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J SIMULATION STRATEGIES: FEW QUESTIONS
)

Q1: What is the best breakdown of Hamiltonian term to H; terms such that:

i) each term can be simulated with the least resources,
i) the number of terms to be simulated is minimized,
iii) the Trotter error is minimized,

iv) as many symmetries as possible are retained?

We may not be able to simultaneously satisfy all these conditions so we need to seek a
balance. The last condition may or may not matter!

Q2: How to simulate each e~ ? This amounts to:

i) finding the unitary transformation that diagonalizes e 7" in the computational basis,

e, e ™M= e U

i) circuitizing the unitary transformation %,
itD,

1

iii) circuitizing the diagonal form e~

If e~ js already diagonal, steps i) and ii) are not needed.




Q3: What quantum resources should we minimize given those choices in the previous Qs?

i) In the near-term scenario,
~ the hardware systems are small so the less ancillary qubits the better,
- single-qubit gates are almost free but two-qubit gates (CNOT) are of low fidelity.

ii) In the far-term scenario,
- we likely do not have qubit-resource constraints,
~ compilation of all Clifford gates (including CNOT) is less costly but non-Clifford (T
gates) have high fault-tolerant implementation cost.

Q4: Given all these consideration, which Hamiltonian formulation and basis states of the
theory are most suitable? We may need to consider formulations that:

i) give the desired continuum physics faster with the least resources,
ii) have the least encoding overhead,

ii) have less complex terms,

iii) respect more symmetries by construction.

We are not considering state preparation and measurements here, but those often enter our
considerations of what is the most suitable formulation given the observable of interest.




RESOURCE ANALYSIS

[Vp(t) —e ™|l < e

Given the accuracy € on the time evolution operator, how many ancilla qubits and costly
gates are needed for simulating a Hamiltonian with given parameters for time # using the
p-th order product formula?

For a LGT Hamiltonian, these are volume,
lattice spacing, couplings, masses, and
truncation scale of the bosonic fields.

The errors that accumulate to add up to the total error € are:

i) Trotter error,
i) function-evaluation approximation error,
iii) gate-synthesis error.
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LATTICE SCHWINGER MODEL HAMILTONIAN
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Staggered mass term  Fermion hopping via gauge links
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Q transformation

Electric field energy
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LET'S START SIMPLE: THE FULLY FERMIONIC REPRESENTATION
WITH FIRTS-ORDER PRODUCT FORMULA.

x

H = XZ o (z)o(z+ 1)+ he| + Z {80 + % ZO (0% (y) + (1)y]} + g Z(—l)

:HX—I—HZZ—l—HZ or H(XX)+H(YY)+HZZ+HZ

Two time orderings, one that respects the global charge conservation:

(N/2)-1 N/2
Vi (5t) _ e—iét ﬁze—iét H?% H e—i& H3y okt1 H e—i& H3k 1 2k
and one that breaks it!
N—-1

V1/(5t) _ e—z‘étﬁze—iétﬁzz H e k,k+1

e Rty (X X)
st H H o—i0t A,

and many more!




What is the global conserved charge in the Schwinger-model Hamiltonian?
Why is one of the schemes in the previous slide conserves the global charge
and the other does not?




- R = e "%%i% can be implemented either directly (like in trapped ions) or by two CNOTs
and one single-qubit rotation since e ~i00i0f — CNOT;; R(0) CNOT;;.

—ifo; o} —ifo}c?

. e and e i can be implemented similarly by rotating to the eigenstates of 6°.

« e % is already an elementary gate and can be applied directly.

Example of circuit structure for a six-site theory in each Trotter step:

K < Fermion mass term

Fermion-gauge interactions Electric-field energy

This Trotter block will be repeated N = t/dt times.




