E
a

L
(x) = ✏

a

0
+

xX

y=0

⇢
a(y) = E

a

R
(x), (27)

with ⇢
a defined in Eq. (7). Consequently, the electric-

field Hamiltonian H
(KS)

E
becomes8

H
(F)

E
=

g
2
a

2

N2X

x=0

3X

a=1

"
✏
a

0
+

xX

y=0

 
†0

(y)T a
 

0(y)

#2

, (28)

where N2 = N � 2 for OBC as noted after Eq. (3). The
consequence of applying Gauss’s laws to arrive at Eq. (28)
is that the local electric-field Hamiltonian in the origi-
nal formulation is replaced with arbitrary-range fermion-
fermion interactions in the fermionic Hamiltonian.

Finally, the mass term in the new gauge remains the
same, as is expected from gauge invariance:

H
(F)

M
= m

N3X

x=0

(�1)x
 

†0
(x) 0(x), (29)

where N3 = N � 1 as noted after Eq. (6). Note that
upon expanding Eq. (28), terms with a fermionic struc-
ture similar to the mass term arise, e↵ectively modifying
the mass in the new representation.

The procedure outlined above establishes that any ex-
plicit dependence on the gauge link and electric fields are
eliminated in the KS Hamiltonian with OBC, giving rise
to a purely fermionic Hamiltonian whose terms are speci-
fied in Eqs. (24), (28), and (29), and which is identical to
the original KS Hamiltonian only in the physical Hilbert
space. As a result, any state in this formulation can
be written in terms of a complete fermionic occupation-
number basis,

|�i
(KS,F)

=
N�1Y

x=0

|f1, f2i
(x)

, (30)

where as before, f1 and f2 refer to the occupation number
of the two components of the (anti)matter field,  1 and
 2, respectively, each taking values 0 or 1.

8 Note that  †(x) (x) =  †0
(x) 0(x).

C. Purely bosonic formulation

Gauge transformation, along with the imposition of the
local Gauss’s laws with OBC, led to the elimination of the
gauge DOF in the previous section. Unfortunately, this
procedure can obtain a purely fermionic theory only in
1+1 D, as in higher dimensions the number of constraints
at each lattice site is not su�cient to eliminate the gauge
DOF in all spatial directions. One could reversely con-
sider eliminating the fermionic DOF with the use of the
Gauss’s laws, as proposed in Ref. [93], to obtain a fully
bosonic theory. This protocol works in all dimensions,
but in the case of SU(2N ) theories, requires enlarging
the gauge group to U(2N ) to accommodate a su�cient
number of constraints needed to eliminate the fermions.9

One further needs to keep track of the fermionic statistics
by encoding in the purely bosonic interactions, the non-
trivial signs associated with the anti-commuting nature
of the fermions [94]. The extended theory can be shown
to be equivalent to the original theory for all physical pur-
poses, as long as the cuto↵ on the new gauge DOF of the
extended symmetry is set su�ciently high, see Sec. III C.
In the following, the bosonized form of the SU(2) LGT
in 1+1 D is derived, following the procedure outlined in
Ref. [93] for general dimensions.

Consider the Gauss’s laws in the KS formulation of
the SU(2) LGT in 1+1 D, given in Eq. (18). Although
there exist three Gauss’s laws at each site, only the
Gauss’s law corresponding to the a = 3 component of
Gauss’s law operator in Eq. (9) provides a diagonal re-
lation in the angular momentum/fermionic basis. In
other words, two of the Gauss’s laws mix basis states
with di↵erent quantum numbers, and only one of the
Gauss’s laws leads to an algebraic relation among the
gauge and fermionic DOF. Explicitly, for a basis state
|JR, mRi

(x�1)
⌦ |f1, f2i

(x)
⌦ |JL, mLi

(x) at site x, this
relation reads

mL(x) + mR(x � 1) = �
1

2
(f1(x) � f2(x)). (31)

However, in order to fully express the {f1, f2} quantum
numbers at each site in terms of the {JR, mR, JL, mL}

quantum numbers surrounding the site, at least one more
independent relation is needed. Such a relation can be
obtained by adding an extra U(1) symmetry to enlarge
the gauge group, e↵ectively modifying each link on the
lattice by a U(1) link U0, i.e., U(x) ! U(x) ⇥ U0(x),
where U is the SU(2) link. This introduces a staggered

9 As shown in Ref. [93] for the case of the SU(2N + 1) theory,
the introduction of an auxiliary Z2 gauge field on each link on
the lattice is su�cient to eliminate the fermions, without the
need to enlarge the group to U(2N +1). This enhancement also
takes care of the fermionic statistics when fermions are replaced
with the hardcore bosons and are subsequently eliminated. Since
the focus of this work is the SU(2) theory, this case will not be
analyzed here further.
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
(KS) = H

(KS)

I
+ H

(KS)

E
+ H

(KS)

M
. (1)

Here, H
(KS)

I
denotes interactions among the fermionic

and gauge DOF6

H
(KS)

I
=

1

2a

N1X

x=0

h
 

†(x)Û(x) (x + 1) + h.c.
i
, (2)

where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
�
 

1

 
2

�
.

