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Basic Introduction to Resurgence

1. I Stokes Phenomenon and Trans-series

I Borel Summation basics

I Recovering Non-perturbative Connection Formulas

2. I Nonlinear Stokes Phenomenon

I Parametric Resurgence & Phase Transitions

I Gross-Witten-Wadia unitary matrix model

3. I QFT: Euler-Heisenberg and Effective Field Theory

I Resurgence analysis

I Inhomogeneous fields

4. I Resurgent Extrapolation

I The Physics of Padé Approximation

I Probing the Borel Plane Numerically



Generic Bender-Wu-Lipatov "Factorial/Power" Large Order
Behavior of Perturbation Theory

• consider a series that appears to be asymptotic, with generic
leading large order behavior of the coefficients

cn ∼ S
Γ(an+ b)

An

(
1 +

c

n
+ . . .

)
+ . . . , n→∞

• a → appropriate expansion variable

• A → location of the leading Borel singularity

• b → nature of the leading Borel singularity

• the Stokes constant S → normalization

• c subleading power-law correction

There are systematic ways to probe the "data" (i.e. coefficients)
to extract these important parameters ...



Richardson Acceleration (very useful for studying large-order growth)

• Suppose some series coefficients an have large-order
behavior

an ∼ b0 +
b1
n

+
b2
n2

+
b3
n3

+ . . .

• basic idea (cf "improved actions" in lattice theory)

(n+1) an+1−nan ∼ b0+b2

(
1

n+ 1
− 1

n

)
+O

(
1

n3

)
∼ b0−

b2
n2

+O

(
1

n3

)

The pattern continues. At each order, multiply the an+k row by
(n+ k)k and form the following combination:

An :=
N∑
k=0

(−1)k+N (n+ k)N an+k

k!(N − k)!

Then

An ∼ b0 +O

(
1

nN+1

)
N is called the “order” of the Richardson acceleration.
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Richardson Acceleration (very useful for studying large-order growth)

• expansion coefficients: anomalous dimension in φ3 theory in 6
dimensions



Richardson Acceleration (very useful for studying large-order growth)

• what is this number?
0.207553748710297351670134124720668682...



Resurgent form of large order growth

Exercise 4.1: In resurgence it is convenient to re-write a
factorial large order growth expression, with power-law
corrections, as an expansion in "diminishing" factorials:

bn ∼ Γ(n+ a)

∞∑
m=0

dm
nm

, n→ +∞

can be written as

bn ∼
∞∑
k=0

ck Γ(n+ a− k) , n→ +∞

where the coefficients ck are expressed in terms of the dm via
the Stirling numbers of the first kind (hint: dlmf.26.8.ii):

ck =

k∑
l=0

S(1)(k, l)

l∑
j=0

(−a)l
(
j − l
j

)
dl−j

Verify this with some examples.

https://dlmf.nist.gov/26.8.ii


Large Order/Low Order Resurgence Relations: Airy function

Exercise 4.2: Given the explicit formula for cn in terms of
gamma functions, it is easy to derive the large-order behavior
analytically. But in the absence of an explicit formula this can
still be done numerically. Try this for the Airy function:

1. Generate the first 100 cn coefficients, and use ratio tests
and Richardson acceleration to deduce numerically the
leading large order asymptotics shown on the previous slide.

2. Extract numerically the first two subleading power-law
corrections to the large order growth.



Numerical Exploration of Large Order Growth

Exercise 4.3: The perturbative expansion C(x) ∼
∑∞

n=1 cn x
n

determines the anomalous dimension in the Hopf algebraic
renormalization of 4 dimensional Yukawa theory. The
coefficients cn are positive integers, enumerating combinatorial
objects known as "connected chord diagrams". This sequence is
listed on the OEIS as https://oeis.org/A000699.

1. Generate 100 terms using the recursion formula listed on
the OEIS and then analyze them using Richardson
acceleration to show that

cn ∼
2
n+1

2 Γ
(
n + 1

2

)
e
√

2π

1−
5
2

2
(
n− 1

2

) − 43
8

22
(
n− 1

2

) (
n− 3

2

) + O

(
1

n3

)

2. C(x) satisfies a nonlinear ODE: C(x)
(
1− 2x d

dx

)
C(x) = x− C(x).

Show that the first non-perturbative correction term Cnp(x)
satisfies a linear ODE d

dx ln (C(x)Cnp(x)/x) = 1
2xC(x) .

Therefore Cnp(x) is immediately solved in terms of C(x).

