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SIMULATION STRATEGIES: FEW QUESTIONS

We may not be able to simultaneously satisfy all these conditions so we need to seek a 
balance. The last condition may or may not matter!

Q1: What is the best breakdown of Hamiltonian term to  terms such that:


i) each term can be simulated with the least resources,

ii) the number of terms to be simulated is minimized,

iii) the Trotter error is minimized,

iv) as many symmetries as possible are retained?

Hi

Q2: How to simulate each  ? This amounts to:


i) finding the unitary transformation that diagonalizes  in the computational basis, 
i.e., .


ii) circuitizing the unitary transformation ,

iii) circuitizing the diagonal form .


    If  is already diagonal, steps i) and ii) are not needed.

e−itHi

e−itHi

e−itHi = 𝒰ie−it𝒟i𝒰†
i

𝒰i
e−it𝒟i

e−itHi



Q3: What quantum resources should we minimize given those choices in the previous Qs?


i) In the near-term scenario, 

the hardware systems are small so the less ancillary qubits the better,

single-qubit gates are almost free but two-qubit gates (CNOT) are of low fidelity.


ii) In the far-term scenario,

we likely do not have qubit-resource constraints,

compilation of all Clifford gates (including CNOT) is less costly but non-Clifford (T 
gates) have high fault-tolerant implementation cost. 

Q4: Given all these consideration, which Hamiltonian formulation and basis states of the 
theory are most suitable? We may need to consider formulations that:


i) give the desired continuum physics faster with the least resources,

ii) have the least encoding overhead,

ii) have less complex terms,

iii) respect more symmetries by construction.


We are not considering state preparation and measurements here, but those often enter our 
considerations of what is the most suitable formulation given the observable of interest.



RESOURCE ANALYSIS

Given the accuracy  on the time evolution operator, how many ancilla qubits and costly 
gates are needed for simulating a Hamiltonian with given parameters for time  using the 
-th order product formula?

ϵ
t

p

For a LGT Hamiltonian, these are volume, 
lattice spacing, couplings, masses, and 
truncation scale of the bosonic fields. 
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||Vp(t)� e�itH ||  ✏

The errors that accumulate to add up to the total error  are:


i) Trotter error,

ii) function-evaluation approximation error,

iii) gate-synthesis error.

ϵ
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(RESCALED HENCE DIMENSIONLESS) 
LATTICE SCHWINGER MODEL HAMILTONIAN 
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FIG. 9. (a) The (absolute value) of the overlap between a time-evolved string state | stri and a fully-occupied mesonic state
| mesi, Pstring!mesons ⌘ | h mes|e�iHQLMtQLM | stri |, as a function of the (scaled dimensionless) time tQLM for a lattice with
Nstag = 4 fermion sites, corresponding to N = 7 ion sites. For the dashed and dotted curves, the Hamiltonian must be
replaced with the non-exact H 0

QLM and H
00
QLM Hamiltonians, respectively. (b) The same quantity plotted for Nstag = 6 fermion

sites, corresponding to N = 11 ion sites. The graphical representations of states, both in terms of the electron, positron,
and electric-field strings and in terms of the (quasi)spins of each corresponding ions are shown for the initial string state,
and for a fully-occupied mesonic state whose probability amplitude is maximum at the points denoted. (c) The expectation
value of the lattice sum of the (absolute value of) the Gauss’s law operator between a time-evolved string state, h

P
i
|Gi|i ⌘

h str|eiHQLMtQLM 1
2Nstag�3

PNstag�1
i=1 |Gi|e�iHQLMtQLM | stri forNstag = 4 fermion sites, corresponding toN = 7 ion sites. For the

dashed and dotted curves, the Hamiltonian must be replaced with the non-exact H 0
QLM and H

00
QLM Hamiltonians, respectively.

(d) The same quantity as in (c) for Nstag = 6 fermion sites, corresponding to N = 11 ion sites. The maximum breakdown of
the Gauss’s law corresponds to h

P
i
|Gi|i = 1.

teractions. Additionally, single-spin interactions on all
ions are included to modify the mass term with uniform
coe�cients that are 10 and 5 times weaker than the true

mass. Explicitly,

H 0(00)

QLM
= HQLM +
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Electric field energyStaggered mass term
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Nearest neighbor 
spin-spin interactions

Long range spin-spin 
interactions plus an 
effective magnetic field

An effective 
magnetic field

Jordan-Wigner 
transformation
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LET’S START SIMPLE: THE FULLY FERMIONIC REPRESENTATION 
WITH FIRTS-ORDER PRODUCT FORMULA.

Two time orderings, one that respects the global charge conservation:

and one that breaks it!
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and many more!
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What is the global conserved charge in the Schwinger-model Hamiltonian? 
Why is one of the schemes in the previous slide conserves the global charge 
and the other does not?



Fermion-gauge interactions
Fermion mass term

Electric-field energy

Example of circuit structure for a six-site theory in each Trotter step:
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V 0
1(�t)

This Trotter block will be repeated  times.NT = t/δt

•  can be implemented either directly (like in trapped ions) or by two CNOTs 

and one single-qubit rotation since .


•  and   can be implemented similarly by rotating to the eigenstates of .


•  is already an elementary gate and can be applied directly.

Rzz
ij ≡ e−iθσ z

i σ z
j

e−iθσ z
i σ z

j = CNOTij Rz
i (θ) CNOTij

e−iθσ x
i σ x

j e−iθσy
i σy

j σz

e−iθσ z
i



Martinez et al, Nature 
534, 516 EP (2016).

RELA-DEVICE IMPLEMENTATIONS



Nguyen, Tran, Zhu, Green, Huerta Alderete, ZD, Linke, PRX 
Quantum 3 (2022) 2, 020324.
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N = 4, �t = 1
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Figure 7. Experimental results for N = 4 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The upper plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
lower plot shows its deviation from theory.

delity, rather than qubit number, is the main limitation of
our implementation. E↵orts to overcome such a technical
limitation are well underway [86]. To mitigate the time-
correlated errors, we have applied a symmetry-protection
scheme [29] but found negligible e↵ects in suppressing
the errors, pointing to dominant incoherent and uncorre-
lated noise in the experiment. Incoherent errors can be
mitigated by post-selection of the experimental measure-
ments using symmetry considerations. Better-motivated
and further-tailored schemes for incoherent error mitiga-
tion are desired in future simulations.

An avenue for improving the quality of the simulation
is reducing the gate depth, e.g., by performing gates in
parallel instead of sequentially. In our model, e�i�tĤ

x

,
consisting of only nearest-neighbor interactions, can be

N = 6, �t = 1

(a)

(b)

Figure 8. Experimental results for N = 6 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The left plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
right plot shows its deviation from theory. At t = 4, we reach
the gate-depth limit of the hardware.

applied in a fixed circuit depth of 4 instead of 2N by per-
forming all the X2iX2i+1 terms, then all the X2i+1X2i+2

terms, in parallel. The all-to-all interactions in e
�i�tĤ

ZZ

can be reduced to depth of N instead of N
2 if gates

XiXi+n, for all i and fixed n, are performed in paral-
lel. With trapped ions, parallel operations can be done
either in multi-zone architectures [87, 88], or in linear
chains with advanced control schemes [89].

Alternatively, the gate depth can be reduced by
using M -body Mølmer-Sørensen gates MS(�,M) ⌘

e
�i�

PM
i=1

PM
j=i+1 �̂

X
i �̂

X
j [82–84]. This approach was im-

plemented in Ref. [71] to reduce the number of MS op-
erations in the simulation of the Schwinger model from
O(N2) to O(N). In general, a non-trivial optimization of
both frequency and amplitude modulation of the beams

Martinez et al, Nature 
534, 516 EP (2016).
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Figure 8. Experimental results for N = 6 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The left plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
right plot shows its deviation from theory. At t = 4, we reach
the gate-depth limit of the hardware.
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terms, in parallel. The all-to-all interactions in e
�i�tĤ

ZZ

can be reduced to depth of N instead of N
2 if gates

XiXi+n, for all i and fixed n, are performed in paral-
lel. With trapped ions, parallel operations can be done
either in multi-zone architectures [87, 88], or in linear
chains with advanced control schemes [89].

Alternatively, the gate depth can be reduced by
using M -body Mølmer-Sørensen gates MS(�,M) ⌘

e
�i�

PM
i=1

PM
j=i+1 �̂

X
i �̂

X
j [82–84]. This approach was im-

plemented in Ref. [71] to reduce the number of MS op-
erations in the simulation of the Schwinger model from
O(N2) to O(N). In general, a non-trivial optimization of
both frequency and amplitude modulation of the beams
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N = 4, �t = 1

(a)

(b)

Figure 7. Experimental results for N = 4 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The upper plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
lower plot shows its deviation from theory.

delity, rather than qubit number, is the main limitation of
our implementation. E↵orts to overcome such a technical
limitation are well underway [86]. To mitigate the time-
correlated errors, we have applied a symmetry-protection
scheme [29] but found negligible e↵ects in suppressing
the errors, pointing to dominant incoherent and uncorre-
lated noise in the experiment. Incoherent errors can be
mitigated by post-selection of the experimental measure-
ments using symmetry considerations. Better-motivated
and further-tailored schemes for incoherent error mitiga-
tion are desired in future simulations.

An avenue for improving the quality of the simulation
is reducing the gate depth, e.g., by performing gates in
parallel instead of sequentially. In our model, e�i�tĤ

x

,
consisting of only nearest-neighbor interactions, can be

N = 6, �t = 1

(a)

(b)

Figure 8. Experimental results for N = 6 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The left plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
right plot shows its deviation from theory. At t = 4, we reach
the gate-depth limit of the hardware.

applied in a fixed circuit depth of 4 instead of 2N by per-
forming all the X2iX2i+1 terms, then all the X2i+1X2i+2
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lel. With trapped ions, parallel operations can be done
either in multi-zone architectures [87, 88], or in linear
chains with advanced control schemes [89].

Alternatively, the gate depth can be reduced by
using M -body Mølmer-Sørensen gates MS(�,M) ⌘

e
�i�

PM
i=1

PM
j=i+1 �̂

X
i �̂

X
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plemented in Ref. [71] to reduce the number of MS op-
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N = 2, �t = 0.5

(a)

(b)

Figure 5. Experimental results for N = 2 and �t = 0.5.
(a) The upper plot shows fluctuation in the bare-vacuum pop-
ulation, Pvac, while the lower plot shows particle-number den-
sity, ⌫, as a function of time, indicating the creation and an-
nihilation of the particle-antiparticle pairs. The dashed lines
are a guide to the eye. (b) The upper plot shows the local
charge density Qn as measured in the experiment after post-
selection, while the lower plot shows its deviation from theory
as a function of time.

try protection can improve our experimental implemen-
tation.

Figure 9 plots the result of an experiment using the
odd-even term ordering. As before, the initial state is the
bare vacuum. The unitaries e�i↵kŜz , with random angles
↵k given in Appendix A, are inserted between Trotter
steps k and k+1. While the population in states forbid-
den by the symmetry, denoted as Psym in the upper panel,
decreases with symmetry protection, this reduction is not
significant. Furthermore, while the deviation of the bare-
vacuum population from the Trotterized theory generally
decreases, post-selecting symmetry-preserving measure-
ments appears more e↵ective in mitigating the error in
this quantity than the symmetry protection as shown
in the lower panel of the figure. This indicates that

N = 4, �t = 0.5

(a)

(b)

Figure 6. Experimental results for N = 4 and �t = 0.5.
(a) The upper plot shows fluctuation in the bare-vacuum pop-
ulation, Pvac(t), while the lower plot shows particle-number
density, ⌫(t). (b) The upper plot shows the local charge den-
sity Qn(t) as measured in the experiment after post-selection,
while the lower plot shows its deviation from theory.

the experiment is dominated by noise that is not corre-
lated in time. Note that by construction, the symmetry-
protection scheme only mitigates time-correlated errors.

IV. DISCUSSION

We have digitally simulated the time evolution of the
lattice Schwinger model with up to six qubits. For a
four-qubit simulation, we observe four oscillations of the
particle density, and the simulated time is almost four
times longer than previously demonstrated using a Trot-
terized scheme [64, 71]. Given the long circuit depths
required for dynamical gauge-theory simulations, gate fi-

Two fermion sites
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Figure 5. Experimental results for N = 2 and �t = 0.5.
(a) The upper plot shows fluctuation in the bare-vacuum pop-
ulation, Pvac, while the lower plot shows particle-number den-
sity, ⌫, as a function of time, indicating the creation and an-
nihilation of the particle-antiparticle pairs. The dashed lines
are a guide to the eye. (b) The upper plot shows the local
charge density Qn as measured in the experiment after post-
selection, while the lower plot shows its deviation from theory
as a function of time.

try protection can improve our experimental implemen-
tation.

Figure 9 plots the result of an experiment using the
odd-even term ordering. As before, the initial state is the
bare vacuum. The unitaries e�i↵kŜz , with random angles
↵k given in Appendix A, are inserted between Trotter
steps k and k+1. While the population in states forbid-
den by the symmetry, denoted as Psym in the upper panel,
decreases with symmetry protection, this reduction is not
significant. Furthermore, while the deviation of the bare-
vacuum population from the Trotterized theory generally
decreases, post-selecting symmetry-preserving measure-
ments appears more e↵ective in mitigating the error in
this quantity than the symmetry protection as shown
in the lower panel of the figure. This indicates that

N = 4, �t = 0.5
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Figure 6. Experimental results for N = 4 and �t = 0.5.
(a) The upper plot shows fluctuation in the bare-vacuum pop-
ulation, Pvac(t), while the lower plot shows particle-number
density, ⌫(t). (b) The upper plot shows the local charge den-
sity Qn(t) as measured in the experiment after post-selection,
while the lower plot shows its deviation from theory.

the experiment is dominated by noise that is not corre-
lated in time. Note that by construction, the symmetry-
protection scheme only mitigates time-correlated errors.

IV. DISCUSSION

We have digitally simulated the time evolution of the
lattice Schwinger model with up to six qubits. For a
four-qubit simulation, we observe four oscillations of the
particle density, and the simulated time is almost four
times longer than previously demonstrated using a Trot-
terized scheme [64, 71]. Given the long circuit depths
required for dynamical gauge-theory simulations, gate fi-
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OUTLINE OF PART III:

DIGITAL QUANTUM COMPUTING TIME EVOLUTION IN LGTs

i) A general algorithmic strategy

ii) Time evolution in the Schwinger model


In purely fermionic formulation

In fermion-boson formulation


iii) Outlining the differences between Abelian and non-Abelian algorithms

iv) Finally…what we did not cover



NOW WHAT ABOUT FERMIONIC-BOSONIC REPRESENTATION 
WITH THE SECOND-ORDER PRODUCT FORMULA?