The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.

H
(KS)

E
corresponds to the energy stored in the electric

field,

H
(KS)

E
=

g
2
a

2

N2X

x=0

Ê(x)2. (3)

Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘

Ê2

L
= Ê2

R
. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa

L
, Ê

b

L
] = �i✏

abc
Ê

c

L
,

[Êa

R
, Ê

b

R
] = i✏

abc
Ê

c

R
,

[Êa

L
, Ê

b

R
] = 0, (4)

where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as

|�i
(x)

(KS)
= |JR, mRi

(x�1)
⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:

 
1
|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)

 
1†

|f1, f2i = (1 � �f1,1) |f1 + 1, f2i , (12)

at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy

Ĵ2

R
|JR, mRi = JR(JR + 1) |JR, mRi (13)

Ĵ2

L
|JL, mLi = JL(JL + 1) |JL, mLi (14)

and

Ĵ
3

R
|JR, mRi = mR |JR, mRi (15)

Ĵ
3

L
|JL, mLi = mL |JL, mLi (16)

at each site x, where for brevity the site indices are
suppressed. Here, JL, JR = 0,

1

2
, 1,

3

2
, · · · , and mR and
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Now given the relation among the gauge link and
the left and right electric fields belonging to the same
link [106],

ER(x) = U
†(x)EL(x)U(x), (25)

one obtains the following relation in the new gauge:

ER(x) = EL(x). (26)

This relation, combined with the OBC set to E
a

R
(�1) =

✏
a

0
for a = 1, 2, 3, and the Gauss’s laws G

a
|�i

(KS)
= 0

with G
a defined in Eq. (9), fully fixes the values of EL

and ER at all sites on the one-dimensional lattice in the
physical Hilbert space:

E
a

L
(x) = ✏

a

0
+

xX

y=0

⇢
a(y) = E

a

R
(x), (27)

with ⇢
a defined in Eq. (7). Consequently, the electric-

field Hamiltonian H
(KS)

E
becomes8

H
(F)

E
=

g
2
a

2

N2X

x=0

3X

a=1

"
✏
a

0
+

xX

y=0

 
†0

(y)T a
 

0(y)

#2

, (28)

where N2 = N � 2 for OBC as noted after Eq. (3). The
consequence of applying Gauss’s laws to arrive at Eq. (28)
is that the local electric-field Hamiltonian in the origi-
nal formulation is replaced with arbitrary-range fermion-
fermion interactions in the fermionic Hamiltonian.

Finally, the mass term in the new gauge remains the
same, as is expected from gauge invariance:

H
(F)

M
= m

N3X

x=0

(�1)x
 

†0
(x) 0(x), (29)

where N3 = N � 1 as noted after Eq. (6). Note that
upon expanding Eq. (28), terms with a fermionic struc-
ture similar to the mass term arise, e↵ectively modifying
the mass in the new representation.

The procedure outlined above establishes that any ex-
plicit dependence on the gauge link and electric fields are
eliminated in the KS Hamiltonian with OBC, giving rise
to a purely fermionic Hamiltonian whose terms are speci-
fied in Eqs. (24), (28), and (29), and which is identical to
the original KS Hamiltonian only in the physical Hilbert
space. As a result, any state in this formulation can
be written in terms of a complete fermionic occupation-
number basis,

|�i
(KS,F)

=
N�1Y

x=0

|f1, f2i
(x)

, (30)

where as before, f1 and f2 refer to the occupation number
of the two components of the (anti)matter field,  1 and
 2, respectively, each taking values 0 or 1.