RELA-DEVICE IMPLEMENTATIONS

Martinez et al, Nature
534, 516 EP (2016).
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Nguyen, Tran, Zhu, Green, Huerta Alderete, ZD, Linke, PRX { RELA'DE\/lCE lMPLEMENTATlONS

Quantum 3 (2022) 2, 020324.
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NOW WHAT ABOUT FERMIONIC-BOSONIC REPRESENTATION
WITH THE SECOND-ORDER PRODUCT FORMULA?

H=xY [0t (@U@0 (z+1)+he]+ > E@)?+ g Y (~1)%0% ()

One can split the terms in the Hamiltonian as: Shaw, Lougovski, Stryker, Wiebe, Quantum 4, 306 (2020).

H=> (T.+D,), with D,:=DM 4 D),

I 1 i }
1y =X (Z(Um +UN(X, Xop1 + YoYorn) + Z(Ux — UN(X: Yoi1 — KCXQ;H)) l
- M) g(—1) Z, and D)= E?
and do the following ordering of the terms
D (R) . 7 (3) (M) & 7 (3) D (F)
va(t) _ H H e~ 1D t/2 H e~ Ty t/2 e~ iDN 't H H e Ty t/2 H e~ 1Dy t/2
T ke{M,E} j=1 T j=4 ke{E,M}

In reverse order




/_[ Example }

This example concerns finding a quantum circuit for implementing

N
v® =[Tu® = e~ L B
l
i—1

in the time-evolution of lattice Schwinger model in a near-term scenario that avoids introducing
any ancilla qubits. Consider E; € [-A, A] and encode the electric-field Hilbert space on each link
i into 7 = [log,(2A) + 17 qubits. Given this, find a circuit representation for U'¥) in terms of only

1

single-qubit rotations around the z axis of Bloch sphere as well as two-qubit CNOT gates. Verify
your answer by explicitly working out a small example.

It is easy to show that the electric-field operator at each link acting on the computational (binary)
basis is:

1 il
_— — n__ — J)
E = Au+2 (27 — 1)1 2:20]?
j=0

Therefore,

n—1 n—1 n—1
| 1 | -
E2=A21—-A @1 -11- 2210; +o|@- 1)21 — 2(2" — 1)ZZJaj.Z+ Y 24 070"
j=0 j=0 jj'=0

Consequently, the operator U¥) can be written as a product of Niy R® rotations and
Nn(n — 1)/2 R* rotations with rotation angles that can be read off from the expression above.
Note that each R** gate amounts to two CNOT gates and one R? gate.




/_[ Example }

This example concerns finding a quantum circuit for implementing

N
v® =[Tu® = e~ L B
l
i—1

in the time-evolution of lattice Schwinger model in a near-term scenario that avoids introducing
any ancilla qubits. Consider E; € [-A, A] and encode the electric-field Hilbert space on each link
i into 7 = [log,(2A) + 17 qubits. Given this, find a circuit representation for U'¥) in terms of only

1

single-qubit rotations around the z axis of Bloch sphere as well as two-qubit CNOT gates. Verify

your answer by explicitly working out a small example.

An n = 4 example:




The previous example requires O(Ny?) number of R* gates, which are costly operations in the
fault-tolerant regime as they need to be synthesized up to accuracy € using roughly log(1/€) T
gates. Can one reduce the R* cost of electric-field evolution to O(Nn)? The answer is yes, but at
the cost of extra O(y) ancillas that are, nonetheless, available in the fault-tolerant era. One such
circuit can be constructed using the so-called phase-kickback routine. For each UZ.(E):

n
| E; ) —# - - = | E )
) = e o
n & = E S
0) oA > = Sh2 10)
2 i 2n—1 4 ok—3 52y | i
10) —A— > B Tk exp(it2k—307) = < 10)

Register that

temporarily holds the Logic gates Phase gets Logic gates

2 .
: - 2 , - 2
E? value at each link computing E?. implemented here uncomputing E7.

based on the El-2 value

The logical copy and multiplication routines are known circuits and overall cost O(%) T gates.
The ancilla qubits are reset in the end and can be used in the remainder of the circuit.