One can split the terms in the Hamiltonian as:

the sum via a Monte-Carlo average [63], but millions of norm evaluations are often still needed to reduce the
variance of the estimate to tolerable levels. Such sampling further prevents the results from being used as an
upper bound without invoking probabilistic arguments and loose-tail probability bounds such as the Markov
inequality. Even once these bounds are evaluated, it should be noted that the prefactors in the analysis are
unlikely to be tight [24] which means that in order to understand the true performance of high-order Trotter
formulas for lattice discretizations of the Schwinger model, it may be necessary to attempt to extrapolate the
empirical performance from small-scale numerical simulations of the error.

These higher-order Trotter-Suzuki formulas also are seldom preferable for simulating quantum dynamics
for modest-sized quantum systems. Indeed, many studies have verified that low-order formulas (such as the
second-order Trotter formula) actually can cost fewer computational resources than their high-order brethren [23,
63, 73] for realistic simulations. Furthermore, the second-order formula can also outperform asymptotically-
superior simulation methods such as qubitization [23, 51] and linear-combinations of unitaries (LCU) simulation
methods [13, 22]. This improved performance is anticipated to be a consequence of the fact that the Trotter-
Suzuki errors depend on the commutators, rather than the magnitude of the Hamiltonian terms’ coe�cients as
per [13, 22, 51].

For the above reasons (as well as the fact that tight and easily-evaluatable error bounds exist for the second-
order formula), we choose to use the second-order Trotter formula in the following discussion and explicitly
evaluate the commutator bound for the error given in (30), which is the tightest known bound for the second-
order Trotter formula.

2.3 Comparison to Qubitization and Linear Combination of Unitaries Methods
One aspect in which the second-order Trotter formulas that we use perform well relative to popular methods,
such as qubitization [51], linear combinations of unitaries [13, 22, 51] or their classically-controlled analogue
QDRIFT [14, 20], is that the complexity of the Hamiltonian simulation scales better with the size of the electric
cuto�, �. The complexities of qubitization, LCU and QDRIFT all scale linearly with the sum of the Hamiltonian
terms’ coe�cients when expressed as a sum of unitary matrices. This leads to a scaling of the Trotter step
number with � of ÂO(�2). Instead, it is straightforward to note that the norm of the commutators [E2

r
, [E2

r
, HI ]]

scale as O(�2) and that all other terms scale at most as O(�2) (see Lemma 22 for more details). This leads to
a number of Trotter steps needed for the second-order Trotter-Suzuki formula that is in O(�) from (30). Thus,
accounting for the logarithmic-sized circuits that we will use to implement these terms, the total cost for the
simulation is in ÂO(�), which is (up to polylogarithmic factors) quadratically better than LCU or qubitization
methods and without the additional spatial overheads they require [23].

The fact that Trotter-Suzuki methods can be the preferred method for simulating discretizations of unbounded
Hamiltonians is also noted in [68] where commutator bounds are used to show that quartic oscillators can be
simulated more e�ciently with Trotter-series decompositions than would be expected from a standard imple-
mentation of qubitization or LCU methods. This is why we focus on Trotter methods for this study here. It is
left for subsequent work to examine the performance of post-Trotter methods discussed above.

2.4 Trotter-Suzuki Decomposition for the Schwinger Model
In order to form a Trotter-Suzuki formula, we decompose the Schwinger model Hamiltonian into a sum of
simulatable terms. Ideally, each term would also be e�ciently simulatable. Examples of such terms are Pauli
operators or operators diagonal in the computational basis (with e�ciently computable diagonal elements) [12,
57].

First we define Tr to be the interaction term coupling sites r and r + 1 and define Dr to be the (diagonalized)
mass plus electric energy associated to site r:

Tr := x

3
1
4(Ur + U†

r
)(XrXr+1 + YrYr+1) + i

4(Ur ≠ U†
r
)(XrYr+1 ≠ YrXr+1)

4
,

D(M)
r

:= ≠µ

2 (≠1)rZr and D(E)
r

:= E2
r
(1 ≠ ”r,N ), (34)

where we further define

H =
Nÿ

r=1
(Tr + Dr) , with Dr := D(M)

r
+ D(E)

r
. (35)

The Dr are each of a sum of two terms that commute so that

e≠iDrt = e≠iD
(M)
r

te≠iD
(E)
r

t. (36)
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the sum via a Monte-Carlo average [63], but millions of norm evaluations are often still needed to reduce the
variance of the estimate to tolerable levels. Such sampling further prevents the results from being used as an
upper bound without invoking probabilistic arguments and loose-tail probability bounds such as the Markov
inequality. Even once these bounds are evaluated, it should be noted that the prefactors in the analysis are
unlikely to be tight [24] which means that in order to understand the true performance of high-order Trotter
formulas for lattice discretizations of the Schwinger model, it may be necessary to attempt to extrapolate the
empirical performance from small-scale numerical simulations of the error.

These higher-order Trotter-Suzuki formulas also are seldom preferable for simulating quantum dynamics
for modest-sized quantum systems. Indeed, many studies have verified that low-order formulas (such as the
second-order Trotter formula) actually can cost fewer computational resources than their high-order brethren [23,
63, 73] for realistic simulations. Furthermore, the second-order formula can also outperform asymptotically-
superior simulation methods such as qubitization [23, 51] and linear-combinations of unitaries (LCU) simulation
methods [13, 22]. This improved performance is anticipated to be a consequence of the fact that the Trotter-
Suzuki errors depend on the commutators, rather than the magnitude of the Hamiltonian terms’ coe�cients as
per [13, 22, 51].

For the above reasons (as well as the fact that tight and easily-evaluatable error bounds exist for the second-
order formula), we choose to use the second-order Trotter formula in the following discussion and explicitly
evaluate the commutator bound for the error given in (30), which is the tightest known bound for the second-
order Trotter formula.

2.3 Comparison to Qubitization and Linear Combination of Unitaries Methods
One aspect in which the second-order Trotter formulas that we use perform well relative to popular methods,
such as qubitization [51], linear combinations of unitaries [13, 22, 51] or their classically-controlled analogue
QDRIFT [14, 20], is that the complexity of the Hamiltonian simulation scales better with the size of the electric
cuto�, �. The complexities of qubitization, LCU and QDRIFT all scale linearly with the sum of the Hamiltonian
terms’ coe�cients when expressed as a sum of unitary matrices. This leads to a scaling of the Trotter step
number with � of ÂO(�2). Instead, it is straightforward to note that the norm of the commutators [E2

r
, [E2

r
, HI ]]

scale as O(�2) and that all other terms scale at most as O(�2) (see Lemma 22 for more details). This leads to
a number of Trotter steps needed for the second-order Trotter-Suzuki formula that is in O(�) from (30). Thus,
accounting for the logarithmic-sized circuits that we will use to implement these terms, the total cost for the
simulation is in ÂO(�), which is (up to polylogarithmic factors) quadratically better than LCU or qubitization
methods and without the additional spatial overheads they require [23].

The fact that Trotter-Suzuki methods can be the preferred method for simulating discretizations of unbounded
Hamiltonians is also noted in [68] where commutator bounds are used to show that quartic oscillators can be
simulated more e�ciently with Trotter-series decompositions than would be expected from a standard imple-
mentation of qubitization or LCU methods. This is why we focus on Trotter methods for this study here. It is
left for subsequent work to examine the performance of post-Trotter methods discussed above.

2.4 Trotter-Suzuki Decomposition for the Schwinger Model
In order to form a Trotter-Suzuki formula, we decompose the Schwinger model Hamiltonian into a sum of
simulatable terms. Ideally, each term would also be e�ciently simulatable. Examples of such terms are Pauli
operators or operators diagonal in the computational basis (with e�ciently computable diagonal elements) [12,
57].

First we define Tr to be the interaction term coupling sites r and r + 1 and define Dr to be the (diagonalized)
mass plus electric energy associated to site r:

Tr := x

3
1
4(Ur + U†

r
)(XrXr+1 + YrYr+1) + i

4(Ur ≠ U†
r
)(XrYr+1 ≠ YrXr+1)

4
,

D(M)
r

:= ≠µ

2 (≠1)rZr and D(E)
r

:= E2
r
(1 ≠ ”r,N ), (34)

where we further define

H =
Nÿ

r=1
(Tr + Dr) , with Dr := D(M)

r
+ D(E)

r
. (35)

The Dr are each of a sum of two terms that commute so that

e≠iDrt = e≠iD
(M)
r

te≠iD
(E)
r

t. (36)
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the sum via a Monte-Carlo average [63], but millions of norm evaluations are often still needed to reduce the
variance of the estimate to tolerable levels. Such sampling further prevents the results from being used as an
upper bound without invoking probabilistic arguments and loose-tail probability bounds such as the Markov
inequality. Even once these bounds are evaluated, it should be noted that the prefactors in the analysis are
unlikely to be tight [24] which means that in order to understand the true performance of high-order Trotter
formulas for lattice discretizations of the Schwinger model, it may be necessary to attempt to extrapolate the
empirical performance from small-scale numerical simulations of the error.

These higher-order Trotter-Suzuki formulas also are seldom preferable for simulating quantum dynamics
for modest-sized quantum systems. Indeed, many studies have verified that low-order formulas (such as the
second-order Trotter formula) actually can cost fewer computational resources than their high-order brethren [23,
63, 73] for realistic simulations. Furthermore, the second-order formula can also outperform asymptotically-
superior simulation methods such as qubitization [23, 51] and linear-combinations of unitaries (LCU) simulation
methods [13, 22]. This improved performance is anticipated to be a consequence of the fact that the Trotter-
Suzuki errors depend on the commutators, rather than the magnitude of the Hamiltonian terms’ coe�cients as
per [13, 22, 51].

For the above reasons (as well as the fact that tight and easily-evaluatable error bounds exist for the second-
order formula), we choose to use the second-order Trotter formula in the following discussion and explicitly
evaluate the commutator bound for the error given in (30), which is the tightest known bound for the second-
order Trotter formula.

2.3 Comparison to Qubitization and Linear Combination of Unitaries Methods
One aspect in which the second-order Trotter formulas that we use perform well relative to popular methods,
such as qubitization [51], linear combinations of unitaries [13, 22, 51] or their classically-controlled analogue
QDRIFT [14, 20], is that the complexity of the Hamiltonian simulation scales better with the size of the electric
cuto�, �. The complexities of qubitization, LCU and QDRIFT all scale linearly with the sum of the Hamiltonian
terms’ coe�cients when expressed as a sum of unitary matrices. This leads to a scaling of the Trotter step
number with � of ÂO(�2). Instead, it is straightforward to note that the norm of the commutators [E2
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, HI ]]

scale as O(�2) and that all other terms scale at most as O(�2) (see Lemma 22 for more details). This leads to
a number of Trotter steps needed for the second-order Trotter-Suzuki formula that is in O(�) from (30). Thus,
accounting for the logarithmic-sized circuits that we will use to implement these terms, the total cost for the
simulation is in ÂO(�), which is (up to polylogarithmic factors) quadratically better than LCU or qubitization
methods and without the additional spatial overheads they require [23].

The fact that Trotter-Suzuki methods can be the preferred method for simulating discretizations of unbounded
Hamiltonians is also noted in [68] where commutator bounds are used to show that quartic oscillators can be
simulated more e�ciently with Trotter-series decompositions than would be expected from a standard imple-
mentation of qubitization or LCU methods. This is why we focus on Trotter methods for this study here. It is
left for subsequent work to examine the performance of post-Trotter methods discussed above.

2.4 Trotter-Suzuki Decomposition for the Schwinger Model
In order to form a Trotter-Suzuki formula, we decompose the Schwinger model Hamiltonian into a sum of
simulatable terms. Ideally, each term would also be e�ciently simulatable. Examples of such terms are Pauli
operators or operators diagonal in the computational basis (with e�ciently computable diagonal elements) [12,
57].

First we define Tr to be the interaction term coupling sites r and r + 1 and define Dr to be the (diagonalized)
mass plus electric energy associated to site r:
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the sum via a Monte-Carlo average [63], but millions of norm evaluations are often still needed to reduce the
variance of the estimate to tolerable levels. Such sampling further prevents the results from being used as an
upper bound without invoking probabilistic arguments and loose-tail probability bounds such as the Markov
inequality. Even once these bounds are evaluated, it should be noted that the prefactors in the analysis are
unlikely to be tight [24] which means that in order to understand the true performance of high-order Trotter
formulas for lattice discretizations of the Schwinger model, it may be necessary to attempt to extrapolate the
empirical performance from small-scale numerical simulations of the error.

These higher-order Trotter-Suzuki formulas also are seldom preferable for simulating quantum dynamics
for modest-sized quantum systems. Indeed, many studies have verified that low-order formulas (such as the
second-order Trotter formula) actually can cost fewer computational resources than their high-order brethren [23,
63, 73] for realistic simulations. Furthermore, the second-order formula can also outperform asymptotically-
superior simulation methods such as qubitization [23, 51] and linear-combinations of unitaries (LCU) simulation
methods [13, 22]. This improved performance is anticipated to be a consequence of the fact that the Trotter-
Suzuki errors depend on the commutators, rather than the magnitude of the Hamiltonian terms’ coe�cients as
per [13, 22, 51].

For the above reasons (as well as the fact that tight and easily-evaluatable error bounds exist for the second-
order formula), we choose to use the second-order Trotter formula in the following discussion and explicitly
evaluate the commutator bound for the error given in (30), which is the tightest known bound for the second-
order Trotter formula.

2.3 Comparison to Qubitization and Linear Combination of Unitaries Methods
One aspect in which the second-order Trotter formulas that we use perform well relative to popular methods,
such as qubitization [51], linear combinations of unitaries [13, 22, 51] or their classically-controlled analogue
QDRIFT [14, 20], is that the complexity of the Hamiltonian simulation scales better with the size of the electric
cuto�, �. The complexities of qubitization, LCU and QDRIFT all scale linearly with the sum of the Hamiltonian
terms’ coe�cients when expressed as a sum of unitary matrices. This leads to a scaling of the Trotter step
number with � of ÂO(�2). Instead, it is straightforward to note that the norm of the commutators [E2

r
, [E2

r
, HI ]]

scale as O(�2) and that all other terms scale at most as O(�2) (see Lemma 22 for more details). This leads to
a number of Trotter steps needed for the second-order Trotter-Suzuki formula that is in O(�) from (30). Thus,
accounting for the logarithmic-sized circuits that we will use to implement these terms, the total cost for the
simulation is in ÂO(�), which is (up to polylogarithmic factors) quadratically better than LCU or qubitization
methods and without the additional spatial overheads they require [23].