8 Note that  †(x) (x) =  †0
(x) 0(x).

C. Purely bosonic formulation

Gauge transformation, along with the imposition of the
local Gauss’s laws with OBC, led to the elimination of the
gauge DOF in the previous section. Unfortunately, this
procedure can obtain a purely fermionic theory only in
1+1 D, as in higher dimensions the number of constraints
at each lattice site is not su�cient to eliminate the gauge
DOF in all spatial directions. One could reversely con-
sider eliminating the fermionic DOF with the use of the
Gauss’s laws, as proposed in Ref. [93], to obtain a fully
bosonic theory. This protocol works in all dimensions,
but in the case of SU(2N ) theories, requires enlarging
the gauge group to U(2N ) to accommodate a su�cient
number of constraints needed to eliminate the fermions.9

One further needs to keep track of the fermionic statistics
by encoding in the purely bosonic interactions, the non-
trivial signs associated with the anti-commuting nature
of the fermions [94]. The extended theory can be shown
to be equivalent to the original theory for all physical pur-
poses, as long as the cuto↵ on the new gauge DOF of the
extended symmetry is set su�ciently high, see Sec. III C.
In the following, the bosonized form of the SU(2) LGT
in 1+1 D is derived, following the procedure outlined in
Ref. [93] for general dimensions.

Consider the Gauss’s laws in the KS formulation of
the SU(2) LGT in 1+1 D, given in Eq. (18). Although
there exist three Gauss’s laws at each site, only the
Gauss’s law corresponding to the a = 3 component of
Gauss’s law operator in Eq. (9) provides a diagonal re-
lation in the angular momentum/fermionic basis. In
other words, two of the Gauss’s laws mix basis states
with di↵erent quantum numbers, and only one of the
Gauss’s laws leads to an algebraic relation among the
gauge and fermionic DOF. Explicitly, for a basis state
|JR, mRi

(x�1)
⌦ |f1, f2i

(x)
⌦ |JL, mLi

(x) at site x, this
relation reads

mL(x) + mR(x � 1) = �
1

2
(f1(x) � f2(x)). (31)

However, in order to fully express the {f1, f2} quantum
numbers at each site in terms of the {JR, mR, JL, mL}

quantum numbers surrounding the site, at least one more
independent relation is needed. Such a relation can be
obtained by adding an extra U(1) symmetry to enlarge
the gauge group, e↵ectively modifying each link on the
lattice by a U(1) link U0, i.e., U(x) ! U(x) ⇥ U0(x),
where U is the SU(2) link. This introduces a staggered

9 As shown in Ref. [93] for the case of the SU(2N + 1) theory,
the introduction of an auxiliary Z2 gauge field on each link on
the lattice is su�cient to eliminate the fermions, without the
need to enlarge the group to U(2N +1). This enhancement also
takes care of the fermionic statistics when fermions are replaced
with the hardcore bosons and are subsequently eliminated. Since
the focus of this work is the SU(2) theory, this case will not be
analyzed here further.

Transforming to gauge            :

6

mL quantum numbers satisfy �JR  mR  JR and
�JL  mL  JL, as dictated by the angular-momentum
group algebra. The action of the gauge-link operator on
this basis can be written as:

Û
(↵,�)(x)

h
· · · |JR, mRi

(x�1)
⌦ |f1, f2i

(x)
⌦ |JL, mLi

(x)

⌦ |JR, mRi
(x)

⌦ |f1, f2i
(x+1)

⌦ |JL, mLi
(x+1)

· · ·

i

= · · · |JR, mRi
(x�1)

⌦ |f1, f2i
(x)

⌦
2

4
X

j={0,
1
2 ,1,...}

s
2J + 1

2j + 1
hJ, mL;

1

2
,↵|j, mL + ↵i

hJ, mR;
1

2
,�|j, mR + �i |j, mL + ↵i

(x)
⌦ |j, mR + �i

(x)

�

⌦ |f1, f2i
(x+1)

⌦ |JL, mLi
(x+1)

· · · , (17)

where ↵,� = ±
1

2
.7 Note that JL and JR on each link

are equal, and as such we have defined J ⌘ J
(x)

L
= J

(x)

R

in this relation. Ellipses denote states that precede and
follow those shown at site x and x + 1, respectively.

The physical states |�i
(KS)

can be formed by identi-
fying proper linear combinations of the basis states in
Eq. (10) such that the Gauss’s laws are satisfied at each
site, and by constructing the direct product of these com-
binations for adjacent sites along the lattice, following
additional gauge and boundary conditions as is detailed
below. First, given the Gauss’s law operators defined in
Eq. (9), the physical states |�i

(KS)
are required to satisfy

G
a(x) |�i

(KS)
= 0. Explicitly,


Ĵ

a

L
(x) + Ĵ

a

R
(x � 1) +

1

2
 

†(x)⌧a
 (x)

�
|�i

(KS)
= 0,

(18)
for a = 1, 2, 3, and for every x where x = 0, 1, · · · , N � 1
along the one-dimensional lattice. So the Gauss’s laws
can be simply interpreted as the angular momenta ĴL