How do you implement arbitrary diagonal operator e~ in the computational

/n+1
basis? [Think about two examples: i) ' |n) = n|n) and i) D |n) = ke ; | n)']
’/l —




— Circuit and recourse analysis

Shaw, Lougovski, Stryker, Wiebe, Quantum 4, 306 (2020).

........................................................................................................................................................................................................................

+1 -1
Sample gauge-fermion L T | '
interaction block /_\ o | ™ Lol
Part of electric field | | : :
interactions acting on | | — N — - r g
gauge DOF registers | i - I — i | I— |
5y = 1073 5y = 1074 5y = 1075 5y =107° 5 =107"7

e | CNOT €2 CNOT € CNOT €2 CNOT €2 CNOT
r=10"% | — | 7.3e4 — 1.6e5 — 3.4eb — 7.3ed 5.6e-2 1.6e6
z=10"1 | — | 1.6e4 — 3.5e4 — 7.5e4 | 5.9e-2 | 1.6edb | 2.7e-3 | 3.5ed

r=1 — | 4.6e3 — 9.9e3 1.0e-1 2.1e4 | 4.7e-3 | 4.6e4d | 2.2e-4 | 9.9e4
x=10%2 | — | 2.8e3 | 83el1| 6.1e3 | 3.8¢-2 | 1.3e4 | 1.8¢-3 | 2.8¢4 | 8.2e-5 | 6.0e4

Near term cost




COMPARISON BETWEEN THE TWO FORMULATIONS FOR THE SECOND-ORDER FORMULA

Purely fermionic (non-local) Fermionic-bosonic (local)
Qubit cost N N + Nlog,(N)
Gate N9/243/2 O(N5/243/2
complexity* O( t*7) ( t°<)

*Defined at the required number of Trotter steps for simulation time t, system
size N ~ A, and at fixed x and p, given a fixed error tolerance.



COMPARISON BETWEEN THE TWO FORMULATIONS FOR THE SECOND-ORDER FORMULA

Purely fermionic (non-local)

Qubit cost N
Gate

9/2,3/2
complexity* O(N 1243/ )

Fermionic-bosonic (local)

N + Nlogy(N)

O(N5/2t3/2)

*Defined at the required number of Trotter steps for simulation time t, system
size N ~ A, and at fixed x and y, given a fixed error tolerance.

Vs

Nonetheless, empirically it seems like the
non-local formulation performs as well as
the bound on the local formulation!

Number of two-qubit gates

Nguyen, Tran, Zhu, Green, Huerta

10° ¢

107 |

.

10° |

Alderete, ZD, Linke, PRX

Quantum 3 (2022) 2, 020324. =

10° |

10* |

T

103 £

I T T

@® Commutator bound

@ Exact commutator bound

@® Empirical

| | 1 1

4 6 3 10

Number of sites N

12




Explain the qubit and gate scalings of the second-order Trotter simulation of
the lattice Schwinger model in both formulations, as given in the previous slide.
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Abelian vs. non-Abelian

Since we do not have the option of removing the gauge links generally, let us focus on the
fermionic-bosonic formulations in the electric-field basis. So what are the major differences
between simulating digitally Abelian and non-Abelian LGTs? Let is compare U(1) and SU(N) LGTs.

i) There are more degrees of freedom involved for SU(N) LGTs. For example, at each site,
there are N-component fermions, and at each link there are multiple bosonic variables.

ii) As a result, there are more terms that need to be simulated, hence more complexity and
generally more Trotter error.

iii) The diagnozalization procedure for hopping and magnetic terms generally follow the
same rules but is more gate-intensive for SU(N).

iv) The diagonal operators in an Abelian theory like U(1) are trivial while for SU(N), they
require evaluating phases that are non-trivial functions of bosonic occupation-number
operators. These require expensive function-evaluation routines (in the E basis).

A|gorithmic progress for U(1), SU(2), and |shaw, Lougovski, Stryker, Wiebe, Quantum 4, 306 (2020).