The fact that Trotter-Suzuki methods can be the preferred method for simulating discretizations of unbounded
Hamiltonians is also noted in [68] where commutator bounds are used to show that quartic oscillators can be
simulated more e�ciently with Trotter-series decompositions than would be expected from a standard imple-
mentation of qubitization or LCU methods. This is why we focus on Trotter methods for this study here. It is
left for subsequent work to examine the performance of post-Trotter methods discussed above.

2.4 Trotter-Suzuki Decomposition for the Schwinger Model
In order to form a Trotter-Suzuki formula, we decompose the Schwinger model Hamiltonian into a sum of
simulatable terms. Ideally, each term would also be e�ciently simulatable. Examples of such terms are Pauli
operators or operators diagonal in the computational basis (with e�ciently computable diagonal elements) [12,
57].

First we define Tr to be the interaction term coupling sites r and r + 1 and define Dr to be the (diagonalized)
mass plus electric energy associated to site r:

Tr := x
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e≠iDrt = e≠iD
(M)
r

te≠iD
(E)
r

t. (36)

Accepted in Quantum 2020-08-02, click title to verify. Published under CC-BY 4.0. 7

<latexit sha1_base64="8yaoKCskarkczxuKjVJDmOoaVJQ=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix68diC/YA2lM120q7dbMLuRiyhv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtR1Sax/LejBP0IzqQPOSMGivVn3qlsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveZcWrX5SrN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHpwX5935mLeuOPnMEfyB8/kD6DGNAg==</latexit>x

the sum via a Monte-Carlo average [63], but millions of norm evaluations are often still needed to reduce the
variance of the estimate to tolerable levels. Such sampling further prevents the results from being used as an
upper bound without invoking probabilistic arguments and loose-tail probability bounds such as the Markov
inequality. Even once these bounds are evaluated, it should be noted that the prefactors in the analysis are
unlikely to be tight [24] which means that in order to understand the true performance of high-order Trotter
formulas for lattice discretizations of the Schwinger model, it may be necessary to attempt to extrapolate the
empirical performance from small-scale numerical simulations of the error.

These higher-order Trotter-Suzuki formulas also are seldom preferable for simulating quantum dynamics
for modest-sized quantum systems. Indeed, many studies have verified that low-order formulas (such as the
second-order Trotter formula) actually can cost fewer computational resources than their high-order brethren [23,
63, 73] for realistic simulations. Furthermore, the second-order formula can also outperform asymptotically-
superior simulation methods such as qubitization [23, 51] and linear-combinations of unitaries (LCU) simulation
methods [13, 22]. This improved performance is anticipated to be a consequence of the fact that the Trotter-
Suzuki errors depend on the commutators, rather than the magnitude of the Hamiltonian terms’ coe�cients as
per [13, 22, 51].

For the above reasons (as well as the fact that tight and easily-evaluatable error bounds exist for the second-
order formula), we choose to use the second-order Trotter formula in the following discussion and explicitly
evaluate the commutator bound for the error given in (30), which is the tightest known bound for the second-
order Trotter formula.

2.3 Comparison to Qubitization and Linear Combination of Unitaries Methods
One aspect in which the second-order Trotter formulas that we use perform well relative to popular methods,
such as qubitization [51], linear combinations of unitaries [13, 22, 51] or their classically-controlled analogue
QDRIFT [14, 20], is that the complexity of the Hamiltonian simulation scales better with the size of the electric
cuto�, �. The complexities of qubitization, LCU and QDRIFT all scale linearly with the sum of the Hamiltonian
terms’ coe�cients when expressed as a sum of unitary matrices. This leads to a scaling of the Trotter step
number with � of ÂO(�2). Instead, it is straightforward to note that the norm of the commutators [E2

r
, [E2

r
, HI ]]

scale as O(�2) and that all other terms scale at most as O(�2) (see Lemma 22 for more details). This leads to
a number of Trotter steps needed for the second-order Trotter-Suzuki formula that is in O(�) from (30). Thus,
accounting for the logarithmic-sized circuits that we will use to implement these terms, the total cost for the
simulation is in ÂO(�), which is (up to polylogarithmic factors) quadratically better than LCU or qubitization
methods and without the additional spatial overheads they require [23].

The fact that Trotter-Suzuki methods can be the preferred method for simulating discretizations of unbounded
Hamiltonians is also noted in [68] where commutator bounds are used to show that quartic oscillators can be
simulated more e�ciently with Trotter-series decompositions than would be expected from a standard imple-
mentation of qubitization or LCU methods. This is why we focus on Trotter methods for this study here. It is
left for subsequent work to examine the performance of post-Trotter methods discussed above.

2.4 Trotter-Suzuki Decomposition for the Schwinger Model
In order to form a Trotter-Suzuki formula, we decompose the Schwinger model Hamiltonian into a sum of
simulatable terms. Ideally, each term would also be e�ciently simulatable. Examples of such terms are Pauli
operators or operators diagonal in the computational basis (with e�ciently computable diagonal elements) [12,
57].

First we define Tr to be the interaction term coupling sites r and r + 1 and define Dr to be the (diagonalized)
mass plus electric energy associated to site r:

Tr := x
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The Dr are each of a sum of two terms that commute so that
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the sum via a Monte-Carlo average [63], but millions of norm evaluations are often still needed to reduce the
variance of the estimate to tolerable levels. Such sampling further prevents the results from being used as an
upper bound without invoking probabilistic arguments and loose-tail probability bounds such as the Markov
inequality. Even once these bounds are evaluated, it should be noted that the prefactors in the analysis are
unlikely to be tight [24] which means that in order to understand the true performance of high-order Trotter
formulas for lattice discretizations of the Schwinger model, it may be necessary to attempt to extrapolate the
empirical performance from small-scale numerical simulations of the error.

These higher-order Trotter-Suzuki formulas also are seldom preferable for simulating quantum dynamics
for modest-sized quantum systems. Indeed, many studies have verified that low-order formulas (such as the
second-order Trotter formula) actually can cost fewer computational resources than their high-order brethren [23,
63, 73] for realistic simulations. Furthermore, the second-order formula can also outperform asymptotically-
superior simulation methods such as qubitization [23, 51] and linear-combinations of unitaries (LCU) simulation
methods [13, 22]. This improved performance is anticipated to be a consequence of the fact that the Trotter-
Suzuki errors depend on the commutators, rather than the magnitude of the Hamiltonian terms’ coe�cients as
per [13, 22, 51].

For the above reasons (as well as the fact that tight and easily-evaluatable error bounds exist for the second-
order formula), we choose to use the second-order Trotter formula in the following discussion and explicitly
evaluate the commutator bound for the error given in (30), which is the tightest known bound for the second-
order Trotter formula.

2.3 Comparison to Qubitization and Linear Combination of Unitaries Methods
One aspect in which the second-order Trotter formulas that we use perform well relative to popular methods,
such as qubitization [51], linear combinations of unitaries [13, 22, 51] or their classically-controlled analogue
QDRIFT [14, 20], is that the complexity of the Hamiltonian simulation scales better with the size of the electric
cuto�, �. The complexities of qubitization, LCU and QDRIFT all scale linearly with the sum of the Hamiltonian
terms’ coe�cients when expressed as a sum of unitary matrices. This leads to a scaling of the Trotter step
number with � of ÂO(�2). Instead, it is straightforward to note that the norm of the commutators [E2

r
, [E2

r
, HI ]]

scale as O(�2) and that all other terms scale at most as O(�2) (see Lemma 22 for more details). This leads to
a number of Trotter steps needed for the second-order Trotter-Suzuki formula that is in O(�) from (30). Thus,
accounting for the logarithmic-sized circuits that we will use to implement these terms, the total cost for the
simulation is in ÂO(�), which is (up to polylogarithmic factors) quadratically better than LCU or qubitization
methods and without the additional spatial overheads they require [23].

The fact that Trotter-Suzuki methods can be the preferred method for simulating discretizations of unbounded
Hamiltonians is also noted in [68] where commutator bounds are used to show that quartic oscillators can be
simulated more e�ciently with Trotter-series decompositions than would be expected from a standard imple-
mentation of qubitization or LCU methods. This is why we focus on Trotter methods for this study here. It is
left for subsequent work to examine the performance of post-Trotter methods discussed above.

2.4 Trotter-Suzuki Decomposition for the Schwinger Model
In order to form a Trotter-Suzuki formula, we decompose the Schwinger model Hamiltonian into a sum of
simulatable terms. Ideally, each term would also be e�ciently simulatable. Examples of such terms are Pauli
operators or operators diagonal in the computational basis (with e�ciently computable diagonal elements) [12,
57].

First we define Tr to be the interaction term coupling sites r and r + 1 and define Dr to be the (diagonalized)
mass plus electric energy associated to site r:

Tr := x
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and do the following ordering of the terms

|j0i Rz(20t) • • • • • •

|j1i Rz(21t) Rz(21t)
...

...
. . .

|j⌘�2i Rz(2⌘�2
t) Rz(2⌘�2

t) • •

|j⌘�1i Rz(2⌘�1
t) Rz(2⌘�1

t) Rz(22⌘�3
t)

(81)

Figure 5: Circuit for simulating e≠iE2t
in qubit limited setting. The circuit is shown acting on the product state ¢÷≠1

k=0 |jkÍ
to clearly mark which qubit each gate is intended to act upon although the circuit is valid for arbitrary inputs.

The right-hand side of (77) requires fewer CNOTs to implement than the left-hand side. Reducing the circuit
of Figure 5 to Figure 4 employs an application of (77) ÷ ≠ 2 times between the columns of z-rotations, along
with a minor CNOT simplification at the end of the circuit. Counting the CNOTs in Figure 4, we get

Q

a
÷≠1ÿ

j=1
j

R

b + ÷ ≠ 1 = ÷(÷ ≠ 1)
2 + ÷ ≠ 1 = (÷ + 2)(÷ ≠ 1)

2 . (79)

Similarly, the number of single-qubit rotations needed for the circuit is

÷(÷ ≠ 1)
2 + ÷ = ÷(÷ + 1)

2 (80)

Combining this information, the electric time evolution operator, e≠iE
2
t, can be implemented exactly (up to

a t-dependent global phase) by ÷(÷+1)
2 single-qubit Z rotations and (÷+2)(÷≠1)

2 CNOTs.

While being conducive to implementation on qubit-limited hardware, this implementation strategy is attrac-
tive as a decomposition into mutually-commuting operators—contributing no additional systematic errors to
the Trotterized time evolution operator. It is interesting to note that this set of all two-qubit Z operators has
also been found su�cient to implement time evolution of the scalar field mass term [39, 40, 45, 52, 67]. Similar
resource constrained results can be found using singular value transformations or phase arithmetic [32, 51, 76]
but these approaches require at least one additional qubit. For fault-tolerent implementation, a quadratically-
improved method utilizing arithmetic with ancillary qubits is presented in Section 4.2.

3.3 Cost to Implement Approximate Time Step in Noisy Entangling Gate Model
In the following statement, we summarize the cost of implementing a single time step V (t) (38). Note that we
may implement these exactly in the NEG computational model, where single-qubit operations are free.

Lemma 3 (Schwinger Time Step Cost in NEG Model). Consider any t œ R. The unitary operation V (t) as
defined in (38) may be implemented on a quantum computer in the Noisy Entangling Gate model using a number
of CNOTs that is at most

(N ≠ 1)(9÷2 ≠ 7÷ + 34).

Proof. Proof follows by considering the symmetric Trotter-Suzuki expansion of the time-evolution operator. In
particular, we have that e≠iHt = V (t) + O(t3), where V is defined as in (38) and restated here for convenience:

V (t) =
N≠1Ÿ

r=1

Q

a
Ÿ

kœ{M,E}

e≠iD
(k)
r

t/2
4Ÿ

j=1
e≠iT

(j)
r

t/2

R

b e≠iD
(M)
N

t

1Ÿ

r=N≠1

Q

a
1Ÿ

j=4
e≠iT

(j)
r

t/2
Ÿ

kœ{E,M}

e≠iD
(k)
r

t/2

R

b .

The proof now proceeds by a counting of the number of gates needed to implement V .
The mass terms, given in D(M)

r , are single-qubit operations and require no CNOTs to implement. They are
therefore free within the cost model considered here.

The hopping terms are implemented according to the discussion of Section 3.1 and their total cost is deter-
mined as follows: 18 explicit CNOTs appear in Figure 3 and the rest are embedded in the two shifters. Each
shifter can be implemented as in Figure 2, namely using two quantum Fourier transforms and single-qubit rota-
tions. A single quantum Fourier transform can be done using Kitaev’s approach [57] in

q
÷≠1
k=1(÷≠k) = ÷(÷≠1)/2
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V2(t)

Shaw, Lougovski, Stryker, Wiebe, Quantum 4, 306 (2020).
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H = x
X

x

⇥
�
+(x)U(x)��(x) + h.c.

⇤
+
X

x

E(x)2 +
µ

2

X

x

(�1)x�z(x)



Example

This example concerns finding a quantum circuit for implementing


in the time-evolution of lattice Schwinger model in a near-term scenario that avoids introducing 
any ancilla qubits. Consider  and encode the electric-field Hilbert space on each link 
 into  qubits. Given this, find a circuit representation for  in terms of only 

single-qubit rotations around the z axis of Bloch sphere as well as two-qubit CNOT gates. Verify 
your answer by explicitly working out a small example.

Ei ∈ [−Λ, Λ]
i η ≡ ⌈log2(2Λ) + 1⌉ U(E)

i

U(E) =
N

∏
i−1

U(E)
i = e−it∑N

i=1 E2
i

It is easy to show that the electric-field operator at each link acting on the computational (binary) 
basis is:

E = − Λ 𝕀 +
1
2

(2η − 1)𝕀 −
η−1

∑
j=0

2j σz
j

Therefore,


E2 = Λ2 𝕀 − Λ (2η − 1)𝕀 −
η−1

∑
j=0

2j σz
j +

1
4

(2η − 1)2𝕀 − 2(2η − 1)
η−1

∑
j=0

2j σz
j +

η−1

∑
j, j′￼=0

2j+j′￼σz
j σz

j′￼

Consequently, the operator  can be written as a product of  rotations and 
 rotations with rotation angles that can be read off from the expression above. 