(corresponding to ÊL), Ĵf with Ĵ2

f
= 3

4
(corresponding

to the presence of one and only one fermion), and ĴR

(corresponding to �ÊL) should add to zero at each site.
When there is no fermion present or two fermions are
present, Ĵf = 0 and the left and right angular momenta
are the same. Moreover, as mentioned before, JL and JR

quantum numbers need to be equal on each link. These
two requirements, in addition to the boundary conditions
imposed on the JR value at site x = 0 and the JL value at
site x = N � 1, constrain the Hilbert space to a physical
gauge-invariant one, as analyzed in Sec. III A

7 Note that: U11 = U(
1
2 ,� 1

2 ), U12 = U(� 1
2 ,� 1

2 ), U21 =

U(
1
2 , 1

2 ), U22 = U(� 1
2 , 1

2 ).

B. Purely fermionic formulation

The KS Hamiltonian in Eq. (1) combined with the
Gauss’s law constraints on the Hilbert space, in essence,
leaves no dynamical gauge DOF in 1+1 D beyond possi-
ble boundary modes. In particular, with OBC where the
incoming flux of the (right) electric field is set to a fixed
value, the value of electric-field excitations throughout
the lattice is fixed. This, in fact, is a general feature of
LGTs in 1+1 D, as is evident from the proof outlined be-
low. As a result, the KS Hamiltonian acting on the phys-
ical Hilbert space can be brought to a purely fermionic
form, in which the identification of (anti)fermion config-
urations is su�cient to construct the Hilbert space. This
eliminates the need for adopting a state basis for the
gauge DOF, and for solving the complex (non-diagonal)
Gauss’s laws locally which is the case in an angular-
momentum basis. Such an elimination of gauge DOF
in LGTs in 1+1 D was first discussed in Ref. [85] and
is used in recent tensor-network simulations of the SU(2)
LGT in Ref. [91]. Here, we present a generic derivation of
such a purely fermionic representation, before analyzing
its Hilbert space in the following section.

Consider the following gauge transformation on the
fermion fields in the KS Hamiltonian:

 (x) !  
0(x) =

"
Y

y<x

U(y)

#
 (x), (19)

 
†(x) !  

†0
(x) =  

†(x)

"
Y

y<x

U(y)

#†

. (20)

Note that the products of gauge links are defined asQ
y<x

U(y) = U(0)U(1) · · · U(x � 1). Consequently, the
gauge links must transform as

U(x) ! U
0(x) =

"
Y

y<x

U(y)

#
U(x)

"
Y

z<x+1

U(z)

#†

, (21)

such that the gauge-matter interaction Hamiltonian,

H
(KS)

I
, remains invariant:

 
†(x)U(x) (x + 1) + h.c. !  

†0
(x)U 0(x) 0(x + 1) + h.c.

(22)

Now considering the unitarity condition on the gauge
links, i.e., U

†
U = I, reveals that Eq. (21) simplifies to

U
0 = I, (23)

where I is the unity matrix whose dimensionality is equal
to that of the fundamental representation of the gauge
group, e.g., two in the case of SU(2). Therefore, the
interaction Hamiltonian becomes

H
(F)

I
=

1

2a

N1X

x=0

h
 

†0
(x) 0(x + 1) + h.c.

i
, (24)

where N1 = N � 2 as noted after Eq. (6).

…all this only works in 1+1 D and with open boundary conditions.

PURELY FERMIONIC FORMULATION FOR THE SU(2) LGT IN 1+1 D

<latexit sha1_base64="ADu/CY8A+sFdElbZ+XO5bqIQml0=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOZpMx81hmZsWw5B+8eFDEq//jzb9xkuxBEwsaiqpuuruihDNjff/bK6ysrq1vFDdLW9s7u3vl/YOmUakmtEEUV7odYUM5k7RhmeW0nWiKRcRpKxrdTP3WI9WGKXlvxwkNBR5IFjOCrZOaXZOK3lOvXPGr/gxomQQ5qUCOeq/81e0rkgoqLeHYmE7gJzbMsLaMcDopdVNDE0xGeEA7jkosqAmz2bUTdOKUPoqVdiUtmqm/JzIsjBmLyHUKbIdm0ZuK/3md1MZXYcZkkloqyXxRnHJkFZq+jvpMU2L52BFMNHO3IjLEGhPrAiq5EILFl5dJ86waXFSDu/NK7TqPowhHcAynEMAl1OAW6tAAAg/wDK/w5invxXv3PuatBS+fOYQ/8D5/AMdlj0Q=</latexit>X

