Dispersive approach to the hadronic light-by-light contribution to $(g-2)_{\mu}$

Gilberto Colangelo

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

School on continuum foundations, CERN, 26.7.24

HLbL tensor HLbL dispersive

Based on:

JHEP09(14)091, JHEP09(15)074, JHEP04(17)161, PRL(17) in collab. with M. Hoferichter, M. Procura and P. Stoffer and PLB738(2014)6.....+B. Kubis

Outline

Setting up the stage: Master Formula

A dispersion relation for HLbL

- Pion-pole contribution
- Pion-box contribution
- Pion rescattering contribution

Hadronic light-by-light: source of theory uncertainty

- 4-point fct. of em currents in QCD
- "it cannot be expressed in terms of measurable quantities"
- < 2014: only model calculations</p>
- > 2014: dispersive approach
- lattice QCD is now also a player

Different analytic evaluations of HLbL

					Jegerlehner-Nyffeler 2009			
Contribution	n BPa	IP(96)	HKS(96)	KnN(02)	MV(04)	BP(07)	PdRV(09)	N/JN(09)
π^0, η, η'	85	5±13	82.7 ± 6.4	83±12	114±10	_	114±13	99±16
" " + subl. in <i>l</i>	N _c	-	-4.5±0.1	_	0±10	_	-13113	-13±13
axial vectors	s 2.5	5±1.0	1.7 ± 1.7	-	22 ± 5	-	15±10	22±5
scalars	-6.8	3±2.0	_	-	—	_	-1 ± 1	-7 ± 2
quark loops	21	± 3	9.7±11.1	—	_	-	2.3	21±3
total	83	3±32	89.6±15.4	80±40	136±25	110±40	105±26	116±39
Legenda:	B=Bijnens N=Nyffeler	Pa=Palla M=Melr	nte P=Prades nikhov V=Va	H=Hayakawa inshtein dR=	K=Kinoshita =de Rafael	S=Sanda J=Jegerlehn	Kn=Knecht er	

- large uncertainties (and differences among calculations) in individual contributions
- pseudoscalar pole contributions most important
- second most important: pion loop, *i.e.* two-pion cuts (Ks are subdominant, see below)
- heavier single-particle poles decreasingly important

Advantages of the dispersive approach

- model independent
- unambiguous definition of the various contributions
- makes a data-driven evaluation possible (in principle)
- if data not available: use theoretical calculations of subamplitudes, short-distance constraints etc.

Advantages of the dispersive approach

- model independent
- unambiguous definition of the various contributions
- makes a data-driven evaluation possible (in principle)
- if data not available: use theoretical calculations of subamplitudes, short-distance constraints etc.
- First attempts:

GC, Hoferichter, Procura, Stoffer (14)

Pauk, Vanderhaeghen (14)

The HLbL tensor

HLbL tensor:

$$\Pi^{\mu\nu\lambda\sigma} = i^3 \int dx \int dy \int dz \, e^{-i(x \cdot q_1 + y \cdot q_2 + z \cdot q_3)} \langle 0|T\{j^{\mu}(x)j^{\nu}(y)j^{\lambda}(z)j^{\sigma}(0)\}|0\rangle$$

$$q_4 = k = q_1 + q_2 + q_3$$
 $k^2 = 0$

General Lorentz-invariant decomposition:

$$\Pi^{\mu\nu\lambda\sigma} = g^{\mu\nu}g^{\lambda\sigma}\Pi^1 + g^{\mu\lambda}g^{\nu\sigma}\Pi^2 + g^{\mu\sigma}g^{\nu\lambda}\Pi^3 + \sum_{i,j,k,l} q^{\mu}_i q^{\nu}_j q^{\lambda}_k q^{\sigma}_l \Pi^4_{ijkl} + \dots$$

consists of 138 scalar functions $\{\Pi^1, \Pi^2, ...\}$, but in d = 4 only 136 are linearly independent Eichmann *et al.* (14)

Constraints due to gauge invariance? (see also Eichmann, Fischer, Heupel (2015))

 \Rightarrow Apply the Bardeen-Tung (68) method+Tarrach (75) addition

Gauge-invariant hadronic light-by-light tensor

Applying the Bardeen-Tung-Tarrach method to $\Pi^{\mu\nu\lambda\sigma}$ one ends up with: GC, Hoferichter, Procura, Stoffer (2015)

