OUTLINE OF PART II:
QUANTUM SIMULATION AND QUANTUM-COMPUTING BASICS

i) Quantum-simulation steps: A brief introduction
ii) Various modes of quantum simulation: Digital, analog, hybrid
i) Digital-quantum-simulations basics:

© qubits and gates

© Encoding fermions and bosons onto qubits

o State-preparation strategies

~ Time evolution (via product formulas)

© Measurement strategies and observables




ON A QUANTUM COMPUTING MACHINE, WE CAN IN PRINCIPLE:

Prepare the
initial state

Nontrivial specially in
strongly-interacting
theories like quantum
chromodynamics (QCD).
> Thermal states possible.



ON A QUANTUM COMPUTING MACHINE, WE CAN IN PRINCIPLE:

Evolve with
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Depends on the mode of
the simulator.

The choice of formulation
and basis states impacts
the implementation.



ON A QUANTUM COMPUTING MACHINE, WE CAN IN PRINCIPLE:

Measure
observables

> May require non-trivial
circuits given the
observable

~ Exponentially large
number of amplitudes to
be measured. Efficient but
approximate protocols are
being developed.



CAN WE COMBINE THIS WITH CLASSICAL COMPUTING?

QUANTUM SUBPROCESS
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THIS LECTURE CONCERNS PRIMARILY TIME EVOLUTION.
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DIFFERENT APPROACHES TO QUANTUM SIMULATION

Analog

Evolve with

e—th




DIFFERENT APPROACHES TO QUANTUM SIMULATION

Analog
. Degrees of freedom in the
Evolve with L simulator: fermions, bosons,
e—th — spins (of various dimensions), etc.




DIFFERENT APPROACHES TO QUANTUM SIMULATION

Analog
Evolve with
—1Ht
€
The engineered simulator Some of the leading analog simulators are: cold-atoms in optical lattices,
Hamiltonian that mimics the Rydberg atoms with optical tweezers, trapped ions, superconducting
Hamiltonian of target system. circuits (including when coupled to photonics systems), etc.

Eugene Demler lectures,
Harvard University.

CREDIT: ANDREW SHAW, UNIVERSITY OF MARYLAND




DIFFERENT APPROACHES TO QUANTUM SIMULATION

Digital




DIFFERENT APPROACHES TO QUANTUM SIMULATION

Only qubits as DOF. Only
universal single- and two-
qubit operations allowed.

........

Digital




DIFFERENT APPROACHES TO QUANTUM SIMULATION

Example of a digital scheme: Digital

—1H;dt

H=Hi+Hy+ -

Each of these can now potentially
be decomposed to a universal S S
set of single and two-qubit gates.

62—-i1¥é35i?:
t=Nrot

Trotter-Suzuki expansion:
o—i(Hi+Ha+ )t _ [6—2H15t6—1H25t ] / + O((6)?)

Other digitalization schemes also exist.

Andrew Childs lectures on Quantum
Simulation, University of Maryland.

...other methods exist too.




Some classical algorithms approximate exponential of a matrix using a Taylor
expansion. Would a Taylor expansion of unitary time-evolution operator be
straightforward to perform on a digital quantum computer?




DIFFERENT APPROACHES TO QUANTUM SIMULATION

Analog
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A textbook of extreme popularity:
Nielson and Chuang, Quantum Computation
and Quantum Information.

But some of the newer notions not there.
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(Examples of ) quantum logic gates

Any unitary on a finite number of qubits can be
approximated efficiently by a finite sequence of a

Operator Gate(s) Matrix universal gate set. [solovay (1995) and Kitaev (1997).
Pauli-X (X) X[ [(1) é]
| Two common choices for these gate sets are:
Pauli-Y (Y) 1Y e - o - 10
o RY(O)=e"" R(O) =" R(O) =" Py = <O ei¢>,CNOT
Pauli-Z (Z) L [3 —(1)} « H, S, T, CNOT
] | 1 1 1
Hadamard (H) B 5] Example of) % —
Phase (S, P) —1S - [(1) 2] a quantum g1 — H — H
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7/8 (T) —T o o] g 0
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Fermions are finite-dimensional locally but obey Fermi statistics. Mapping
a fermionic Hamiltonian into a qubit Hamiltonian can be done:

~ using one qubit per fermion but at the cost of non-local qubit
interactions using Jordan-Wigner transformation:

— AP T — z
= ([1e)e w' = (1)
j<i j<i
~ using more than one qubit per fermion to assist retaining any existing

locality in the original fermionic Hamiltonian (e.g. Verstrate-Cirac,
compact, superfast encodings).