3. Hence expand Cnp(x) at small x and compare with part 1.

https://oeis.org/A000699


Darboux Theorem

• Darboux theorem

f(t) ∼ φ(t)

(
1− t

t0

)−β
+ ψ(t) , t→ t0

• large-order growth of Taylor coefficients of f(t) at origin:

bn ∼

(
n+ β − 1

n

)
tn0

[
φ(t0)− (β − 1) t0 φ

′(t0)

(n+ β − 1)
+

(β − 1)(β − 2) t20 φ
′′(t0)

2!(n+ β − 1)(n+ β − 2)
− . . .

]
• log branch cut ⇒

bn ∼
1

tn0
· 1

n

[
φ(t0)− t0 φ

′(t0)

(n− 1)
+

t20 φ
′′(t0)

(n− 1)(n− 2)
− . . .

]
• in Borel plane ⇒ large-order/low-order resurgence
relations

• large-order growth encodes details of Borel singularities



Darboux Theorem

Exercise 4.4:

1. investigate Darboux’s theorem numerically for the
hypergeometric function, which has a branch point at t = 1

2F1 (a, b, c; t) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(n+ a)Γ(n+ b)

Γ(n+ c)n!
tn

Experiment with various choices for the parameters a, b, c.

2. Compare with the exact expansion of the hypergeometric
function about t = 1 (see dlmf.15.8)

3. What happens if a+ b− c = integer?

https://dlmf.nist.gov/15.8


Effective Summation Methods: A Basic Introduction

• conclusion: it can make a BIG difference how we sum

• processing the same perturbative input data in different ways
can lead to vastly different levels of precision

• the basic toolkit: ratio tests, series acceleration methods (e.g.
Richardson), Padé approximants, orthogonal polynomials, Szegö
asymptotics, continued fractions, conformal maps,
uniformization maps, ...

• the good news: many of these are actually very easy to
implement → a simple set of exploratory procedures

• the quality of the extrapolation of an asymptotic series is
governed by the quality of the analytic continuation of the Borel
transform

f(x) =

∫ ∞
0

dt e−x tB[f ](t)

• lesson 1: it is better to work in the Borel plane



Padé-Borel Method

• given a FINITE number of terms of an asymptotic series

2N∑
n=0

cn
xn+1

=

∫ ∞
0

dt e−xt
2N∑
n=0

cn
n!
tn =

∫ ∞
0

dt e−xt B2N [f ](t)

• recall that the singularities of B2N [f ](t) determine the
non-perturbative physics

• but B2N [f ](t) is a polynomial !

• as N →∞, B2N [f ](t) may develop singularities

• Padé = simple & powerful extrapolation method

• Padé is an excellent “low resolution” detector of singularity
structures: “Padé-Borel” method
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Basics of Padé Approximation

• simple and efficient method to analytically continue a series
beyond its radius of convergence

• rational approximation to function F2N (t) =
∑2N

n cn t
n

P[L,M ] {F2N} (t) =
RL(t)

SM (t)
=

2N∑
n

cn t
n +O

(
t2N+1

)
• completely algorithmic and algebraic (“built-in”)

• near-diagonal Padé: polynomials RN (t) & SN (t) satisfy the
same 3-term recursion relation

• hence a deep connection to orthogonal polynomials, and their
asymptotics (Szegö ...)

RL(t)

SM (t)
− RL+1(t)

SM+1(t)
= (#)

tM+L+1

RL(t)
SM+1(t)
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Basics of Padé Approximation

1. at very high orders Padé can be numerically unstable: a
ratio of polynomials with very large coefficients. It is often
more stable to convert to an ‘equivalent’ partial fraction

2N∑
n

cnt
n ↔

∑N
n an t

n∑N
n dn t

n
↔

N∑
n

rn
t− tn

2. truncated series → continued fraction, which often
converges in all of C, minus a number of poles/cuts

1+c1 t+· · ·+c2N t
2N+O

(
t2N+1

)
=

1

1 + h1 t

1+
h2 t

1+
h3 t

1
...+h2N t

+O
(
t2N+1

)

3. near-diagonal Padé are related to continued fractions



Basics of Padé Approximation

• a Padé approximant only has pole singularities. But for
practical applications we are often interested in branch point
singularities, e.g. Borel plane, critical exponents, ...

• branch point → accumulation point of a line of poles
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Basics of Padé Approximation

• symmetry of singularities is important for Padé

• in applications: complex conjugate pair of singularities
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Figure: Padé poles of 1/(1− t+ t2)1/5

• poles on the real t axis !?