x

<latexit sha1_base64="ADu/CY8A+sFdElbZ+XO5bqIQml0=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOZpMx81hmZsWw5B+8eFDEq//jzb9xkuxBEwsaiqpuuruihDNjff/bK6ysrq1vFDdLW9s7u3vl/YOmUakmtEEUV7odYUM5k7RhmeW0nWiKRcRpKxrdTP3WI9WGKXlvxwkNBR5IFjOCrZOaXZOK3lOvXPGr/gxomQQ5qUCOeq/81e0rkgoqLeHYmE7gJzbMsLaMcDopdVNDE0xGeEA7jkosqAmz2bUTdOKUPoqVdiUtmqm/JzIsjBmLyHUKbIdm0ZuK/3md1MZXYcZkkloqyXxRnHJkFZq+jvpMU2L52BFMNHO3IjLEGhPrAiq5EILFl5dJ86waXFSDu/NK7TqPowhHcAynEMAl1OAW6tAAAg/wDK/w5invxXv3PuatBS+fOYQ/8D5/AMdlj0Q=</latexit>X

x

5

FIG. 1. A physical site along the spatial direction is split to two staggered sites in the KS Hamiltonian. These sites are
connected by a gauge link. Corresponding to each staggered site, there is a two-component fermion field, a left electric field,
and a right electric field, as indexed in the figure.

The electric fields and the gauge link satisfy the canoni-
cal commutation relations at each site,

[Êa

L
, Û ] = T

a
Û ,

[Êa

R
, Û ] = ÛT

a
, (5)

where T
a = 1

2
⌧

a, and ⌧
a is the a

th Pauli matrix. The
corresponding commutation relations for fields with dif-
ferent site indices vanish.

Finally, H
(KS)

M
in Eq. (1) is a staggered mass term

H
(KS)

M
= m

N3X

x=0

(�1)x
 

†(x) (x). (6)

Here, N3 = N�1 for both PBC and OBC, and m denotes
the mass of each component of the fermions.

In this theory, a fermion SU(2)-charge-density operator
defined at each site,

⇢̂
a(x) ⌘  

†(x)T a
 (x), (7)

which satisfies the SU(2) Lie algebra. It further satisfies
the following commutation relation at each site,

[⇢̂a
, ] = �T

a
 . (8)

Such a commutation relation vanishes for fields at di↵er-
ent sites. This SU(2)-charge-density operator also com-
mutes with the electric fields and the gauge link. With
these commutation relations, and those given in Eqs. (4)
and (5), one can show that the Hamiltonian in Eq. (1)
commutes with the following operator,

Ĝ
a(x) = �Ê

a

L
(x) + Ê

a

R
(x � 1) + ⇢̂

a(x). (9)

As a result, the Hilbert space of the theory is classified
into sectors corresponding to each of the eigenvalues of
the Gauss’s law operators G

a, and these eigenvalues are
the ‘constants of motion’. The physical sector of this
Hilbert space is that corresponding to the zero eigenvalue
of this operator.

A. Angular-momentum formulation

The first step in forming the Hilbert space of a LGT for
the sake of computation is to map the vacuum and the
excitations of the fields to a state basis. In the absence

of the magnetic Hamiltonian, which is the case in 1+1 D
LGTs, the most e�cient basis is formed out of eigen-
states of the electric-field operator. The direct product of
the fermionic eigenstates and the electric-field eigenstates
forms the full Hilbert space. This is called the electric-
field basis, or the strong-coupling basis, i.e., in the g ! 1

limit, the interaction terms in Eq. (2) that involves transi-
tions between di↵erent eigenvalues of the electric-field op-
erator becomes insignificant compared with the electric-
field term, Eq. (3), and the Hamiltonian becomes diag-
onal in the electric-field basis. Since the electric fields
satisfy the SU(2) algebra, a familiar representation is the
angular-momentum representation. In fact, as pointed
out by Kogut and Susskind, the left and right electric
field can be mapped to the body-frame (Ĵb) and space-
frame (Ĵs) angular momenta of a rigid body. Explicitly,
ÊL = �Ĵb(⌘ �ĴL) and ÊR = Ĵs(⌘ ĴR), satisfying
Ĵ2

L
= Ĵ2

R
on each link.