43 basis tensors (BT)

in d = 4: 41=no. of helicity amplitudes

- ► 11 additional ones (T) to guarantee basis completeness everywhere
- of these 54 only 7 are distinct structures
- all remaining 47 can be obtained by crossing transformations of these 7: manifest crossing symmetry
- the dynamical calculation needed to fully determine the LbL tensor concerns these 7 scalar amplitudes

$$\Pi^{\mu\nu\lambda\sigma} = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i$$

Master Formula

$$a_{\mu}^{\text{HLbL}} = -e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}(q_{1}, q_{2}; p) \hat{\Pi}_{i}(q_{1}, q_{2}, -q_{1} - q_{2})}{q_{1}^{2}q_{2}^{2}(q_{1} + q_{2})^{2}[(p + q_{1})^{2} - m_{\mu}^{2}][(p - q_{2})^{2} - m_{\mu}^{2}]}$$

- \hat{T}_i : known kernel functions
- $\hat{\Pi}_i$: linear combinations of the Π_i
- the Π_i are amenable to a dispersive treatment: their imaginary parts are related to measurable subprocesses
- 5 integrals can be performed with Gegenbauer polynomial techniques

GC, Hoferichter, Procura, Stoffer (2015)

Master Formula

After performing the 5 integrations:

$$a_{\mu}^{\text{HLbL}} = \frac{2\alpha^3}{48\pi^2} \int_0^{\infty} dQ_1^4 \int_0^{\infty} dQ_2^4 \int_{-1}^{1} \sqrt{1-\tau^2} \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \bar{\Pi}_i(Q_1, Q_2, \tau)$$

where Q_i^{μ} are the Wick-rotated four-momenta and τ the four-dimensional angle between Euclidean momenta:

$$Q_1 \cdot Q_2 = |Q_1| |Q_2| \tau$$

The integration variables $Q_1 := |Q_1|, Q_2 := |Q_2|$.

GC, Hoferichter, Procura, Stoffer (2015)

We split the HLbL tensor as follows:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\text{-box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

Pion pole: imaginary parts = δ -functions Projection on the BTT basis: easy \checkmark Our master formula=explicit expressions in the literature \checkmark Input: pion transition form factor First results of direct lattice calculations Gerardin, Meyer, Nyffeler (16)

We split the HLbL tensor as follows:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\text{-box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

 π -box with the BTT set:

- we have constructed a Mandelstam representation for the contribution of the 2-pion cut with LHC due to a pion pole
- we have explicitly checked that this is identical to sQED multiplied by $F_V^{\pi}(s)$ (FsQED)

We split the HLbL tensor as follows:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\text{-box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

We split the HLbL tensor as follows:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\text{-box}}_{\mu\nu\lambda\sigma} + \overline{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

The "rest" with 2π intermediate states has cuts only in one channel and will be calculated dispersively after partial-wave expansion

We split the HLbL tensor as follows:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\text{-box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