Basics of Padé Approximation

• in applications: complex conjugate pair of singularities
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Figure: 1/t of Padé poles of 1/(1− t+ t2)1/5

• the point at infinity is also a branch point



The Physics of Padé Approximation

• Stahl (1997): in the limit N →∞ Padé produces the
"minimal capacitor”

• poles = charges; in the limit they form flexible "wires", fixed
at the actual singularities

• "wires" and junction points deform to minimize the
capacitance
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Figure: 1/t of Padé poles of 1/(1− t+ t2)1/5



The Physics of Padé Approximation

• amazing sensitivity to exponent 1
2

inverse Padé poles of
1

(1− t+ t2)
1
2

&
1

(1− t+ t2)
1
2
−10−6

0.2 0.4 0.6 0.8 1.0
Re[t]

-1.0

-0.5

0.0

0.5

1.0
Im[t]

• this sensitivity can be used to our advantage



The Physics of Padé Approximants

• Padé solves a 2d electrostatics problem

• it effectively generates its own conformal map: cuts are
deformable wires connecting fixed singularities, in such a way
that the capacitance is minimized
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• use physical intuition to probe the true singularities



The Physics of Padé Approximation

• collinear singularities occur frequently (e.g. multi-instanton
Borel singularities): e.g. (1 + t)−1/3 + log(t+ 2)
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• insert a "probe charge":
(

3
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i
2 + t

)−1/7

• wires deform while genuine singularities remain fixed
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Basics of Padé Approximation

Exercise 4.5: Explore the Padé pole structures for various
functions with interesting singularities.



The Physics of Padé Approximation

• dramatic improvement: conformal map, then Padé

• even a conformal map based on leading singularities makes a
big difference: (Costin, GD: 2003.07451, 2108.01145)

• 2 dim electrostatics ↔ conformal mapping

• Padé is "trying to make a conformal map"

https://arxiv.org/abs/2003.07451
https://arxiv.org/abs/2108.01145


Problems with Padé Approximation

• Padé approximants are not very accurate near a branch point
and branch cut, because of accumulating poles

• Padé obscures repeated repeated singularities along the same
line; but this is exactly what happens for resurgent Borel
transforms in nonlinear problems

• Padé generically produces spurious poles and zeros ("Froissart
doublets"): ultimately due to lack of a true Hilbert space for the
complex orthogonal polynomials

• conformal & uniformizing maps can help to overcome these
problems



Conformal Mapping

• conformal map of cut domains: t→ z

Re[t]

Im[t]

Re[t]

Im[t]

Re[t]

Im[t]

Re[z]

Im[z]



Padé-Conformal-Borel: 10-term approximation to (1 + p)−1/3



Padé-Conformal-Borel: 10-term approximation to (1 + p)−1/3

• precision of the Borel transform along the cut
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Re[B(p)]

blue: exact and Padé-Conformal-Borel approx. (10 terms)
red: Padé-Borel approx. (10 terms)
black-dashed: Conformal-Borel approx. (10 terms)

• Padé-Conformal-Borel is generically much more accurate near
the singularity and along the cut



Padé-Conformal-Borel O.Costin & GD: 2003.07451, 2108.01145

• the improved precision can be quantified

cn ∼ Γ(n+ α)⇒ frac. error ∼ e−(N x)1/2
x-Padé

frac. error ∼ e−(N2x)1/3
Padé-Borel

frac. error ∼ e−(N2x)1/3
Taylor-Conformal-Borel

frac. error ∼ e−(N4x)1/5
Padé-Conformal-Borel

• for a chosen precision (e.g., 1% accuracy), with exactly the
same input data we can extrapolate from an N -term expansion
at x = +∞ down to xmin → 0+, scaling with N as:

extrapolation xmin scaling
truncated series xmin ∼ N

x Padé xmin ∼ N−1

Padé-Borel xmin ∼ N−2

Conformal-Borel xmin ∼ N−2

Padé-Conformal-Borel xmin ∼ N−4

https://arxiv.org/abs/2003.07451
https://arxiv.org/abs/2108.01145


Perturbative Large x Expansion is an Asymptotic Series

�=�� �=�� �=�� �=�� �=��

5 10 15 20
x

-2.0

-1.5

-1.0

-0.5

0.5
y(x)

• typical asymptotic series: larger N gets worse at small x



More is Better

xP

PB

TCB

PCB

xT

5 10 15 20
N

-60

-40

-20

0

20

40

60
Ln[error]

• log of the fractional error for different approximations of
x−

2
3 ex Γ

(
2
3 , x
)
at x = 1 as a function of truncation order



Padé-Conformal-Borel

• another advantage of the conformal mapping is that it resolves
repeated resurgent Borel singularities