Note that each  gate amounts to two CNOT gates and one  gate.

U(E) Nη Rz

Nη(η − 1)/2 Rzz

Rzz Rz



U(E)
1

⋯
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in the time-evolution of lattice Schwinger model in a near-term scenario that avoids introducing 
any ancilla qubits. Consider  and encode the electric-field Hilbert space on each link 
 into  qubits. Given this, find a circuit representation for  in terms of only 

single-qubit rotations around the z axis of Bloch sphere as well as two-qubit CNOT gates. Verify 
your answer by explicitly working out a small example.

Ei ∈ [−Λ, Λ]
i η ≡ ⌈log2(2Λ) + 1⌉ U(E)

i

U(E) =
N

∏
i−1

U(E)
i = e−it∑N

i=1 E2
i



The previous example requires  number of  gates, which are costly operations in the 
fault-tolerant regime as they need to be synthesized up to accuracy  using roughly  T 
gates. Can one reduce the  cost of electric-field evolution to ? The answer is yes, but at 
the cost of extra  ancillas that are, nonetheless, available in the fault-tolerant era. One such 
circuit can be constructed using the so-called phase-kickback routine. For each :

O(Nη2) Rz

ϵ log(1/ϵ)
Rz O(Nη)

O(η)
U(E)

i

Register that 
temporarily holds the 

 value at each linkE2
i

Phase gets 
implemented here 
based on the  valueE2

i

Logic gates 
uncomputing .E2

i

Logic gates 
computing .E2

i

Schwinger-boson mass propagator subroutine T gates Workspace Scratch space

Each E≠itH
SB(j)

M rotation Cz(‘) 0 0
Full e≠itH

SB

M (r) circuit 2 Cz(‘) 0 0

Schwinger-boson electric propagator subroutine T gates Workspace Scratch space
(Un)compute NL 4÷ ÷ 1
Copy 0 0 ÷ + 1
(÷ + 1)◊ (÷ + 1) mult. 8÷2 + 12÷ + 4 2÷ + 2 2÷ + 2
HSB(1)

E
rotations (÷ + 1)Cz(‘) 0 0

HSB(2)

E
rotations (2÷ + 2)Cz(‘) 0 0

Full e≠itH
SB

E (r) circuit 16÷2+32÷+8+(3÷+3)Cz(‘) 2÷ + 2 3÷ + 4

Table 4: Summary of the costs associated with the far-term simulation of the diagonal operators in the Schwinger-boson
Hamiltonian, as explained in the text.

÷+1

÷+1

2÷+2

|NL
Í

C
op

y

M
ul

t.

r
÷

k=0
exp(i t 2k≠2Zk)

M
ul

t.†

C
op

y† |NL
Í

|0Í |0Í

|0Í r
2÷+1

k=0
exp(i t 2k≠3Zk) |0Í

> <

> <

Figure 6: A quantum circuit to realize the phase kickback for HE(r). The same circuit is applicable to both the
Schwinger-boson and the LSH formulations, with the only di�erence being the evaluation of NL (the subcircuit that
evaluates NL is not shown). The > symbol denotes that the obtained value in the subcircuit is stored in the corresponding
qubit register, and the < symbol indicates that the corresponding register is cleared from the stored values as a result
of the action of the inverse subcircuit.

2. Compute (NL)2.
3. E�ect phase kickback via the registers containing NL and (NL)2.
4. Uncompute (NL)2 and NL.

In step (1), NL can be computed as

|nL

1
Í |nL

2
Í |0Í¢(1+÷)

‘æ |nL

1
Í |NL

Í |0Í¢÷ (62)

using an ÷-bit in-place adder. The adder, according to Lemma A.2, calls for ÷ workspace qubits and costs 4÷ T
gates. For (2), (NL)2 is computed as |NL

Í |0Í¢(5÷+5)
‘æ |NL

Í |NL
Í |0Í¢(4÷+4)

‘æ |NL
Í |NL

Í |(NL)2Í |0Í¢(2÷+2),
by first copying NL to an (÷ + 1)-bit register using CNOT gates, and then multiplying the two copies of NL.
According to Lemma A.3, the multiplier costs 8÷2 + 12÷ + 4 T gates and 2÷ + 2 bits of workspace. In step (3),
the NL(r) and (NL(r))2 terms of HE(r) are e�ectively simulated by applying single-qubit RZ gates across the
|NL

Í and |(NL)2Í registers (up to global phases that are dropped). Finally, in step (4), uncomputation involves
reversing the gates of steps (2) and (1) and the associated costs are the same. Steps (2)-(4) are shown in Fig. 6.
In total, the procedure outlined above involves 3÷+3 RZ gates, which can each be done to the desired precision
using the RUS method mentioned above [160]. The costs associated with all the subroutines are summarized
in Table 4. The final, quoted costs are obtained by adding up the workspace and scratch-space sizes.

Implementing hopping propagators

Lemma 3.6. Let ÷ = log
2
(� + 1) be the number of qubits per Schwinger boson mode, n > 0 be the number of

Newton’s method iterations, and m > 0 be a fixed binary arithmetic precision. Then �8

j=1
e≠itH

SB(j)

I (r) can be
implemented within an additive spectral-norm error of

8xt
5
2n

1Ô
2≠ 1

22
n

+ 22≠m

33
3
2

4n

≠ 1
46

(63)

Accepted in Quantum 2023-10-11, click title to verify. Published under CC-BY 4.0. 26

−1

−

Ei Ei

σz
k

The logical copy and multiplication routines are known circuits and overall cost  T gates. 
The ancilla qubits are reset in the end and can be used in the remainder of the circuit.

O(η2)



How do you implement arbitrary diagonal operator  in the computational 

basis? [Think about two examples: i)  and ii) !]

e−it𝒟

𝒟 |n⟩ = n |n⟩ 𝒟 |n⟩ =
n + 1
n − 1

|n⟩



Circuit and recourse analysis

Near term cost

|j⌘�1i
+1 �1...

|j0i H • • H H • • H S
† H • • H S S

† H • • H S

|ri • H • Rz(xt/4) • • Rz(xt/4) • H S
† H • Rz(�xt/4) • • Rz(�xt/4) • H • S

|r + 1i Rz(�xt/4) Rz(�xt/4) Rz(xt/4) Rz(xt/4)

Figure 3: A circuit to simulate the Schwinger model hopping terms,
r1

j=4 e≠iT (j)t/2
, in the order corresponding to

(50). The locality of the presented operator will be expanded to include ÷-distance CNOTs between qubits representing

fermionic degrees of freedom in quantum registers with one-dimensional connectivity. The gates labeled +1 and ≠1 are

the incrementer and decrementer circuits.

with S the “phase gate,” |0Í È0| + i |1Í È1|. To reduce clutter, these composite operators are denoted by

Gr := XrXr+1 + YrYr+1 and G̃r := XrYr+1 ≠ YrXr+1. (49)

To simulate a hopping term in the Trotter step V (t), we will employ the approximation

e≠i
xt

8 ((A+Ã)¢G+(B+B̃)¢G̃) ¥ e≠itT
(4)

/2e≠itT
(3)

/2e≠itT
(2)

/2e≠itT
(1)

/2, (50)

where

T (1) := x(A ¢ G)/4, (51)
T (2) := x(Ã ¢ G)/4, (52)
T (3) := x(B̃ ¢ G̃)/4, (53)
T (4) := x(B ¢ G̃)/4. (54)

A circuit representation of the right-hand side of (50) is given in Figure 3. This routine can be understood
in a simple way by first noting the similarity of the four T (i) operators:

T (2)
r

= S†
E,r

T (1)
r

SE,r (55)

T (3)
r

= S†
E,r

(Sb

0,r
Sf

r
)
1

≠T (1)
r

2
(Sb

0,r
Sf

r
)†SE,r (56)

T (4)
r

= (Sb

0,r
Sf

r
)
1

≠T (1)
2

(Sb

0,r
Sf

r
)† (57)

Consequently, the whole circuit is essentially just four applications of e≠itT
(1)

/2 along with appropriately inserted
basis transformations and rotation angle negations. The specific ordering of the T (i) chosen yields cancellations
that reduce the number of internal basis transformations that must be individually executed. A few single-
and two-qubit gates are also spared by additional cancellations. The remainder of this section addresses the
implementation of eûitT

(1)
/2.

To e�ect an application of e≠itT
(1)

/2, one can first transform to a basis in which X ¢ G is diagonal. (Recall
A is just X0 – a bit flip on the last bit of the bosonic register.) G is diagonalized by the so-called Bell states,

|—abÍ = |0 bÍ + (≠1)a |1 b̄ÍÔ
2

(58)

G |—abÍ = 2b(≠1)a |—abÍ (59)

with b̄ indicating the binary negation of b, while X is diagonalized by |±Í = (|0Í ± |1Í)/
Ô

2. From this, we have
that

e≠ ixt

8 X¢G |±Í |—00Í = |±Í |—00Í (60)

e≠ ixt

8 X¢G |±Í |—01Í = eû ixt

4 |±Í |—01Í (61)

e≠ ixt

8 X¢G |±Í |—10Í = |±Í |—10Í (62)

e≠ ixt

8 X¢G |±Í |—11Í = e± ixt

4 |±Í |—11Í . (63)

Thus, in the Bell basis, we implement rotations conditioned on a and b.
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Part of electric field 
interactions acting on 
gauge DOF registers

Sample gauge-fermion 
interaction block

|j0i Rz(20t) • • • • •

|j1i Rz(21t) Rz(21t) • • • •

|j2i Rz(22t) Rz(22t) Rz(23t) •
...

...
. . . . . .

|j⌘�2i Rz(2⌘�2t) Rz(2⌘�2t) Rz(2⌘�1t) • •

|j⌘�1i Rz(2⌘�1t) Rz(2⌘�1t) Rz(2⌘t) Rz(22⌘�3t)
(68)

Figure 4: Simplified circuit for simulating e≠iE2
r

t
in qubit limited setting. The circuit is shown acting on the product

state ¢÷≠1
k=0 |jkÍ to clearly mark which qubit each gate is intended to act upon although the circuit is valid for arbitrary

inputs.

The first two time slices of the circuit serve to change to the X ¢ G eigenbasis. The subsequent parallel Rz

rotations flanked by CNOTs implement the controlled rotations in the computational basis, taking

|zÍ |00Í æ |zÍ |00Í , (64)

|zÍ |01Í æ e(≠1)z̄ ixt

4 |zÍ |01Í , (65)
|zÍ |10Í æ |zÍ |10Í , (66)

|zÍ |11Í æ e(≠1)z ixt

4 |zÍ |11Í ; (67)

this is equivalent to acting with e≠ ixt

4 Z¢Z . After undoing the basis transformation, we will have e�ected
e≠ ixt

8 A¢G. Three similar operations are executed in the remainder of the circuit; an incrementer SE (denoted
by “+1”), the phase gates, and the overall minus sign on the rotations in the latter half of the circuit all stem
directly from the relations given in (55,56,57).

The above discussion is summarized below as a lemma for convenience.

Lemma 1. For any (evolution time) t œ R the operation

e≠itT
(4)

/2e≠itT
(3)

/2e≠itT
(2)

/2e≠itT
(1)

/2

can be performed using at most 8 + 2÷ single-qubit rotations, 4 ÷-qubit quantum Fourier transform circuits, 18
CNOT gates and no ancillary qubits.

3.2 Implementing (Diagonalized) Mass and Electric Energy Terms (D)
Lemma 2. The circuit provided in Figure 4 implements e≠iE

2
t on ÷ qubits exactly, up to an (e�ciently com-

putable) global phase, using (÷+2)(÷≠1)
2 CNOT operations and ÷(÷+1)

2 single-qubit rotations.

Proof. The time evolution associated with the electric energy can be exactly implemented utilizing the structure
of the operator. As defined in (14), E2 = diag[�2, (� ≠ 1)2, · · · , 1, 0, 1, · · · , (� ≠ 1)2], where � is the electric
field cuto�. Note that the diagonal elements are not distributed symmetrically—the first diagonal entry is �2

while the last entry is (� ≠ 1)2. This lack of symmetry is required to incorporate the gauge configuration with
zero electric field. However, symmetry can be leveraged by using the following operator identity:

E2 =
3

E + 1
2I

42
≠

3
E + I

2

4
+ I

4 (69)

The operator E+ 1
2 I = 1

2 diag[≠2�+1, · · · , ≠1, 1, · · · , 2�≠1] is skew persymmetric—containing positive-negative
pairs along the diagonal. We then have from (69) and since [Er, E2

r
] = 0 that

e≠iE
2
t = e≠i(E+ 1

2 I)2
tei(E+ 1

2 I)te≠it/4. (70)

Since unitaries are equivalent in quantum mechanics up to a global phase, we can ignore the last phase in the
computation (even if we didn’t want to ignore it, it can be e�ciently computed as t is a known quantity).
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COMPARISON BETWEEN THE TWO FORMULATIONS FOR THE SECOND-ORDER FORMULA

*Defined at the required number of Trotter steps for simulation time t, system 
size N , and at fixed x and µ, given a fixed error tolerance.∼ Λ

Purely fermionic (non-local) Fermionic-bosonic (local)

Qubit cost

Gate 
complexity*

<latexit sha1_base64="iNC2wNj5inVwKQVnPzCj6J8OqHE=">AAACBHicbVC7TsMwFHV4lvIKMHaxqJDKUpLyHCtYmKBI9CG1aeW4TmvVcSLbQaqiDCz8CgsDCLHyEWz8DU6bAVqOZPnonHt17z1uyKhUlvVtLCwuLa+s5tby6xubW9vmzm5DBpHApI4DFoiWiyRhlJO6ooqRVigI8l1Gmu7oKvWbD0RIGvB7NQ6J46MBpx7FSGmpZxY6PlJDjFh8m5RuuvHpUSVR3fhYf4c9s2iVrQngPLEzUgQZaj3zq9MPcOQTrjBDUrZtK1ROjISimJEk34kkCREeoQFpa8qRT6QTT45I4IFW+tALhH5cwYn6uyNGvpRj39WV6cpy1kvF/7x2pLwLJ6Y8jBTheDrIixhUAUwTgX0qCFZsrAnCgupdIR4igbDSueV1CPbsyfOkUSnbZ2X77qRYvcziyIEC2AclYINzUAXXoAbqAINH8AxewZvxZLwY78bHtHTByHr2wB8Ynz8vrJcl</latexit>

O(N5/2t3/2)
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O(N9/2t3/2)
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Purely fermionic (non-local) Fermionic-bosonic (local)

Qubit cost

Gate 
complexity*
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N

Number of sites N

Nonetheless, empirically it seems like the 
non-local formulation performs as well as 
the bound on the local formulation!

t = N
Nguyen, Tran, Zhu, Green, Huerta 
Alderete, ZD, Linke, PRX 
Quantum 3 (2022) 2, 020324.