E.g. $\gamma^*\gamma^* \to \pi\pi~\ensuremath{\mathcal{S}}\xspace$ contributions

$$\begin{split} \hat{\Pi}_{4}^{S} &= \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{-2}{\lambda_{12}(s')(s'-q_{3}^{2})^{2}} \left(4s' \operatorname{Im}h_{++,++}^{0}(s') - (s'+q_{1}^{2}-q_{2}^{2})(s'-q_{1}^{2}+q_{2}^{2}) \operatorname{Im}h_{00,++}^{0}(s') \right) \\ \hat{\Pi}_{5}^{S} &= \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} dt' \frac{-2}{\lambda_{13}(t')(t'-q_{2}^{2})^{2}} \left(4t' \operatorname{Im}h_{++,++}^{0}(t') - (t'+q_{1}^{2}-q_{3}^{2})(t'-q_{1}^{2}+q_{3}^{2}) \operatorname{Im}h_{00,++}^{0}(t') \right) \\ \hat{\Pi}_{6}^{S} &= \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} dt' \frac{-2}{\lambda_{23}(u')(u'-q_{1}^{2})^{2}} \left(4u' \operatorname{Im}h_{++,++}^{0}(u') - (u'+q_{2}^{2}-q_{3}^{2})(u'-q_{2}^{2}+q_{3}^{2}) \operatorname{Im}h_{00,++}^{0}(u') \right) \\ \hat{\Pi}_{6}^{S} &= \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} du' \frac{4}{\lambda_{23}(u')(u'-q_{1}^{2})^{2}} \left(2 \operatorname{Im}h_{++,++}^{0}(u') - (u'-q_{2}^{2}-q_{3}^{2}) \operatorname{Im}h_{00,++}^{0}(u') \right) \\ \hat{\Pi}_{16}^{S} &= \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} dt' \frac{4}{\lambda_{13}(t')(t'-q_{2}^{2})^{2}} \left(2 \operatorname{Im}h_{++,++}^{0}(t') - (t'-q_{1}^{2}-q_{3}^{2}) \operatorname{Im}h_{00,++}^{0}(t') \right) \\ \hat{\Pi}_{17}^{S} &= \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{4}{\lambda_{12}(s')(s'-q_{3}^{2})^{2}} \left(2 \operatorname{Im}h_{++,++}^{0}(s') - (s'-q_{1}^{2}-q_{2}^{2}) \operatorname{Im}h_{00,++}^{0}(s') \right) \end{split}$$

We split the HLbL tensor as follows:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\pi\text{-box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

Contributions of cuts with anything else other than one and two pions in intermediate states are neglected in first approximation

of course, the η , η' and other pseudoscalars pole contribution, or the kaon-box/rescattering contribution can be calculated within the same formalism

Pion-pole contribution

- Expression of this contribution in terms of the pion transition form factor already known
 Knecht-Nyffeler (01)
- Both transition form factors (TFF) must be included:

$$\bar{\Pi}_1 = \frac{F_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2)F_{\pi^0\gamma^*\gamma^*}(q_3^2, 0)}{q_3^2 - M_{\pi^0}^2}$$

[dropping one bc short-distance not correct Melnikov-Vainshtein (04)]

- data on singly-virtual TFF available CELLO, CLEO, BaBar, Belle, BESIII
- several calculations of the transition form factors in the literature
 Masjuan & Sanchez-Puertas (17), Eichmann et al. (17), Guevara et al. (18)
- dispersive approach works here too

- Hoferichter et al. (18)
- quantity where lattice calculations can have a significant impact
 Gerardin, Meyer, Nyffeler (16)

Pion-pole contribution

Latest complete analyses:

Dispersive calculation of the pion TFF Hoferichter et al. (18)

$$10^{11}a_{\mu}^{\pi^0} = 62.6(1.7)_{F_{\pi\gamma\gamma}}(1.1)_{ ext{disp}}(^{2.2}_{1.4})_{ ext{BL}}(0.5)_{ ext{asym}} = 62.6^{+3.0}_{-2.5}$$

Padé-Canterbury approximants Masjuan & Sanchez-Puertas (17)

$$10^{11}a_{\mu}^{\pi^0} = 63.6(1.3)_{\text{stat}}(0.6)_{a_{P;1,1}}(2.3)_{\text{sys}} = 63.6(2.7)$$

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{FsQED}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

The only ingredient needed for the pion-box contribution is the vector form factor

$$\hat{\Pi}_{i}^{\pi\text{-box}} = F_{\pi}^{V}(q_{1}^{2})F_{\pi}^{V}(q_{2}^{2})F_{\pi}^{V}(q_{3}^{2})\frac{1}{16\pi^{2}}\int_{0}^{1}dx\int_{0}^{1-x}dy\,I_{i}(x,y),$$

where

$$I_1(x,y) = \frac{8xy(1-2x)(1-2y)}{\Delta_{123}\Delta_{23}},$$

and analogous expressions for $I_{4,7,17,39,54}$ and

$$\begin{split} \Delta_{123} &= M_{\pi}^2 - xyq_1^2 - x(1-x-y)q_2^2 - y(1-x-y)q_3^2, \\ \Delta_{23} &= M_{\pi}^2 - x(1-x)q_2^2 - y(1-y)q_3^2 \end{split}$$