• recall that in a nonlinear problem a Borel singularity is
expected to be repeated in (certain) integer multiples

• these can be obscured by Padé’s attempt to represent a cut as
an accumulation of poles



Conformal Mapping of Borel Plane

• map the doubly-cut Borel p plane to the unit disc

z =
p

1 +
√

1 + p2
←→ p =

2 z

1− z2



Borel plane singularities: Padé-Borel transform
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• before conformal map: resurgence is hidden



After Conformal Map: Resurgent Poles in z Plane
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• Conformal map reveals resurgent structure in Borel plane:
Borel singularities separated into their resurgent patterns



Optimal Method: Uniformizing Map

• an even better procedure: replace the conformal map with a
uniformizing map

• Optimality Theorem (O. Costin & GD, 2009.01962): given information
about the Riemann surface of the Borel transform (known in
many cases for resurgent functions), the optimal extrapolation
procedure is to use a uniformizing map.

• super-precise exploratory tool

• singularity elimination: exponential enhancement in the
vicinity of the singularities

• application: sensitive determination of the location and nature
of a singularity, and its ‘Stokes constant’

• permits extrapolation onto higher Riemann sheets

https://arxiv.org/abs/2009.01962


Ultra-Precise Probing the Neighborhood of an Isolated Singularity

• exponential distortion near a uniformized singularity

• 2F1(1
6 ,

5
6 , 1;ω) with elliptic nome function (20 terms)

z = exp

[
−π K(1− ω)

K(ω)

]
←→ ω = ϕ(z) = 16z−128z2+704z3+. . .

• uniformizing:
ω ≈ 1− 10−40 ←→ z ≈ 0.9

• conformal:
ω ≈ 1−10−40 ←→ z ≈ 1−10−20

ω ≈ 1− 10−3 ←→ z ≈ 0.9
0.999999 0.999999 1.000000 1.000000 1.000000

ω

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Approx[ω]/Exact[ω]

• practical applications: Stokes constant and exponent



The Physics of Padé Approximation

• "Singularity elimination" method (O. Costin & GD, 2009.01962)

• extreme sensitivity to the location and exponent of the
singularity

• a fractional derivative (a linear transform) can adjust the
exponent to whatever you want

• change to the exponent you suspect: then make a conformal
or uniformizing map

• if you were correct, the singularity is removed

• now you can expand there, and move on to another
singularity

https://arxiv.org/abs/2009.01962


Comparing Resummation methods

Exercise 4.6: Generate a finite amount (e.g. 50 orders) of
perturbative data by expanding the function x−

1
3 ex Γ

(
1
3 , x
)
as

x→ +∞, and use this as input for resummation using the
following methods:
(i) optimal truncation; (ii) Padé in the x plane; (iii) Padé in the
Borel plane; (iv) Padé in the Borel plane after a conformal map
into the unit disc; (v) Padé in the Borel plane after a
uniformizing map.
Explore how things change as you change the amount of
perturbative data.
Comment on the similarities and differences between the
resulting reconstructions of the function.



Comparing Extrapolation Methods

Exercise 4.7: Generate a finite amount (e.g. 20 orders) of
perturbative data by expanding the Borel transform B(p) of the
Airy function: B(p) = 2F1

(
1
6 ,

5
6 , 1;−p

)
, and use this as input

for extrapolation using the following methods. Probe specifically
the vicinity of the branch point at p = −1 and cut p ∈ (−∞,−1]

1. Padé

2. Padé after a conformal map into the unit disc

p =
4z

(1− z)2
←→ z =

√
1 + p− 1√
1 + p+ 1

3. Padé after a uniformizing map via the elliptic nome
function

p = −ϕ(z) = −16z+128z2−704z3+...←→ z = exp

[
−π K(1 + p)

K(−p)

]
where ϕ(z) = InverseEllipticNomeQ[z] in Mathematica.



Exploring Different Riemann Sheets

• uniformization of Ĉ \ {−1, 1,∞}: modular λ function

w(z) = −1 + 2λ

(
i

(
1 + i z

1− i z

))

• interactive Mathematica file for uniformization

• physics : crossing Riemann sheets near critical points

https://people.math.osu.edu/costin.9/classes.html


Uniformizing Lee-Yang Zeros (Basar, GD, Yin 2112.14269)

• chiral random matrix model for QCD (Halasz et al 1998 ...)