Given this correspondence, one may write the electric-
field basis states for the KS formulation as

|�i
(x)

(KS)
= |JR, mRi

(x�1)
⌦|f1, f2i

(x)
⌦|JL, mLi

(x)
, (10)

for each site x. Here, f1 and f2 quantum numbers re-
fer to the occupation number of the two components of
the (anti)matter field,  1 and  

2, each taking values
0 and 1, corresponding to the absence and presence of
(anti)matter, respectively:

 
1
|f1, f2i = (1 � �f1,0) |f1 � 1, f2i , (11)

 
1†

|f1, f2i = (1 � �f1,1) |f1 + 1, f2i , (12)

at each site, and similarly for the other component of
 . Here, � denotes the Kronecker-delta symbol. Further-
more, the angular-momentum basis states satisfy

Ĵ2

R
|JR, mRi = JR(JR + 1) |JR, mRi (13)

Ĵ2

L
|JL, mLi = JL(JL + 1) |JL, mLi (14)

and

Ĵ
3

R
|JR, mRi = mR |JR, mRi (15)

Ĵ
3

L
|JL, mLi = mL |JL, mLi (16)

at each site x, where for brevity the site indices are
suppressed. Here, JL, JR = 0,

1

2
, 1,

3

2
, · · · , and mR and

7

Now given the relation among the gauge link and
the left and right electric fields belonging to the same
link [106],

ER(x) = U
†(x)EL(x)U(x), (25)

one obtains the following relation in the new gauge:

ER(x) = EL(x). (26)

This relation, combined with the OBC set to E
a

R
(�1) =

✏
a

0
for a = 1, 2, 3, and the Gauss’s laws G

a
|�i

(KS)
= 0

with G
a defined in Eq. (9), fully fixes the values of EL

and ER at all sites on the one-dimensional lattice in the
physical Hilbert space:

E
a

L
(x) = ✏

a

0
+

xX

y=0

⇢
a(y) = E

a

R
(x), (27)

with ⇢
a defined in Eq. (7). Consequently, the electric-

field Hamiltonian H
(KS)

E
becomes8

H
(F)

E
=

g
2
a

2

N2X

x=0

3X

a=1

"
✏
a

0
+

xX

y=0

 
†0

(y)T a
 

0(y)

#2

, (28)

where N2 = N � 2 for OBC as noted after Eq. (3). The
consequence of applying Gauss’s laws to arrive at Eq. (28)
is that the local electric-field Hamiltonian in the origi-
nal formulation is replaced with arbitrary-range fermion-
fermion interactions in the fermionic Hamiltonian.

Finally, the mass term in the new gauge remains the
same, as is expected from gauge invariance:

H
(F)

M
= m

N3X

x=0

(�1)x
 

†0
(x) 0(x), (29)

where N3 = N � 1 as noted after Eq. (6). Note that
upon expanding Eq. (28), terms with a fermionic struc-
ture similar to the mass term arise, e↵ectively modifying
the mass in the new representation.

The procedure outlined above establishes that any ex-
plicit dependence on the gauge link and electric fields are
eliminated in the KS Hamiltonian with OBC, giving rise
to a purely fermionic Hamiltonian whose terms are speci-
fied in Eqs. (24), (28), and (29), and which is identical to
the original KS Hamiltonian only in the physical Hilbert
space. As a result, any state in this formulation can
be written in terms of a complete fermionic occupation-
number basis,

|�i
(KS,F)

=
N�1Y

x=0

|f1, f2i
(x)

, (30)

where as before, f1 and f2 refer to the occupation number
of the two components of the (anti)matter field,  1 and
 2, respectively, each taking values 0 or 1.

8 Note that  †(x) (x) =  †0
(x) 0(x).

C. Purely bosonic formulation

Gauge transformation, along with the imposition of the
local Gauss’s laws with OBC, led to the elimination of the
gauge DOF in the previous section. Unfortunately, this
procedure can obtain a purely fermionic theory only in
1+1 D, as in higher dimensions the number of constraints
at each lattice site is not su�cient to eliminate the gauge
DOF in all spatial directions. One could reversely con-
sider eliminating the fermionic DOF with the use of the
Gauss’s laws, as proposed in Ref. [93], to obtain a fully
bosonic theory. This protocol works in all dimensions,
but in the case of SU(2N ) theories, requires enlarging
the gauge group to U(2N ) to accommodate a su�cient
number of constraints needed to eliminate the fermions.9

One further needs to keep track of the fermionic statistics
by encoding in the purely bosonic interactions, the non-
trivial signs associated with the anti-commuting nature
of the fermions [94]. The extended theory can be shown
to be equivalent to the original theory for all physical pur-
poses, as long as the cuto↵ on the new gauge DOF of the
extended symmetry is set su�ciently high, see Sec. III C.
In the following, the bosonized form of the SU(2) LGT
in 1+1 D is derived, following the procedure outlined in
Ref. [93] for general dimensions.