COMPARISON BETWEEN THE TWO FORMULATIONS FOR THE SECOND-ORDER FORMULA

*Defined at the required number of Trotter steps for simulation time t, system 
size N , and at fixed x and µ, given a fixed error tolerance.∼ Λ



Explain the qubit and gate scalings of the second-order Trotter simulation of 
the lattice Schwinger model in both formulations, as given in the previous slide.



OUTLINE OF PART III:

DIGITAL QUANTUM COMPUTING TIME EVOLUTION IN LGTs

i) A general algorithmic strategy

ii) Time evolution in the Schwinger model


In purely fermionic formulation

In fermion-boson formulation


iii) Outlining the differences between Abelian and non-Abelian algorithms

iv) Finally…what we did not cover



Abelian vs. non-Abelian

Shaw, Lougovski, Stryker, Wiebe, Quantum 4, 306 (2020).
Ciavarella, Klco, and Savage, Phys. Rev. D 103, 094501 (2021). 
Kan and Nam, arXiv:2107.12769 [quant-ph].
ZD, Shaw, and Stryker, Quantum 7, 1213 (2023),
Rhodes, Kreshchuk, Pathak, arXiv:2405.10416 [quant-ph]

Algorithmic progress for U(1), SU(2), and 
SU(3) theories can be found in:


Since we do not have the option of removing the gauge links generally, let us focus on the 
fermionic-bosonic formulations in the electric-field basis. So what are the major differences 
between simulating digitally Abelian and non-Abelian LGTs? Let is compare U(1) and SU(N) LGTs.


i) There are more degrees of freedom involved for SU(N) LGTs. For example, at each site, 
there are N-component fermions, and at each link there are multiple bosonic variables. 


ii) As a result, there are more terms that need to be simulated, hence more complexity and 
generally more Trotter error.


iii) The diagnozalization procedure for hopping and magnetic terms generally follow the 
same rules but is more gate-intensive for SU(N). 


iv) The diagonal operators in an Abelian theory like U(1) are trivial while for SU(N), they 
require evaluating phases that are non-trivial functions of bosonic occupation-number 
operators. These require expensive function-evaluation routines (in the  basis).E



What about the ultimate theory for us?

Quantum Chromodynamics, a SU(3) LGT in 3+1 coupled to 6 flavors of quarks

How far can we continue to improve? Will this problem become reasonably doable in the fault-tolerant era?

Kan and Nam:

ZD and Stryker:

Rhodes, 
Kreshchuk, 
Pathak

Ciavarella, 
Klco, Savage: 

Lamm et al:

Kogut and Susskind in E basis, no Gauss-law implementation a priori

Evaluates matrix elements quantumly

Uses product formulas. Breaks all bosonic ladder ops. to even/odd space

Kogut and Susskind in E basis, no Gauss-law implementation a priori

Evaluates matrix elements quantumly

Uses PFs. Breaks only some of the bosonic ladder ops. to even/odd space

Kogut and Susskind in E basis, no Gauss-law implementation a priori

Uses QROM to access matrix elements evaluated calssically

Uses block encoding of time evolution. No even-odd breaking.

Kogut and Susskind in E basis, some Gauss-law implementation a priori

Uses controlled operations to access matrix elements evaluated calssically

Not a full algorithm in 3+1 D with error analysis

Kogut and Susskind in U basis, no Gauss-law implementation a priori

Matrix elements simple (no Clebsch–Gordan coeff. in this basis)

Uses block encoding, no full error analysis for SU(3) subgroups yet

 lattice at 
fixed paramts.
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OUTLINE OF PART III:

DIGITAL QUANTUM COMPUTING TIME EVOLUTION IN LGTs

i) A general algorithmic strategy

ii) Time evolution in the Schwinger model


In purely fermionic formulation

In fermion-boson formulation


iii) Outlining the differences between Abelian and non-Abelian algorithms

iv) Finally…what we did not cover



A variety of Hamiltonian formulations of gauge theories and in various bases, systematic 
uncertainties, renormalization and continuum limit, etc.


Detailed discussions of non-Abelian gauge theories and higher-dimensional models


State-preparation strategies for in quantum (gauge) field theories including for thermal states


The so-called near-optimal time-evolution algorithms beyond product formulas


Observables, e.g., scattering amplitudes, transport coefficients, structure functions, 
nonequilibrium dynamics, thermodynamics


Error correction and error mitigations, including in the context of quantum (gauge) field theories


Quantum-hardware architecture and other analog and hybrid proposals for simulating gauge 
theories

WHILE WE HAVE COVERED SOME BASICS, A LOT OF 
IMPORTANT TOPICS WERE LEFT OUT…

NONETHELESS, YOU MUST BE SUFFICIENTLY EQUIPPED NOW 
GIVEN THESE LECTURES TO START EXPLORING THIS EXCITING 
AND FASTLY-EVOLVING FIELD OF RESEARCH IF YOU DESIRE.

For a review and perspective 
See Bauer, ZD, et al, “Quantum 
Simulation for High Energy 
Physics”, PRX Quantum 4 (2023) 
2, 027001.



POST-LECTURE [TO CONCLUDE]

QUANTUM SIMULATION OF FUNDAMENTAL PARTICLES AND 
FORCES, WHERE ARE WE NOW AND WHERE ARE WE GOING?



Theory developments

Algorithmic developments

QUANTUM SIMULATION OF GAUGE FIELD THEORIES: A MULTI-PRONG EFFORT

Implementation, benchmark, 
and co-design



HAMILTONIAN FORMULATIONS OF GAUGE THEORIES CONTINUES TO BE DEVELOPED.

Group-element representation

Zohar et al; Lamm et al

Manifold lattices 

Buser et al

Spin-dual representation

Mathur et al

Loop-String-Hadron basis

Raychowdhury and Stryker

Fermionic basis

Hamer et al; Martinez et al; Banuls et al

Bosonic basis

Cirac and Zohar

Link models, qubitization

Chandrasekharan, Wiese et al, 
Alexandru, Bedaque, et al.

Prepotential formulation

Mathur, Raychowdhury et al

Local irreducible representations

Byrnes and Yamamoto; 
Ciavarella, Klco, and Savage

Dual plaquette (magnetic) basis

Bender, Zohar et al; Kaplan and Styker; Unmuth-
Yockey; Hasse et al; Bauer and Grabowska

Gauge-field theories (Abelian and non-Abelian) starting from the seminal work of Kugot and Susskind:

Light-front quantization 
Kreshchuk, Love, Goldstien, 
Vary et al.; Ortega at al

Scalar field theory

Field basis

Jordan, Lee, and Preskill

Harmonic-oscillator basis

Klco and Savage

Single-particle basis

Barata , Mueller, Tarasov, and Venugopalan.

Continuous-variable basis

Pooser, Siopsis et al



Four fermion sites

Martinez et al, Nature 534, 516 EP (2016).Klco, Savage, et al, Phys. Rev. A 98, 032331 (2018).

A hybrid classical-quantum approach allows a 2-qubit reduction of 
4-qubit simulation.
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N = 4, �t = 1

(a)

(b)

Figure 7. Experimental results for N = 4 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The upper plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
lower plot shows its deviation from theory.

delity, rather than qubit number, is the main limitation of
our implementation. E↵orts to overcome such a technical
limitation are well underway [86]. To mitigate the time-
correlated errors, we have applied a symmetry-protection
scheme [29] but found negligible e↵ects in suppressing
the errors, pointing to dominant incoherent and uncorre-
lated noise in the experiment. Incoherent errors can be
mitigated by post-selection of the experimental measure-
ments using symmetry considerations. Better-motivated
and further-tailored schemes for incoherent error mitiga-
tion are desired in future simulations.

An avenue for improving the quality of the simulation
is reducing the gate depth, e.g., by performing gates in
parallel instead of sequentially. In our model, e�i�tĤ

x

,
consisting of only nearest-neighbor interactions, can be

N = 6, �t = 1

(a)

(b)

Figure 8. Experimental results for N = 6 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The left plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
right plot shows its deviation from theory. At t = 4, we reach
the gate-depth limit of the hardware.

applied in a fixed circuit depth of 4 instead of 2N by per-
forming all the X2iX2i+1 terms, then all the X2i+1X2i+2

terms, in parallel. The all-to-all interactions in e
�i�tĤ

ZZ

can be reduced to depth of N instead of N
2 if gates

XiXi+n, for all i and fixed n, are performed in paral-
lel. With trapped ions, parallel operations can be done
either in multi-zone architectures [87, 88], or in linear
chains with advanced control schemes [89].

Alternatively, the gate depth can be reduced by
using M -body Mølmer-Sørensen gates MS(�,M) ⌘

e
�i�

PM
i=1

PM
j=i+1 �̂

X
i �̂

X
j [82–84]. This approach was im-

plemented in Ref. [71] to reduce the number of MS op-
erations in the simulation of the Schwinger model from
O(N2) to O(N). In general, a non-trivial optimization of
both frequency and amplitude modulation of the beams
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Figure 7. Experimental results for N = 4 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The upper plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
lower plot shows its deviation from theory.

delity, rather than qubit number, is the main limitation of
our implementation. E↵orts to overcome such a technical
limitation are well underway [86]. To mitigate the time-
correlated errors, we have applied a symmetry-protection
scheme [29] but found negligible e↵ects in suppressing
the errors, pointing to dominant incoherent and uncorre-
lated noise in the experiment. Incoherent errors can be
mitigated by post-selection of the experimental measure-
ments using symmetry considerations. Better-motivated
and further-tailored schemes for incoherent error mitiga-
tion are desired in future simulations.

An avenue for improving the quality of the simulation
is reducing the gate depth, e.g., by performing gates in
parallel instead of sequentially. In our model, e�i�tĤ

x

,
consisting of only nearest-neighbor interactions, can be

N = 6, �t = 1

(a)

(b)

Figure 8. Experimental results for N = 6 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The left plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
right plot shows its deviation from theory. At t = 4, we reach
the gate-depth limit of the hardware.

applied in a fixed circuit depth of 4 instead of 2N by per-
forming all the X2iX2i+1 terms, then all the X2i+1X2i+2

terms, in parallel. The all-to-all interactions in e
�i�tĤ

ZZ

can be reduced to depth of N instead of N
2 if gates

XiXi+n, for all i and fixed n, are performed in paral-
lel. With trapped ions, parallel operations can be done
either in multi-zone architectures [87, 88], or in linear
chains with advanced control schemes [89].

Alternatively, the gate depth can be reduced by
using M -body Mølmer-Sørensen gates MS(�,M) ⌘

e
�i�

PM
i=1

PM
j=i+1 �̂

X
i �̂

X
j [82–84]. This approach was im-

plemented in Ref. [71] to reduce the number of MS op-
erations in the simulation of the Schwinger model from
O(N2) to O(N). In general, a non-trivial optimization of
both frequency and amplitude modulation of the beams

Four fermion sites Six fermion sites

90 entangling gates!80 entangling gates! Nguyen, Tran, Zhu, Green, Huerta Alderete, 
ZD, Linke, PRX Quantum 3 (2022) 2, 020324.
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N = 2, �t = 0.5

(a)

(b)

Figure 5. Experimental results for N = 2 and �t = 0.5.
(a) The upper plot shows fluctuation in the bare-vacuum pop-
ulation, Pvac, while the lower plot shows particle-number den-
sity, ⌫, as a function of time, indicating the creation and an-
nihilation of the particle-antiparticle pairs. The dashed lines
are a guide to the eye. (b) The upper plot shows the local
charge density Qn as measured in the experiment after post-
selection, while the lower plot shows its deviation from theory
as a function of time.

try protection can improve our experimental implemen-
tation.

Figure 9 plots the result of an experiment using the
odd-even term ordering. As before, the initial state is the
bare vacuum. The unitaries e�i↵kŜz , with random angles
↵k given in Appendix A, are inserted between Trotter
steps k and k+1. While the population in states forbid-
den by the symmetry, denoted as Psym in the upper panel,
decreases with symmetry protection, this reduction is not
significant. Furthermore, while the deviation of the bare-
vacuum population from the Trotterized theory generally
decreases, post-selecting symmetry-preserving measure-
ments appears more e↵ective in mitigating the error in
this quantity than the symmetry protection as shown
in the lower panel of the figure. This indicates that

N = 4, �t = 0.5

(a)

(b)

Figure 6. Experimental results for N = 4 and �t = 0.5.
(a) The upper plot shows fluctuation in the bare-vacuum pop-
ulation, Pvac(t), while the lower plot shows particle-number
density, ⌫(t). (b) The upper plot shows the local charge den-
sity Qn(t) as measured in the experiment after post-selection,
while the lower plot shows its deviation from theory.

the experiment is dominated by noise that is not corre-
lated in time. Note that by construction, the symmetry-
protection scheme only mitigates time-correlated errors.

IV. DISCUSSION

We have digitally simulated the time evolution of the
lattice Schwinger model with up to six qubits. For a
four-qubit simulation, we observe four oscillations of the
particle density, and the simulated time is almost four
times longer than previously demonstrated using a Trot-
terized scheme [64, 71]. Given the long circuit depths
required for dynamical gauge-theory simulations, gate fi-

4

FIG. 2. The H
⇤̃=3
k=0,+ ground state energy and chiral conden-

sate (purple, blue extrapolated to -1.000(65) and -0.296(13),
respectively) expectation values as a function of r, the noise
parameter. r � 1 is the number of additional CNOT gates
inserted at each location of a CNOT gate in the original VQE
circuit. (1200 IBM allocation units and ⇠ 6.4 QPU·s)

k = 0 and ⇤̃ = 1, 2, 3 spaces as hHi = �0.91(1) MeV,
�1.01(4) MeV, and �1.01(2) MeV respectively (see Ap-
pendix E, H, and I)1. To manage inherent noise on the
chip, we have performed computations with a large num-
ber of measurement shots (8192 shots for ibmqx2 [52]
and ibmqx5 [53]). For these variational calculations, the
systematic measurement errors have been corrected via
the readout-error mitigation strategy [33, 54]. Further,
a zero-noise extrapolation error mitigation technique in-
spired by Refs. [55, 56] has been implemented. Examples
of this zero-noise extrapolation technique are shown in
Fig. 2, where the noise parameter r controls the accrual
of systematic errors by inserting r� 1 additional 2-qubit
gates (CNOT2) at every instance of a CNOT gate. In
the limit of zero noise, this modifies CNOT simply by an
identity.