• 3d Ising universality class

effective potential: Ω = −hM +
r

2
M2 +

1

4
M4

• near critical point: scaling w := hr−βδ, z := Mr−β

• mean field (β = 1
2 , δ = 3): ∂Ω

∂M = 0⇒ w = z + z3

• three sheets: z1(w) = high T sheet; z2(w) = low T sheet;
[z3(w) = −z2(−w)]

https://arxiv.org/abs/2112.14269


High T Equation of State: Extrapolation on First Riemann Sheet
• high T expansion: z1(w) = w − w3 + 3w5 − 12w7 + . . .

• uniformization map: λ(τ)= modular lambda function

w(τ) = i(−1 + 2λ(τ)) ; τ(ζ) = i

(
1 + i ζ

1− i ζ

)
high T : w plane high T : τ plane

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

high T : ζ plane

• extrapolation based on 10
terms of the high T expansion

(Basar, GD, Yin 2112.14269)

z1 (exact)

Uniformizing (10 terms)

Taylor series (20 terms)

Padé (20 terms)
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https://arxiv.org/abs/2112.14269


Equation of State: Continuation to Low Temperature Sheet
low T : w plane low T : τ plane
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• traverse between sheets by moving in unit ζ disk
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Equation of State: Continuation to Low T Riemann Sheet

• Padé in ζ plane → reconstruct function on low T sheet
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Application: Heisenberg-Euler Effective Action

• the first (non-perturbative) QFT computation

• paradigm of “effective field theory” (non-linear)

• compute: ln det (D/+m) , D/ := ∂/+ ieA/

• E field: Im
[
L
(
α, eE

m2

)]
∼ αE2

2π2 e
−πm2/(eE)

• generating function for multi-leg one-loop amplitudes



Extrapolating Heisenberg-Euler Florio 1911.03489, GD/Harris 2101.10409

L(1)
(
eB

m2

)
= −

B2

2

∫ ∞
0

dt

t2

(
coth t−

1

t
−
t

3

)
e
−m2t/(eB)

∼
B2

π2

(
eB

m2

)2 ∞∑
n=0

(−1)
n Γ(2n + 2)

π2n+2
ζ(2n + 4)

(
eB

m2

)2n

, eB � m
2

∼
1

3
·
B2

2

(
ln

(
eB

πm2

)
− γ +

6

π2
ζ
′
(2)

)
+ . . . , eB � m

2

• small B → large B; small B → large E (from 10 terms!)

0.100 10 1000

10-10

10-5

1

105

0.1 0.5 1 5 10 50 100

10-16

10-11

10-6

0.1

104

• exponentially suppressed terms are also accessible

• also at 2 loop (no Borel representation) (GD/Harris 2101.10409)

https://arxiv.org/abs/1911.03489
https://arxiv.org/abs/2101.10409
https://arxiv.org/abs/2101.10409


Extrapolating Heisenberg-Euler GD/Harris 2101.10409

• the leading strong-field limit coefficient can be extracted from
the weak field expansion

L(1) ∼ B2

2
αβ1 ln

(
eB

m2

)
+ . . .
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https://arxiv.org/abs/2101.10409


Inhomogeneous Background Fields (GD & Z. Harris, 2212.04599)

• locally-constant-field-approximation (LCFA) is heavily used in
plasma and astro intense-field simulation codes, but it is known
to fail badly for very inhomogeneous fields

• precision tests for soluble cases (Narozhnyi/Nikishov, Popov, ...)

B(x) = B sech2 (x/λ) E(t) = E sech2 (t/τ)

• analytic continuations: B2 7→ −E2, λ2 7→ −τ2

• Keldysh inhomogeneity parameter γ = m
eBλ 7→

m
eEτ

• WKB approximation: (Popov, Marinov, ...)

Im [S(E,ω)]WKB ∼ L
3m

4τ

8π3

(
eE

m2

)5/2

(1 + γ2)5/4 exp

[
−πm

2

eE

2√
1 + γ2 + 1

]

https://arxiv.org/abs/2212.04599


Resurgent Extrapolation for Inhomogeneous Background Fields

• analytic continuation: weak B field to strong B field

• with just 15 perturbative input terms

• accurate agreement over many orders of magnitude

• superior to locally-constant-field approximation or WKB



Resurgent Extrapolation for Inhomogeneous Background Fields

• analytic continuation: weak B field to strong E field

• with just 15 perturbative input terms
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• accurate agreement over many orders of magnitude

• far superior to WKB or LCFA