$$a_{\mu}^{
m FsQED} = -15.9(2)\cdot 10^{-11}$$

Contribution	BPaP(96)	HKS(96)	KnN(02)	MV(04)	BP(07)	PdRV(09)	N/JN(09)
π^0, η, η' π, K loops	85±13 -19±13	82.7±6.4 -4.5±8.1	83±12 _	114±10 -		114±13 −19±19	99±16 -19±13
" " + subl. in N _C axial vectors	2.5±1.0		_	0 ± 10 22 ±5	_		22 ± 5
scalars quark loops	$^{-6.8\pm2.0}_{21\pm3}$		_	_	_	$^{-7\pm7}_{2.3}$	$^{-7\pm2}_{21\pm3}$
total	83±32	89.6±15.4	80±40	136±25	110±40	105±26	116±39

Uncertainties are negligibly small:

$$a_{\mu}^{
m FsQED} = -15.9(2)\cdot 10^{-11}$$

First evaluation of *S*- wave 2π -rescattering

Omnès solution for $\gamma^* \gamma^* \to \pi \pi$ provides the following:

Based on:

- taking the pion pole as the only left-hand singularity
- $\blacktriangleright \Rightarrow$ pion vector FF to describe the off-shell behaviour
- ππ phases obtained with the inverse amplitude method [realistic only below 1 Gev: accounts for the f₀(500) + unique and well defined extrapolation to ∞]
- numerical solution of the $\gamma^* \gamma^* \to \pi \pi$ dispersion relation

First evaluation of *S*- wave 2π -rescattering

Omnès solution for $\gamma^* \gamma^* \to \pi \pi$ provides the following:

Based on:

- taking the pion pole as the only left-hand singularity
- $\blacktriangleright \Rightarrow$ pion vector FF to describe the off-shell behaviour
- ππ phases obtained with the inverse amplitude method [realistic only below 1 Gev: accounts for the f₀(500) + unique and well defined extrapolation to ∞]
- numerical solution of the $\gamma^* \gamma^* \to \pi \pi$ dispersion relation

S-wave contributions :
$$a_{\mu,J=0}^{\pi\pi,\pi ext{-pole LHC}} = -8(1) imes10^{-11}$$

Two-pion contribution to $(g - 2)_{\mu}$ from HLbL

$$a_{\mu}^{\pi- ext{box}}+a_{\mu,J=0}^{\pi\pi,\pi ext{-pole LHC}}=-24(1)\cdot10^{-11}$$

$\gamma^*\gamma^* \to \pi\pi$ contribution from other partial waves

- formulae get significantly more involved with several subtleties in the calculation
- in particular sum rules which link different partial waves must be satisfied by different resonances in the narrow width approximation
 Danilkin, Pascalutsa, Pauk, Vanderhaeghen (12,14,17)
- data and dispersive treatments available for on-shell photons
 e.g. Dai & Pennington (14,16,17)

Improvements obtained with the dispersive approach

Contribution	PdRV(09) Glasgow consensus	N/JN(09)	J(17)	WP(20)
π^0, η, η' -poles π, K -loops/boxes S-wave $\pi\pi$ rescattering	114(13) -19(19) -7(7)	99(16) -19(13) -7(2)	95.45(12.40) -20(5) -5.98(1.20)	93.8(4.0) -16.4(2) -8(1)
subtotal	88(24)	73(21)	69.5(13.4)	69.4(4.1)
scalars tensors axial vectors <i>u, d, s</i> -loops / short-distance	 15(10) 	 22(5) 21(3)	1.1(1) 7.55(2.71) 20(4)	} - 1(3) 6(6) 15(10)
<i>c</i> -loop	2.3	-	2.3(2)	3(1)
total	105(26)	116(39)	100.4(28.2)	92(19)

significant reduction of uncertainties in the first three rows

CHPS (17), Masjuan, Sánchez-Puertas (17) Hoferichter, Hoid et al. (18), Gerardin, Meyer, Nyffeler (19)

resonances and short-distance constraints need to be improved

Danilkin, Hoferichter, Stoffer (21), Lüdtke, Procura, Stoffer (23), Melnikov, Vainshtein (04), Nyffeler (09),

Bijnens et al. (20,21), Cappiello et al. (20), Leutgeb, Rebhan (19,21)

Situation for HLbL