For the results obtained on IBM quantum hardware,
an estimate of the length of time the quantum processing
unit (QPU) spent executing instructions based upon IBM
benchmarking is provided [52, 53, 57]. This VQE calcu-
lation required 6.4 QPU-seconds and 2.4 CPU-seconds
with a total run time of 4 hours. Clearly, a majority of
the time was spent in communications.

IV. DYNAMICAL PROPERTIES

Time evolving quantum systems is a key capabil-
ity of quantum computers. Working with the k = 0
P = +1 sector, we evolve the unoccupied state |�1ik=0,+

1 Example code snippets for calculation on IBM hardware and ta-
bles of data appearing in figures can be found in the supplemental
material [51]

FIG. 3. The probability of finding an e
+
e
� pair (blue,

lower line) and the expectation value of the energy of the elec-
tric field (purple, upper line) in the two-spatial-site Schwinger
model following time evolution with U(✓i(t)) from the initial
empty state. The solid curves are exact results while the the
data points are quadratic extrapolations obtained with the
ibmqx2 quantum computer using a circuit involving 3 CNOT
gates [60]. (1000 IBM allocation units and ⇠ 12.3 QPU·s)

(see Fig. 1 and Appendix A) forward in time with two
techniques. The first is through SU(4) parameteriza-
tion of the evolution operator and the second is us-
ing a Trotter discretization of time. The former uses
a classical computer to determine the 9 angles describ-
ing the time evolution over an arbitrary time inter-
val, which is induced by the symmetric SU(4) matrix
U(✓i(t)) = e�iHt, leading to the state |�ik=0,+(t) =
U(✓i; t)|�1ik=0,+ (see Appendix C). The most gen-
eral form of the symmetric SU(4) matrix through its
Cartan decomposition is U = KTCK where C =
e�i�x⌦�x✓7/2e�i�y⌦�y✓8/2e�i�z⌦�z✓9/2 is generated by the
Cartan subalgebra and K is a SU(2) ⌦ SU(2) transfor-
mation defined by the 6 angles, ✓1,..6 [58, 59]. Fig. 3
shows the “zero-noise” extrapolated pair probability and
expectation value of the energy in the electric field as a
function of time calculated on ibmqx2 with the Cartan
subalgebra circuit of Ref. [60].
The time evolution of this system has also been stud-

ied using a Trotterized operator (see Appendix D).
It is discretized such that e�iHt

! UT (t, �t) =

lim
N!1

 
Q
j

e�iHj�t

!N

, where �t = t

N
and the Hamilto-

nian decomposition H =
P
j

Hj (for the k = 0 P = +1

⇤̃ = 3 sector) is given by,

H =
x
p
2
�x ⌦ �x +

x
p
2
�y ⌦ �y � µ �z ⌦ �z

+ x

✓
1 +

1
p
2

◆
I ⌦ �x �

1

2
I ⌦ �z

� (1 + µ) �z ⌦ I + x

✓
1�

1
p
2

◆
�z ⌦ �x .(5)
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The last term in the Hamiltonian corresponds to the
invariant Casimir operator of the theory and represents
color electric field energy stored in the gauge links. Here,
L̂

2

n “ ∞
a L̂

a
nL̂

a
n “ ∞

a R̂
a
nR̂

a
n where L̂a

n and R̂a
n (with

a “ x, y, z) are respectively the left and right color elec-
tric field components on the link n. For a non-Abelian
gauge group, the right and left color electric field are
different and are related via the adjoint representation
R̂a

n “ ∞
bpÛadj

n qabL̂b
n, where pÛadj

n qab “ 2Tr

”
ÛnT̂ aÛ :

nT̂
b
ı
,

T̂ a “ �̂a{2 are the three generators of the SU(2) algebra
and �̂a are the Pauli matrices [38].

Symmetries and non-Abelian physics By virtue
of its gauge invariance, the Hamiltonian in equation (1)
commutes with the local gauge transformation genera-
tors, also called the Gauss’s law operators, and are given
by Ĝa

n ” L̂a
n´R̂a

n´1´Q̂a
n, where the non-Abelian charges

Q̂a
n acting on the site n are defined as

Q̂a
n “

ÿ

ij

�̂i:
n pT̂ aqij �̂j

n, a “ x, y, z. (2)

More precisely, the so-called physical Hilbert space of the
theory is spanned by the eigenstates of the Gauss’s law
operators Ĝa

n. In the following, we choose to work in
the sector with no external charges which is specified by
Ĝn | y “ 0, @n, and in the neutral total charge sector
Q̂a

tot | y “ ∞N
n“1 Q̂

a
n | y “ 0, @a.

Remarkably, the non-Abelian nature of the model al-
lows the existence of gauge invariant singlet states which
are forbidden in the Abelian case due to symmetry con-
straints. To see this, we note that the total color
charges Q̂a

tot “ ∞N
n“1 Q̂

a
n are conserved quantities and

commute with the Hamiltonian. Besides the three non-
Abelian charges, the Hamiltonian also commutes with
the redness and greenness operators defined as R̂ “∞N

n“1 �̂
1:
n �̂1

n ´ N{2 and Ĝ “ ∞N
n“1 �̂

2:
n �̂2

n ´ N{2, which
respectively measure the red and green color charges. Be-
cause redness and greenness do not have convenient sym-
metry properties, it is more natural to use their difference
(which is purely within the SU(2) gauge symmetry, since
R̂´Ĝ

2 “ Q̂z
tot) and their sum (which is a global U(1) sym-

metry). We therefore define the baryon quantum number
of the model as B̂ “ R̂`Ĝ

2 “ 1
2

∞N
n“1 �̂

:
n�̂n ´ N{2 which

measures the matter-antimatter imbalance.
The existence of multiple conserved charges in the non-

Abelian theory has to be contrasted with the Abelian
Up1q case of quantum electrodynamics (QED), where the
electric charge is the only conserved quantity. In QED,
the total electric charge coincides with the baryon num-
ber B of the system [39], and the neutral charge con-
straint thus imposes the value of the matter-antimatter
imbalance to be zero. In other words, neutral gauge in-
variant states of QED must contain as many electrons as
positrons leading to meson-type singlet states only. On
the other hand, the constraint of neutral charge for the
SU(2) theory Q̂i

tot | y “ 0, @i does not enforce the value
of the baryon quantum number B, since these are differ-

VQE preparation of the baryon massb

x
1 2 3 4 5 0

0

5

10

15

20

Mb

SU(2) “quark”

SU(2) “proton”

N = 4

1

2

3

4

5

6
a VQE circuit to prepare baryon and vacuum states

Exact baryon mass

Baryon mass (VQE)

FIG. 2. VQE calculation of a baryon. We variationally
simulate an effective eight sites chain with the experimental
circuit shown in a. The boxes represent single qubit gates.
Grey boxes are fixed gates while the color coding indicates
dependence from three variational parameters. Their exact
implementation changes depending on the combination of the
parameter values, which is automatically compiled from the
original circuit shown in Fig. 3. This takes into account the
coupling topology of the IBMQ Casablanca processor, which,
together with the qubit identification for the B “ 0 sector are
shown on the left. The circuit yields the mass of the baryon
(errorbars are smaller than markers), an SU(2)-“proton” (see
inset), for a range of x and m̃ “ 1 as explained in the main
text.

ent quantum numbers. Therefore, it is possible to con-
struct color neutral gauge invariant singlets with B ‰ 0,
which are forbidden in QED. While the states in the
B “ 0 sector are similar to the neutral states of QED,
the states in the sector with B ‰ 0 have no equivalent
in Abelian theories. In particular, we will refer to the
ground state in the sector with B “ 1 as a baryon state,
the ground state in B “ 0 will be the vacuum and the
first excited state will be called a meson state. A pictorial
comparison of a meson and a baryon is given in Fig. 1b.

Elimination of the gauge fields and qubit for-
mulation To study energy spectrum of the SU(2) the-
ory on a quantum computer, we map the lattice Hamil-
tonian in equation (1) to a qubit system. In one spatial
dimension and with open boundary conditions, the gauge
degrees of freedom can be integrated out [40–44] (see
Supplementary Information for details). This approach
eliminates redundant degrees of freedom and allows us
to simulate our target model with a minimal number of
qubits. As a second step, a Jordan-Wigner transforma-

21

FIG. 10. Two plaquettes with periodic boundary conditions and an arrow convention amenable to infinite extension in the
two-dimensional plane. Indices local to each end of each link characterize states in SU(3) e.g., the color isospin and hypercharge
indices.

previous algorithms, for example, Ref. [13].

Similar to the methods employed for the one-plaquette system, Gauss’s law can be explicitly satisfied in the global

wavefunctions by construction of the basis states. Using the dimensionality of the color irrep of each link, as shown in

Fig. 10, the basis states for the two-plaquette system are written as |�(R1,Q1,R2,R3,Q2,R4)i. The gauge invariant

lattice wavefunction for this two-plaquette system, as discussed in greater generality in Appendix A, is

|�(R1,Q1,R2,R3,Q2,R4)i =
1

dim(Q1) dim(Q2)

X

all

|R1, a, bi|Q1, c, di|R2, e, fi|R3, g, hi|Q2, i, ji|R4, k, `i

hR3, h, R̄1, a|Q̄2, ji�312 hR1, b, R̄3, g|Q̄1, di�131

hR4, `, R̄2, e|Q2, ii�422 hR2, f, R̄4, k|Q1, ci�241 , (34)

where |R, a, bi is a link-state in the electric basis and hRi, f,Rj , k|Qk, ci�ijk are SU(3) CG coe�cients.

The global wavefunctions of the two-plaquette system are formed from combinations of these basis states, consistent

with the global symmetries of the system such as: color-parity symmetry resulting from the sum of ⇤ + ⇤† in the

Hamiltonian, e.g., {Ri,Qi} $ {Ri,Qi}, translation invariance, and reflection symmetry. These symmetries lead to a

natural block-diagonalization of the Hamiltonian in these projected bases. Quantum numbers may be assigned to the

states in each block, ±1 for each of the symmetries in the case of two-plaquettes. In this section, we consider a global

basis in which dynamical quantum states are mapped to symmetry-projected configurations of the full two-plaquette

lattice. Two related local truncations in color space are used to explore the convergence of both local and global

truncations.

A. Two-Plaquette: {1,3,3} Local Truncation

In limiting the local link basis to color irreps {1,3,3} for the two-plaquette system without constraints and symmetries,

there are 36 independent basis states. Imposing Gauss’s law at each vertex reduces this number down to 27. Further

restricting to global singlet states, as is the strong coupling vacuum and preserved by the Hamiltonian, the dynamical

Hilbert space becomes 9 dimensional, which decomposes into sectors of dimensions (4, 2, 2, 1) under the discrete

symmetries of color parity and spatial translation. Focusing on the sector that contains the trivial vacuum, the basis

states in the ++ sector are,

| (133;++)
1 i = |�(1,1,1,1,1,1)i

| (133;++)
2 i =

1

2

⇥
|�(3,3,3,1,3,1)i+ |�(3,3,3,1,3,1)i+ |�(1,3,1,3,3,3)i+ |�(1,3,1,3,3,3)i

⇤

| (133;++)
3 i =

1
p
2

⇥
|�(3,1,3,3,1,3)i+ |�(3,1,3,3,1,3)i

⇤
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circuit in Eq. (19), and the third can be implemented with the following circuit relation

ei(↵Ẑ⌦X̂+�X̂⌦Ẑ) =
H • H ei↵Ẑ H • H

ei�Ẑ
. (43)

The results of performing first order Trotter time steps with g = 1 beginning in the electric vacuum are shown in

Fig. 12. Two middle qubits were used to store the state of the system and, when the measurement error mitigation

is implemented through voting, the remaining three qubits were used to inform the post-selection described in Sec-

tion III B 1. As the results show, three Trotter steps are capable of reproducing the first maximum and minimum

in the evolution of the electric energy and calculations on the Athens quantum processor are in agreement with the

exact calculation.
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FIG. 12. The (trivial-) vacuum-to-vacuum persistence probability |h00| Û(t) |00i|2 (left panel) and the energy in the electric
field (right panel) of the two plaquette system in the color parity basis truncated locally at 3 and 3. Evolution is a 1st-order
Trotterization of the Hamiltonian in Eq. (39). Points correspond to quadratic extrapolations of results obtained from IBM’s
Athens quantum processor, with systematic and statistical uncertainties combined in quadrature.

B. Two-Plaquette: {1,3,3,8} Local Truncation

To further explore global wavefunctions and also to demonstrate a further complexity in such calculations, the dis-

cussion in Subsection IVA is here extended to include the 8 in the local link basis. The construction involves

an expanded basis that requires considering non-trivial multiplicities in the products of irreps, in particular in

8 ⌦ 8 = 27 � 10 � 10 � 8 � 8 � 1. Of the 46 states in this local basis, 109 of them satisfy Gauss’s law. Pro-

jecting further to the global color singlet states—the global color charge being a quantum number conserved by the

Hamiltonian—there are 41 distinct physical configurations potentially connected to the strong coupling vacuum.