Consider the Gauss’s laws in the KS formulation of
the SU(2) LGT in 1+1 D, given in Eq. (18). Although
there exist three Gauss’s laws at each site, only the
Gauss’s law corresponding to the a = 3 component of
Gauss’s law operator in Eq. (9) provides a diagonal re-
lation in the angular momentum/fermionic basis. In
other words, two of the Gauss’s laws mix basis states
with di↵erent quantum numbers, and only one of the
Gauss’s laws leads to an algebraic relation among the
gauge and fermionic DOF. Explicitly, for a basis state
|JR, mRi

(x�1)
⌦ |f1, f2i

(x)
⌦ |JL, mLi

(x) at site x, this
relation reads

mL(x) + mR(x � 1) = �
1

2
(f1(x) � f2(x)). (31)

However, in order to fully express the {f1, f2} quantum
numbers at each site in terms of the {JR, mR, JL, mL}

quantum numbers surrounding the site, at least one more
independent relation is needed. Such a relation can be
obtained by adding an extra U(1) symmetry to enlarge
the gauge group, e↵ectively modifying each link on the
lattice by a U(1) link U0, i.e., U(x) ! U(x) ⇥ U0(x),
where U is the SU(2) link. This introduces a staggered

9 As shown in Ref. [93] for the case of the SU(2N + 1) theory,
the introduction of an auxiliary Z2 gauge field on each link on
the lattice is su�cient to eliminate the fermions, without the
need to enlarge the group to U(2N +1). This enhancement also
takes care of the fermionic statistics when fermions are replaced
with the hardcore bosons and are subsequently eliminated. Since
the focus of this work is the SU(2) theory, this case will not be
analyzed here further.



In the example of the two-site theory in the SU(2) model, we found out that 
there are 4 physical basis states in the  sector with open boundary 
conditions with  and with up to  angular momentum. How 
many physical basis states are there in the fully fermionic formulation? Do 
you see a mismatch? How do you explain it? Convince yourself that the 
two theories have exactly the same spectrum.

ν = 1
Jin = 0 J = 1/2



IN GENERAL, MANY HAMILTONIAN FORMULATIONS OF GAUGE THEORIES EXIST…WHICH ONE TO PICK?
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In the group-element basis, only  and  are diagonal.HI HB
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+H
(KS)
B

So far, we only considered the electric or irreducible representation (irrep) basis in which only  is diagonal!HE

In the magnetic or dual basis  is diagonal.HB

The imposition of Gauss’s law is simplest in the electric-field basis. On the other hand, toward the continuum 
limit ( ), many electric field excitations need to be kept and a large Hilbert space may need to be 
considered.

ag → 0

Recall    while   .HE ∝ g2 HB ∝ 1/g2

4

The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
(KS) = H

(KS)

I
+ H

(KS)

E
+ H

(KS)

M
. (1)

Here, H
(KS)

I
denotes interactions among the fermionic

and gauge DOF6

H
(KS)

I
=

1

2a

N1X

x=0

h
 

†(x)Û(x) (x + 1) + h.c.
i
, (2)

where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
�
 

1

 
2

�
.

The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.

H
(KS)

E
corresponds to the energy stored in the electric

field,

H
(KS)

E
=

g
2
a

2

N2X

x=0

Ê(x)2. (3)

Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘

Ê2

L
= Ê2

R
. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa

L
, Ê

b

L
] = �i✏

abc
Ê

c

L
,

[Êa

R
, Ê

b

R
] = i✏

abc
Ê

c

R
,

[Êa

L
, Ê

b

R
] = 0, (4)

where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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The LSH formulation constructs a complete set of prop-
erly normalized gauge-invariant operators and expresses
the Hamiltonian in terms of this complete basis [95]. As
will be shown, the Hilbert space of the KS theory in the
angular-momentum basis after imposing the Abelian and
non-Abelian Gauss’s laws, and for a given cuto↵ on the
gauge DOF, is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic represen-
tation (with OBC) is enjoyed by the LSH formulation
as well but without associated redundancies, and with
the prospects of straightforward applications to higher
dimensions.

Outline of the paper. While all the di↵erent formu-
lations studied here have been introduced, and to some
extent implemented, in literature, the conclusions briefly
stated above and those that will follow, are new and have
resulted from a thorough comparative analysis that is
conducted in this work. In particular, an analysis of the
size of the full and physical Hilbert spaces as a function
of the system’s size and, when applicable, the cuto↵ on
the gauge DOF is presented in Sec. III for all the for-
mulations of SU(2) LGT in 1+1 D enumerated above
(and reviewed in Sec. II). Here, empirical relations are
obtained from a numerical study with small lattice sizes.
These results lead to a discussion of the time complexity
of exact classical Hamiltonian-simulation algorithms in
Sec. V. Section VI contains an analysis of the impact of
the cuto↵ on the spectrum and dynamics of the theory.
A detailed discussion of the global symmetries of SU(2)
LGT in 1+1 D is presented in Sec. IV, which allows the
decomposition of the physical Hilbert space of the theory
to even smaller decoupled sectors, hence simplifying the
computation. While not a focus of this work, a brief com-
parative study of the KS SU(2) theory in 1+1 D with a
QLM formulation [82] is presented in Appendix A. Given
the extent of discussions, and the spread of observations
and conclusions made throughout this paper, Sec. VII
will summarize the main points of the study more crisply,
along with presenting an outlook of this work.