. . Ciavarella, Klco, and Savage, Phys. Rev. D 103, 094501 (2021).
SU(3) theorles can be fOUﬂd In: Kan and Nam, arXiv:2107.12769 [quant-ph].

ZD, Shaw, and Stryker, Quantum 7, 1213 (2023),

Rhodes, Kreshchuk, Pathak, arXiv:2405.10416 [quant-ph]




What about the ultimate theory for us?
Quantum Chromodynamics, a SU(3) LGT in 3+1 coupled to 6 flavors of quarks

10° lattice at
fixed paramts.

Kan and Nam:

~ Kogut and Susskind in E basis, no Gauss-law implementation a priori

50
~ Evaluates matrix elements quantumly _?(10 )
~ Uses product formulas. Breaks all bosonic ladder ops. to even/odd space gates

ZD and Stryker: -~ Kogut and Susskind in E basis, no Gauss-law implementation a priori 20
Evaluates matrix elements quantumly 0(10™)
Uses PFs. Breaks only some of the bosonic ladder ops. to even/odd space T gates

Rhodes, Kogut and Susskind in E basis, no Gauss-law implementation a priori 0(10%5

Kreshchuk, Uses QROM to access matrix elements evaluated calssically T( )

Pathak Uses block encoding of time evolution. No even-odd breaking. gates

Ciavarella, Kogut and Susskind in E basis, some Gauss-law implementation a priori

Klco, Savage: Uses controlled operations to access matrix elements evaluated calssically -
Not a full algorithm in 3+1 D with error analysis

Lamm et al: Kogut and Susskind in U basis, no Gauss-law implementation a priori iFor SU(2),
Matrix elements simple (no Clebsch-Gordan coeff. in this basis) 0(10'3)
Uses block encoding, no full error analysis for SU(3) subgroups yet T cpiics)

How far can we continue to improve? Will this problem become reasonably doable in the fault-tolerant era?
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WHILE WE HAVE COVERED SOME BASICS, A LOT OF

IMPORTANT TOPICS WERE LEFT OUT... J

~ A variety of Hamiltonian formulations of gauge theories and in various bases, systematic

uncertainties, renormalization and continuum limit, etc.

o Detailed discussions of non-Abelian gauge theories and higher-dimensional models

o~ State-preparation strategies for in quantum (gauge) field theories including for thermal states

© The so-called near-optimal time-evolution algorithms beyond product formulas

~ Observables, e.g., scattering amplitudes, transport coefficients, structure functions,
nonequilibrium dynamics, thermodynamics

o~ Error correction and error mitigations, including in the context of quantum (gauge) field theories

© Quantum-hardware architecture and other analog and hybrid proposals for simulating gauge

theories

Vs

For a review and perspective
See Bauer, ZD, et al, “Quantum
Simulation for High Energy
Physics”, PRX Quantum 4 (2023)
2, 027001.

NONETHELESS, YOU MUST BE SUFFICIENTLY EQUIPPED NOW
GIVEN THESE LECTURES TO START EXPLORING THIS EXCITING
AND FASTLY-EVOLVING FIELD OF RESEARCH IF YOU DESIRE.




POST-LECTURE [TO CONCLUDE]
QUANTUM SIMULATION OF FUNDAMENTAL PARTICLES AND
FORCES, WHERE ARE WE NOW AND WHERE ARE WE GOING?




QUANTUM SIMULATION OF GAUGE FIELD THEORIES: A MULTI-PRONG EFFORT




HAMILTONIAN FORMULATIONS OF GAUGE THEORIES CONTINUES TO BE DEVELOPED.