These physical and global color singlet states combine into states with definite transformation properties under the

discrete symmetries of color parity, translation, and reflection, which is no longer redundant in this larger basis as

3 ⌦ 3 = 8 � 1 leads to configurations that can be odd under reflection. Focusing only on the + + + sector, the 15

independent states are,

| (1338;+++)
1 i = |�(1,1,1,1,1,1)i ,

| (1338;+++)
2a i =

1

2

⇥
|�(3,3,3,1,3,1)i+ |�(3,3,3,1,3,1)i+ |�(1,3,1,3,3,3)i+ |�(1,3,1,3,3,3)i

⇤
,

| (1338;+++)
2b i =

1
p
2

⇥
|�(3,1,3,3,1,3)i+ |�(3,1,3,3,1,3)i

⇤
,

| (1338;+++)
3 i =

1
p
2
[ |�(8,1,1,8,1,1)i+ |�(1,1,8,1,1,8)i ] ,

2

mentum vanish. In weak coupling, the magnetic con-
tributions dominate and a theory of dynamical loops
emerges. The angular momentum basis describes the
quantum state of a generic link by its irreducible repre-
sentation, j, and associated third-component projections
at the left and right end of the link in the 2 and 2̄ rep-
resentations, |j,m,m

0
i ⌘ |j,mi⌦ |j,m

0
i, respectively. In

one dimension, SU(2) lattice gauge theory can be spa-
tially discretized onto a string of plaquettes (see Fig. 1).
With periodic boundary conditions (PBCs), only three-
point vertices contribute to such a plaquette chain. To
form gauge singlets, components of the three links at each
vertex are contracted with an SU(2) Clebsch-Gordan co-
e�cient. The wavefunction at each vertex has the form

V ⇠

X

b,c,e

hj1, b, j2, e|q, ci |j1, a, bi ⌦ |q, c, di ⌦ |j2, e, fi , (3)

where indices b, c, and e are located at the vertex. By
focusing on a system with an even number of plaquettes,
matrix elements of the arbitrary plaquette operator may
be determined. The state of an even-length lattice in
one dimension with PBCs and with definite link angular
momenta is

|�i = N

X

{m}

LY

i=1

hj
t
i ,m

t
i,R, j

t
i+1,m

t
i+1,L|qi,m

t
qii (4)

hj
b
i ,m

b
i,R, j

b
i+1,m

b
i+1,L|qi,m

b
qii

|j
t
i ,m

t
i,L,m

t
i,Ri ⌦ |j

b
i ,m

b
i,L,m

b
i,Ri ⌦ |qi,m

t
qi ,m

b
qii

with jL+1 = j1, mL+1 = m1, and normalization N =Q
i(dim(qi))�1 with dim(q) = 2q + 1. Referring to the

plaquette string’s ladder structure, on links located as
rungs of the ladder, angular momentum values are la-
beled by q. Thus, a plaquette string is created by two
strings of j-type registers connected periodically by rungs
of q-type registers. The contraction with Clebsch-Gordan
coe�cients at each vertex ensures the local gauge singlet
structure required by Gauss’s law. The link operator acts
on the degrees of freedom at each end of a link and is a
source of j = 1/2 angular momentum,

Û↵� |j, a, bi =
X

�J

s
dim(j)

dim(J)
|J, a+ ↵, b+ �i

⇥ hj, a,
1

2
,↵|J, a+ ↵ihj, b,

1

2
,�|J, b+ �i , (5)

which contains non-vanishing contributions only for J =
j±

1
2 [59]. It follows that matrix elements of the plaquette

FIG. 1. (top) Diagram of the lattice distribution of
dlog2(2⇤j + 1)e-qubit registers and the action of ⇤̂ on SU(2)
plaquettes in one dimension. ⇤̂ operates on the four qubit
registers in the plaquette and is controlled by the four neigh-
boring qubit registers to enforce the Gauss’s law constraint.
(bottom) The plaquette operator with labeled angular mo-
mentum registers.

operator in one dimension are

h�··· ,jt,b` ,q`f ,j
t,b
af ,qrf ,j

t,b
r ,···|⇤̂|�··· ,jt,b` ,q`i,j

t,b
ai ,qri,j

t,b
r ,···i =

q
dim(jtai) dim(jtaf ) dim(jbai) dim(jbaf )

⇥

q
dim(q`i) dim(q`f ) dim(qri) dim(qrf ) (6)

⇥ (�1)j
t
`+jb`+jtr+jbr+2(jtaf+jbaf�q`i�qri)

⇥

⇢
j
t
` j

t
ai q`i

1
2 q`f j

t
af

�⇢
j
b
` j

b
ai q`i

1
2 q`f j

b
af

�⇢
j
t
r j

t
ai qri

1
2 qrf j

t
af

�⇢
j
b
r j

b
ai qri

1
2 qrf j

b
af

�

where the indices j
t,b
` , q`i, q`f , j

t,b
a , qri, qrf , and j

t,b
r are

used to indicate the j-values relevant for the single pla-
quette operator (as depicted in Fig. 1) and the brack-
ets indicate Wigner’s 6-j symbols. The four registers
j
t,b
`,r outside the plaquette are not modified by the ac-
tion of the plaquette operator. However, their inclusion
as control registers is necessary to maintain Gauss’s law.
The sums over alignment in each gauge-invariant space
yield a dramatically reduced Hilbert space to be mapped
onto a quantum device, characterized entirely by the |ji’s
(rather than the |j,m,m

0
i’s) incrementing naturally by

half-integers. The qubit representation of the periodic
plaquette string is shown on the top panel of Fig. 1, where
each link contains a dlog2(2⇤j + 1)e-qubit register with
⇤j the angular momentum truncation per link.
In the following, circuits are devised for the plaquette

operator with angular momentum truncation ⇤j = 1/2.
For time evolution beginning in the strong-coupling vac-
uum, the top and bottom j values are equivalent with this
cuto↵ due to SU(2) flux conservation. As a result, the
bottom j registers need not be mapped onto the quan-
tum device [94] and the plaquette operator reduces to a
five-qubit operator.
While matrix elements of the plaquette operator in the

physical space are critical, those in the unphysical space
are not. As long as the matrix elements mixing the two
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FIG. 4. (top) Expectation value of the electric energy contri-
bution of the first plaquette in the two-plaquette lattice with
PBCs and coupling g

2 = 0.2 computed on IBM’s Tokyo. The
dashed, dot-dashed, and thin gray lines are the NTrot = 1, 2, 3
Trotterized expectation values, while the thick gray line is the
exact time evolution. (bottom) Measured survival probability
to remain in the physical subspace. Uncertainties represent
statistical variation, as well as a systematic uncertainty esti-
mated from reproducibility measurements. The icons appear-
ing are defined in Ref. [41].

Real-time evolution of two plaquettes with PBCs (see
the right panel of Fig. 3) and truncation ⇤j = 1/2 has
been implemented on IBM’s quantum device Tokyo, se-
lected for its available connectivity of a four-qubit loop.
The top panel of Fig. 4 shows time-evolved expectation
values of the energy contributions from the first electric
plaquette calculated with one and two Trotter steps [95].
The electric contributions, being localized in their mea-
surement to the four-dimensional physical subspace, are
well determined after a small number of samples. In
contrast, measuring the energy contributions from the
magnetic Hamiltonian requires increased sampling due
to the operator’s natural representation in the Pauli-X
basis of the q`, ja, and qr qubit registers—distributing the
wavefunction’s amplitude throughout the Hilbert space.
Results have been corrected for measurement error by
the constrained inversion of a 16-dimensional calibration
matrix informed by preparation of each of the 16 com-
putational basis states prior to calculation. The result-
ing probabilities are linearly extrapolated in the presence
of CNOT gates, post-selected within the gauge-invariant
space, and renormalized. The linear extrapolation is in-
formed by r = 1, 2, where r = 1 is the circuit in Fig. 3
and r = 2 stochastically inserts a pair of CNOTs ac-
companying each of the three CNOTs either in the first
or second half of the plaquette operator. The combined

noise and gate fidelity of the device were found to limit
the ability to extrapolate further in CNOT noise, even
with a single Trotter step. It can be seen that these er-
ror mitigation techniques have allowed calculation of the
electric energy associated with the SU(2) gauge field to
the precision obtained after a single Trotter step.
It is important to determine the feasibility of retaining

gauge-invariant Hilbert spaces with near-term quantum
hardware. For our calculations on IBM’s Tokyo quan-
tum device, before CNOT extrapolation, the (NTrot, r) =
(1, 1) measurements were found to remain in the gauge
invariant space with a survival population of ⇠ 45%, as
shown in the bottom panel of Fig. 4. After linear extrap-
olation in the probabilities, this was increased to ⇠ 65%,
with survival population decreasing as evolution time in-
creases. The survival population for NTrot = 2 was found
to be ⇠ 25%, consistent with loss of quantum coherence
of a four-dimensional physical space embedded onto four
qubits, precluding CNOT extrapolation. This observable
is a diagnostic of the calculation. As it approaches the
decorrelated limit (25%), CNOT extrapolations become
less reliable leading to the underestimate of systematic
uncertainties in Fig. 4. Because neither the proposed
qubit representation, nor the subsequent Trotterization,
produce gauge-variant error contributions, the observed
decay of population in the physical subspace is a mea-
sure of the device’s ability to robustly isolate Hilbert
subspaces. This is likely to be an essential capability for
evolving lattice gauge theories and other systems with
conserved quantities, as well as for quantum error cor-
rection.
When increasing ⇤j , the plaquette operator must be

calculated and designed over 8 qubit registers, each con-
taining dlog2 (2⇤j + 1)e qubits. The classical compu-
tational resources required to define this operator with
Eq. (6) scales with the number of unique non-zero ma-
trix elements, which is polynomial in ⇤j . When con-
structing the time evolution operator for ⇤j > 1/2, the
combination of Trotterization and Pauli decomposition of
the 4-register operators in j`,r-controlled sectors gener-
ically generates interactions breaking gauge invariance
[56, 69, 96]. The breaking of gauge invariance will be im-
portant to control if this decomposition is used in future
calculations.
Developing quantum computation capabilities for non-

Abelian gauge field theories is a major objective of nu-
clear physics and high-energy physics research. One of
the challenges facing such calculations is that the map-
ping of the gauge theory onto a discretized lattice involves
a digitization of the gauge fields. We have presented cal-
culations of the dynamics of a one-dimensional SU(2) pla-
quette string with implementation on IBM’s Q Experi-
ence superconducting hardware. This was made feasible
by an improved mapping of the angular momentum ba-
sis states describing link variables. Our design of the pla-
quette operator for digital quantum devices requires local
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FIG. 4. The schematic diagram of the double smearing of the mesonic wave packet. b
†
 is assembled from

b
†
k weighted with  (k), the manually-adopted wave-packet profile. Each b

†
k is built upon optimized mesonic

ansatz ⌘(p, q).

The fermion-antifermion pairs, or bare mesons, are distributed in momentum space following
the ansatz function ⌘(p, q). Similar to Ref. [33], we consider a Gaussian distribution in relative
momentum p � q:

⌘(p, q) = N⌘ exp

✓
iµ

A

k
(p � q)

2

◆
exp

 
�

(p � q)2

4�
A

k

2

!
. (11)

Here, µ
A

k
and �

A

k
are real parameters, superscript A denotes the ansatz, and N⌘ is the normalization

factor. The Gaussian distribution ensures that a fermion and an antifermion with a large relative
momentum are penalized. This is reasonable, as otherwise the constituents will eventually move far
away from each other and would not form a bound excitation. µ

A

k
controls the average separation of

the fermion and antifermion in position space. Finally, because of the Kronecker delta in momenta
in Eq. (8), p + q is forced to match the total momentum of the meson excitation, k.

In Ref. [33], b
†

k
|⌦i describes the momentum eigenstate |ki with �

A

k
and µ

A

k
manually tuned

for each k. In this work, optimization on
�
�
A

k
, µ

A

k

�
is explicitly performed by searching for the

lowest-energy state with b
†

k
excitations in each k sector. For small systems, b

†

k
with the optimized

parameters is benchmarked against exact-diagonalization results to ensure that |ki is indeed created
as desired. The optimization strategy and results will be discussed thoroughly in the next section.
For larger systems, one can resort to a variational quantum eigensolver (VQE) to perform energy
minimization in each sector using a quantum computer. Such details will be presented in Sec. III.

Once the optimized b
†

k
in each momentum sector is obtained, the wave-packet creation operator

b
†

 
is just a weighted assembly of them following  (k). Since the simulation is eventually done in

position space, it is useful to express Eq. (8) in terms of position-space mesonic operators when
implemented as quantum circuits:

b
†

 
=
X

m,n2�

Cm,n
fMm,n. (12)

Here, fMm,n is the Jordan-Wigner transformed Mm,n that is obtained by substituting Eq. (3) in
the expression for Mm,n given below Eq. (8). For example, consider m < n and n � m < N/2,
then a forward-wrapped meson creation operator Mm,n leads to

fMm,n =

 
�
�

m�
+

n

n�1Y

l=m+1

�
z
l

!
⌦

 
n�1Y

l=m

Ul

!
. (13)
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FIG. 10. Physical basis-state probabilities of two wave packets in the case of Z2 LGT with mf = 1
and ✏ = 0.3, generated on the Quantinuum H1-1 quantum computer compared with those obtained from
| iexact, | iideal, and | itrunc, as defined in the text, as well as the associated local particle densities, �n.
The physical basis states are listed in Table II in Appendix E. The hardware results shown are after a
symmetry-based error mitigation as discussed in the text. These agree reasonably well with the truncated-
circuit output. The density plots clearly show the change in the shape of wave packets with varying �, i.e.,
larger � results in a narrower wave packet in position space.

bootstrap sample, the events with the ancilla measured to be 0 (due to the residual errors) are
excluded, and the remaining probabilities are normalized and collected. For both wave packets,
104 resamplings are used to ensure bootstrap-sample mean distributions, hence the standard devi-
ations, are stabilized. In Fig. 10, the uncertainties on the probabilities are the standard deviation
of the bootstrap resampling, on which a standard error propagation gives the uncertainties on the
staggered density.

The physical basis-states probabilities show acceptable agreement with the truncated-circuit
results obtained via statevector evolution. Perhaps a more meaningful comparison is with the
result obtained from a classical circuit simulator that uses the same number of measurement
shots as that in the hardware implementation. Such ‘noiseless‘ simulation results are presented in
Appendix D. We further employ the Quantinuum’s emulator to inspect how accurately it agrees
with the hardware results for the circuits implemented in this work, and present the result in
the same Appendix. In both cases, the uncertainty estimation described above using bootstrap

4

FIG. 1. a) Mapping the L = 56 lattice onto the qubits of IBM’s quantum computer ibm_torino (bottom left). The dynamical
re-arrangement of charges in the vacuum screens the interactions between electric charges in the Schwinger model, giving rise to
an exponential decay of correlations between spatial-site charges, hQ̂

n
Q̂

n+d
i (top and bottom right). b) The charge screening

informs an efficient construction of the quantum circuits used to simulate hadron dynamics. SC-ADAPT-VQE is used to
prepare the vacuum and wavepacket, which are time-evolved using Trotterized circuits implementing e�itĤ with a truncated
electric interaction.

hierarchies in length scales to determine low-depth quantum circuits for state preparation. Using a hybrid workflow,
quantum circuits are determined and optimized on a series of small and modest-sized systems using classical computers,
and then systematically scaled to large systems to be executed on a quantum computer. In Sec. III, SC-ADAPT-VQE
is extended to the preparation of localized states, and used to establish a hadron wavepacket on top of the interacting
vacuum; see Fig. 1b). The wavepacket preparation circuits are optimized on a series of a small lattices by maximizing
the overlap with an adiabatically prepared wavepacket. The locality of the target state ensures that these circuits can
be systematically extrapolated to prepare hadron wavepackets on large lattices.