In summary, the results presented here should o↵er a
clear path to the practitioner of Hamiltonian-simulation
techniques to evaluate the pros and cons of a given for-
mulation of the SU(2) LGT in 1+1 D in connection to
the simulation algorithm used. A similar study for the
2+1-dimensional theory can shed light on the validity
of the conclusions made for higher-dimensional cases.5

Moreover, the conclusions of this work will guide future
studies of non-Abelian LGTs in the context of quantum
simulation.

5 See a recent work on the e�cient Hamiltonian simulation of the
U(1) LGT in 2+1 D in Ref. [60].

II. AN OVERVIEW OF THE
KOGUT-SUSSKIND SU(2) LGT AND ITS

VARIOUS FORMULATIONS

Within the Hamiltonian formulation of LGTs introduced
by Kogut and Susskind, the temporal direction is contin-
uous while the spatial direction is discretized. Each site
along the spatial direction is split into two staggered sites,
as shown in Fig. 1, such that matter and anti-matter
fields occupy even and odd sites, respectively. The num-
ber of sites along this direction is denoted by N and is
called the lattice size throughout. The spacing between
adjacent sites after staggering is denoted as a. For the
SU(2) LGT in 1+1 D, the KS Hamiltonian can be written
as:

H
(KS) = H

(KS)

I
+ H

(KS)

E
+ H

(KS)

M
. (1)

Here, H
(KS)

I
denotes interactions among the fermionic

and gauge DOF6

H
(KS)

I
=

1

2a

N1X

x=0

h
 

†(x)Û(x) (x + 1) + h.c.
i
, (2)

where N1 = N � 1 for PBC and N1 = N � 2 for OBC.
The fermion field  is in the fundamental representation

of SU(2) and consists of two components, i.e.,  =
�
 

1

 
2

�
.

The gauge link Û(x) is a 2 ⇥ 2 unitary matrix operator
which emanates from site x along the spatial direction
and ends at point x + 1, as shown in Fig. 1. A tempo-
ral gauge is chosen which sets the gauge link along the
temporal direction equal to unity.

H
(KS)

E
corresponds to the energy stored in the electric

field,

H
(KS)

E
=

g
2
a

2

N2X

x=0

Ê(x)2. (3)

Here, N2 = N � 1 for PBC, N2 = N � 2 for OBC, and
g is a coupling. Further, Ê2 = (Ê1)2 + (Ê2)2 + (Ê3)2 ⌘

Ê2

L
= Ê2

R
. ÊL and ÊR are the left and the right electric-

field operators, respectively, as shown in Fig. 1. These
satisfy the SU(2) Lie algebra at each site,

[Êa

L
, Ê

b

L
] = �i✏

abc
Ê

c

L
,

[Êa

R
, Ê

b

R
] = i✏

abc
Ê

c

R
,

[Êa

L
, Ê

b

R
] = 0, (4)

where ✏abc is the Levi-Civita tensor and the spatial de-
pendence of the fields is suppressed in these relations.
Further, the electric fields on di↵erent sites commute.

6 Here and throughout, the position argument of the functions
and the superscript of state vectors are assumed to be an index.
A multiplication by the lattice spacing a converts these to the
absolute position.
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OUTLINE OF PART I: 
HAMILTONIAN FORMULATION OF LATTICE GAUGE THEORIES



EXAMPLES OF CLASSICAL-COMPUTING METHODS

i) Analytical methods such as strong-coupling expansion 
See e.g., Bank et al, PRD 13, 1043 (1976). It has limited scope but can give intuitive insight. 

ii) Exact numerical methods, i.e., exact diagonalization (ED) 
It is ideal but costly and often unpractical even for small LGT problems. 

iii) Approximate numerical methods such as tensor-networks (TN) 
Very efficient for certain quantities such as low-energy spectrum, but limited in scope when entanglement 
grows beyond area law, such as in real-time problems. Limited studies in higher dimensions. See e.g. this 
Ph.D. thesis by S. Kuhn for an overview of TN methods in high-energy physics.

STAY TUNED TO THE NEXT PART FOR 
QUANTUM-COMPUTING METHODS! 



Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information
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QUESTIONS?