4 )
Gauge-field theories (Abelian and non-Abelian) starting from the seminal work of Kugot and Susskind:
Group-element representation - :
Zohafet n Lammpet N Prepotential formulation Loop-String-Hadron basis
7 Mathur, Raychowdhury et al Raychowdhury and Stryker
Link models, qubitization
Chandrasekharan, Wiese et al, Fermionic basis | Bosonic basis
Alexandru, Bedaque, et al. Hamer et al; Martinez et al; Banuls et al Cirac and Zohar
Light-front quantization Local irreducible representations
Kreshchuk, Love, Goldstien, B}-/rnes and Yamamoto; Manifold lattices
Vary et al.; Ortega at al Ciavarella, Klco, and Savage Buser et al
Dual plaguette (magnetic) basis Soin-dual _
Bender, Zohar et al; Kaplan and Styker; Unmuth- Mme; | relpresentatlon
Yockey; Hasse et al; Bauer and Grabowska athureta
. /
4 )
Scalar field theory
Field basis Continuous-variable basis
Jordan, Lee, and Preskill Pooser, Siopsis et al
Harmonic-oscillator basis Single-particle basis
Klco and Savage Barata , Mueller, Tarasov, and Venugopalan.
. /




DIGITAL COMPUTATIONS OF ABELIAN LGTs

Klco, Savage, et al, Phys. Rev. A 98, 032331 (2018).
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Nguyen, Tran, Zhu, Green, Huerta Alderete,
PRX Quantum 3 (2022) 2, 020324.
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DIGITAL COMPUTATIONS OF NON-ABELIAN LGTs
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Real-time dynamic of pure SU(3)

. . Ciavarella, Klco, and Savage,
with global irrupts on IBM Phys. Rev. D 103, 094501 (2021).

Real-time dynamic of pure SU(2) with
global irreps on IBM
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Klco, Savage, and Stryker, Phys.
Rev. D 101, 074512 (2020).
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a  VQE circuit to prepare baryon and vacuum states
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M. N=4 0008200

20

O Baryon mass (VQE)

— Exact baryon mass
15F SU(2) “proton”
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X

Atas et al, Nature
Communications 12, 6499 (2021).
SU(3) example: Atas et al:
arXiv:2207.03473 [quant-ph].

/

See also studies on D-wave annealers:
Rahman et al, Phys. Rev. D 104,
034501 (2021), Illa and Savage,
arXiv:2202.12340 [quant-ph], Farrel
et al, arXiv:2207.01731 [quant-ph].




FIRST STEPS TOWARD HADRONIC WAVEPACKETS FOR
COLLISION PROCESSES

a) Q d @ b
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Hadron wavepacket evolution +.le et ol = ; Farrell, Illa,
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ZD, Hsieh, and Kadam, arXiv:2402.00840 [quant-ph]. Physical-configuration label "




DECAY AMPLITUDES, PARTON SHOWER, PARTON DISTRIBUTION FUNCTIONS

N
Quantum computing 3 A quantum algorithm for parton shower:
. Wy, (91,92,6) = (2,1,107) (o)
decay in 1+1 D QCD >\""% 05 . - - . - - -
% = ¢ - ff excluded , x  Classical MCMC
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‘\ 3 0.3r A A Y IBMQ(g12 = 0), corrected |
Farrell,'Chernyshev, Powell, . s L . A A 1BMQ (g1 = 1), corrected |
Zemlevskiy, Illa, and Savage, A b x
Phys. Rev. D 107, 054513 ol M ]
(2023).
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Rev. Lett. 126 (2021) 6, 062001.
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FINITE-DENSITY AND NON-EQUILIBRIUM PHYSICS IN STRONGLY-INTERACTING SYSTEMS

Thermalization dynamics of U(1) Quantum Link Model in a
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SOME CO-DESIGN EXAMPLES: LEVERAGING MULTI-DIMENSIONAL
LOCAL HILBERT SPACES AND MULTI-MODE INTERACTIONS
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We've got a long way to fully and reliably simulate the Standard Model but we know what to
do! Theory/algorithm/experiment collaborations will be the key. It is even more important in
the quantum-computing era since our computers are themselves physical systems! This is an
active field with lots to work on and develop! It is time to get involved if you are interested!
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