FERMIONS

Bosons are infinite-dimensional locally but obey Bose statistics. Mapping
a bosonic Hamiltonian into a qubit Hamiltonian can be done, e.g.,

© using binary encoding, requiring = log(A + 1) qubits per boson,
where A is the cutoff on boson occupation per site:

n—1
C o o |
N,|p) = plp) where |p) = & |p;) with p = Z 2p;
j=0

© using unary encoding, requiring A qubits per boson.
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EXAMPLES OF (GROUND-)STATE PREPARATION METHODS

Adiabatic state preparation: Prepare the ground state of a simple
Hamiltonian, then adiabatically turn the Hamiltonian to that of the
target Hamiltonian. Requires a non-closing energy gap.

Imaginary time evolution: Start with an easily prepared state and
evolve with imaginary time operator to settle in the ground state.
Require implementing non-unitary operator which can be costly.

Variational quantum eigensolver (VQE): Use the variational
principle of quantum mechanic and classical pre-processing to
minimize the energy of a non-trivial ansatz wavefunction generated
by a quantum circuit. The optimized circuit corresponding to the
minimum energy generates an approximation to ground-state
wavefunction. Can fail if stuck in local minima manifolds or
manifolds with exponentially small gradients in qubit number.

Classically computed states: Use classical computing such as
Monte Carlo or Tensor Networks to learn the state or features of
the state when possible, for a direct implementation of the state as
a quantum circuit, or as close enough state to the ground state as
a starting point of the above algorithms so to achieve more
efficient implementations.
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New Iteration

Ansatz
manifold

ON))

Target state
.
| Q> Image credit:
Navya Gupta (UMD)
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r[ (IMPROVED) THEORY OF PRODUCT FORMULAS }

Consider the Hamiltonian

First-order product formula

Vl (t) — e—itHle—itHg .

is bounded by:

—itHrp

r
. +2
—itH
i) — < O3 [2 ”
1=1" ~g=e¢+1
Second-order formula
Vg(t) _ (e—itHr/2 . e—itHg/Qe—itH1/2)(e—itH1/28—itH2/2 . e—z'th/2)
is bounded by:
t3 I T r t3 I T
—itH
IVa(®) —e "l < 55> [ Z Hy, [Z H]H” H + ﬂz [H [H )
=1 k=1+1 71=1+1 Jj=i+

A general bound also exist, see:

Childs, Su, Tran, Wiebe, Zhu, Phys. Rev. X 11, 011020 (2021).




—

OUTLINE OF PART II:

QUANTUM SIMULATION AND QUANTUM-COMPUTING BASICS

i) Quantum-simulation steps: A brief introduction
ii) Various modes of quantum simulation: Digital, analog, hybrid
i) Digital-quantum-simulations basics:

© qubits and gates

© Encoding fermions and bosons onto qubits

o State-preparation strategies

> Time evolution (via product formulas)

© Measurement strategies and observables




EXAMPLES OF ACCESSIBLE OBSERVABLES

One can measure the following quantities to learn properties of the outcome state. Some of these
can be measured directly in the computational basis, but others need a change of basis or other

dedicated quantum circuits to access them.

© Energy and momentum, particle and charge (both locally
and globally)

~ Various correlation functions (both static and dynamical)

> Asymptotic S-matrix elements (assuming asymptotic final
states are reached and overlap with a specified final state
is desired)

» Entanglement measures such as entanglement spectrum
(which can signal thermalization or lack of) using efficient
ansatze.

Fidelities and full state tomography are hard as they demand
exponentially large number of measurements.

Connor Powers (UMD)
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TO BE CONTINUED...
QUESTIONS?