In Sec. VI, the techniques and ideas described in the previous paragraphs are applied to quantum simulations of
hadron dynamics on L = 56 (112 qubit) lattices using IBM’s quantum computer ibm_torino. The initial state is
prepared using SC-ADAPT-VQE, and time evolution is implemented with up to 14 Trotter steps, requiring 13,858
CNOTs (CNOT depth 370). After applying a suite of error mitigation techniques, measurements of the local chiral
condensate show clear signatures of hadron propagation. The results obtained from ibm_torino are compared to
classical simulations using the cuQuantum Matrix Product State (MPS) simulator. In these latter calculations, the
bond dimension in the tensor network simulations grows with the simulation time, requiring increased classical com-
puting overhead. This work points to quantum simulations of more complex processes, such as inelastic collisions,
fragmentation and hadronization, as being strong candidates for a near-term quantum advantage.

II. SYSTEMATIC TRUNCATION OF THE ELECTRIC INTERACTIONS

The Schwinger model is quantum electrodynamics in 1+1D, the theory of electrons and positrons interacting via
photon exchange. In 1+1D, the photon is not a dynamical degree of freedom, as it is completely constrained by
Gauss’s law. As a result, the photon can be removed as an independent field, leaving a system of fermions interacting
through a linear Coulomb potential. In axial gauge with open boundary conditions (OBCs), zero background electric
field, and using the Jordan-Wigner (JW) mapping, the Schwinger model Hamiltonian on a lattice with L spatial sites
(2L staggered sites) is given by [120, 121]

Ĥ = Ĥm + Ĥkin + Ĥel =
m

2

2L�1X

j=0

h
(�1)jẐj + Î

i
+

1

2

2L�2X

j=0

�
�̂+
j �̂�

j+1 + h.c.
�

+
g2

2

2L�2X

j=0

✓X

kj

Q̂k

◆2

,

Q̂k = �
1

2

h
Ẑk + (�1)k Î

i
. (1)

The (bare) mass and coupling are m and g, respectively, and the staggered lattice spacing has been set to one. Due
to the non-perturbative mechanism of confinement, all low-energy states (the vacuum and hadrons) have charge zero.
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t NT # of CNOTs
(per t)

CNOT depth
(per t)

# of distinct
circuits (per t)

# of twirls
(per circuit)

# of shots
(per twirl)

Executed
CNOTs (⇥109)

Total # of
shots (⇥106)

1 & 2 2 2,746 70 4 480 8,000 4 ⇥ 2 ⇥ 10.5 4 ⇥ 2 ⇥ 3.8

3 & 4 4 4,598 120 4 480 8,000 4 ⇥ 2 ⇥ 17.7 4 ⇥ 2 ⇥ 3.8

5 & 6 6 6,450 170 4 480 8,000 4 ⇥ 2 ⇥ 24.8 4 ⇥ 2 ⇥ 3.8

7 & 8 8 8,302 220 4 480 8,000 4 ⇥ 2 ⇥ 31.9 4 ⇥ 2 ⇥ 3.8

9 & 10 10 10,154 270 4 160 8,000 4 ⇥ 2 ⇥ 13.0 4 ⇥ 2 ⇥ 1.3

11 & 12 12 12,006 320 4 160 8,000 4 ⇥ 2 ⇥ 15.4 4 ⇥ 2 ⇥ 1.3

13 & 14 14 13,858 370 4 160 8,000 4 ⇥ 2 ⇥ 17.7 4 ⇥ 2 ⇥ 1.3

Totals 1.05 ⇥ 1012 1.54 ⇥ 108

TABLE III. Details of our quantum simulations performed using 112 qubits of IBM’s ibm_torino Heron processor. For a given
simulation time, t (first column), the second column gives the number of employed Trotter steps NT . The third and fourth
columns give the number of CNOTs and corresponding CNOT depth. The CNOT totals given in the third column include the
cancellations that occur during transpilation, and the CNOT depth should be compared to the minimum depth that is equal to
twice the number of CNOTs/qubit (49, 82, 115, 148, 181, 214, 247 for increasing NT ) to assess the sparsity of the circuits. The
fifth column gives the number of distinct circuits per t (this number does not include the circuits needed for readout mitigation)
and the sixth column gives the number of Pauli-twirls executed per distinct circuit. For each twirl, 8,000 shots are performed
(seventh column). The total number of executed CNOT gates are given in the eighth column, and the total number of shots are
given in the ninth column. The total number of CNOT gates applied in this production is one trillion, and the total number
of shots is 154 million.

0 12 24 36 48 11199877563
Fermion staggered site j

14
12
10
8
6
4
2
0

t

0.0

0.5

1.0

1.5

X
j
(t

)

FIG. 10. The time evolution of the vacuum subtracted chiral condensate Xj(t), defined in Eq. (18), for a L = 56 (112
qubits) spatial-site lattice. The initial state is prepared using the 2-step SC-ADAPT-VQE vacuum and wavepacket preparation
circuits. Time evolution is implemented using a second-order Trotterization of the Hamiltonian with the � = 1 truncated electric
interaction. The left side shows the results of error-free classical simulations from the cuQuantum MPS simulator, while the right
side shows the CP-averaged results obtained using IBM’s superconducting-qubit digital quantum computer ibm_torino (both
sides show the MPS result for t = 0). Due to CP symmetry, the right and left halves would be mirror images of each other in
the absence of device errors. A more detailed view for each time slice is given in Fig. 11, and discussions of the error-mitigation
techniques are presented in the main text and App. G.

These ⌘O are used to estimate the expectation values from the physics circuits (using the same relation). For
wavepacket (vacuum) time evolution, we choose a mitigation circuit that creates the wavepacket (vacuum), time
evolves with half of the Trotter steps until t/2 and then evolves for �t/2 with the remaining Trotter steps [41]. This
forwards-backwards time evolution corresponds to the identity operator in the absence of device errors, and restricts
our simulations to an even number of Trotter steps. To determine the ⌘O, the prediction of a desired observable from
the mitigation circuit must be known. In our case, this requires classically computing h�̂ji in both the SC-ADAPT-
VQE vacuum and wavepacket. This can be accomplished even for large systems using the qiskit or cuQuantum
MPS simulator, as was demonstrated in Ref. [108] for the SC-ADAPT-VQE vacuum up to L = 500. Interestingly,
our numerical calculations highlight that it is the time evolution, and not the state preparation, that is difficult for
classical MPS techniques.

We implement time evolution for t = {1, 2, . . . , 14} with 2d
t
2e second-order Trotter steps (a maximum step size of

�t = 1). As shown in the previous section, this step size does not introduce significant Trotter errors. The number of
CNOTs and corresponding CNOT depth for each simulation time are given in Table III, and range from 2,746 CNOTs
(depth 70) for 2 Trotter steps to 13,858 CNOTs (depth 370) for 14 Trotter steps. The results for Xj(t) obtained
from ibm_torino and the MPS simulator are shown in Fig. 10, with a breakdown of each t given in Fig. 11 (the

Hadron wavepacket evolution 
in the Schwinger model (112 
staggered sites with IBM with 
noise mitigation):

Hadron wavepacket in the  gauge theory (12 staggered sites with Quantinuum, minimal noise mitigation):Z2
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FIG. 2. The L = 1 lattice qubit layout of one generation of the SM that is used in this paper for quantum simulation. Fermion
(anti-fermion) sites are occupied when spin up (down), and the lepton sites represent occupation in the tilde basis. Specifically,
the example of |dbdgdri (upper lattice) decaying to |dbdgdri |e⌫i (lower lattice) through one application of H̃� in Eq. (9) is
shown.

it is convenient to work with field operators that create and annihilate eigenstates of the free lepton Hamiltonian,
Hleptons. These are denoted by “tilde operators” [158], which create the open-boundary-condition (OBC) analogs of
plane waves. In the tilde basis with the JW mapping, the lepton Hamiltonian becomes

H̃leptons = �⌫(�̃
(⌫)†
0 �̃

(⌫)
0 � �̃

(⌫)†
1 �̃

(⌫)
1 ) + �e(�̃

(e)†
0 �̃

(e)
0 � �̃

(e)†
1 �̃

(e)
1 ) ! �⌫

2
(Z⌫ � Z⌫) +

�e

2
(Ze � Ze) , (7)

where �⌫,e = 1
2

q
1 + 4m2

⌫,e. In our simulations, the initial state of the quark-lepton system is prepared in a strong

eigenstate with baryon number B = +1 in the quark sector and the vacuum, |⌦ilepton, in the lepton sector. The

benefit of working in the tilde basis is that the vacuum satisfies �̃
(e,v)
0 |⌦ilepton = �̃

(e,v)†
1 |⌦ilepton = 0, and therefore

the only terms in the H� of Eq. (4) that contribute to �-decay are

H̃� =
Gp
2


ce + c⌫p

(1� 4mece)(1 + 4m⌫c⌫)

⇣
�
(u)†
0 �

(d)
0 + �

(u)†
1 �

(d)
1

⌘

� 1 + 4cec⌫

2
p
(1� 4mece)(1 + 4m⌫c⌫)

⇣
�
(u)†
0 �

(d)
1 + �

(u)†
1 �

(d)
0

⌘�
�̃
(e)†
0 �̃

(⌫)
1 + h.c. , (8)

where ce = �e�me and c⌫ = m⌫ +�⌫ . The insertion of the charge-conjugation matrix, C, in the continuum operator,
Eq. (2), is necessary for a non-zero �-decay rate on a single lattice site. To minimize the length of the string of Zs
in the JW mapping, the lattice layout in Fig. 2 is used. In this layout, the hopping piece of Hquarks has only 5 Zs
between the quark and antiquark raising and lowering operators and the �-decay operator becomes

H̃� ! Gp
2

⇢
�
�
⌫ �

+
e

X

c=r,g,b


ce + c⌫p

(1� 4mece)(1 + 4m⌫c⌫)

⇣
�
�
d,cZ

2
�
+
u,c + �

�
d,c

Z
2
�
+
u,c

⌘

� 1 + 4cec⌫

2
p

(1� 4mece)(1 + 4m⌫c⌫)

⇣
�
�
d,c

Z
8
�
+
u,c + �

+
u,cZ

2
�
�
d,c

⌘�
+ h.c.

�
. (9)

In total, the L = 1 system requires 16 (12 quark and 4 lepton) qubits.2 See App. A for the complete L = 1 Hamiltonian
in terms of qubits.

B. A Majorana Mass for the Neutrino

Although not relevant to the simulation performed in Sec. III, it is of current interest to consider the inclusion of a
Majorana mass term for the neutrinos. A Majorana mass requires and induces the violation of lepton number by

2 The e+ and ⌫ qubits do not participate in this process, which could be simulated with only 14 (12 quark and 2 lepton) qubits.
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FIG. 6. The probability of �-decay, �� ! �0 + e+ ⌫, with mu = 0.9, md = 2.1, me,⌫ = 0, g = 2 and G = 0.5, using one (left
panel) and two (right panel) Trotter steps (requiring 59 and 212 ZZ gates, respectively), as given in Table II. The dashed-black
curve shows the expected result found from the exact diagonalization of the Hamiltonian. The blue circles correspond to the
data obtained on the H1-1 machine, and the orange (green) triangles to the H1-1E emulator, each obtained from 200 shots (400
shots). The points have been shifted slightly along the t-axis for clarity. Error mitigation beyond physical-state post-selection
has not been performed. The weak Hamiltonian in the time-evolution responsible for the decay is given in Eq. (14).

Single-Baryon Decay Probabilities using Quantinuum’s H1-1 and H1-1E

1 Trotter step 2 Trotter steps

t H1-1 H1-1E
H1-1E

(⇥2 stats)
Theory H1-1 H1-1E

H1-1E

(⇥2 stats)
Theory

0.5 0.175(29) 0.162(28) 0.144(19) 0.089 0.100(29) 0.182(37) 0.173(25) 0.088

1.0 0.333(35) 0.303(34) 0.302(25) 0.315 0.269(43) 0.248(41) 0.272(29) 0.270

1.5 0.594(37) 0.547(38) 0.559(27) 0.582 0.404(48) 0.416(49) 0.429(33) 0.391

2.0 0.798(30) 0.792(30) 0.794(22) 0.801 0.530(47) 0.563(51) 0.593(35) 0.547

2.5 0.884(24) 0.896(23) 0.879(17) 0.931 0.667(41) 0.779(43) 0.771(30) 0.792

TABLE II. The probability of �-decay, �� ! �0 + e+ ⌫, on L = 1 spatial lattice with mu = 0.9, md = 2.1, me,⌫ = 0, g = 2
and G = 0.5. These simulations were performed using Quantinuum’s H1-1 and H1-1E and included the initial state preparation
and subsequent time evolution under 1 and 2 Trotter steps. The results are displayed in Fig. 6. The columns labeled (⇥2
stats) were obtained using 400 shots, compared to the rest, that used 200 shots, and uncertainties were computed assuming
the results follow a binomial distribution.

grows linearly with its distance from the boundary, leading to a force on colored objects. This will cause colored
errors in the bulk to migrate to the edge of the lattice where they could be detected and possibly removed. This is one
benefit of using axial gauge, where Gauss’s law is automatically enforced, and a colored “error” in the bulk generates
a color flux tube that extends to the boundary.

Localized two-bit-flip errors can create color-singlet excitations that do not experience a force towards the boundary,
but which are vulnerable to weak decay. For su�ciently large lattices, color singlet excitations will decay weakly down
to stable states enabled by the near continuum of lepton states. In many ways, this resembles the quantum imaginary-
time evolution (QITE) [184–186] algorithm, which is a special case of coupling to open systems, where quantum
systems are driven into their ground state by embedding them in a larger system that acts as a heat reservoir. One
can speculate that, in the future, quantum simulations of QCD will benefit from also including electroweak interactions
as a mechanism to cool the strongly-interacting sector from particular classes of errors.

This particular line of investigation is currently at a “schematic” level, and significantly more work is required to
quantify it’s utility. Given the quantum resource requirements, it is likely that the Schwinger model will provide a
suitable system to explore such scenarios.
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Figure 4. E↵ective loss of initial-state information. (A) State preparation. Evolution of the matter density from the
“fully matter-filled” state (hn̂matteri = 1, blue box left) to almost “matter-empty” state (hn̂matteri ⇡ 0.21, yellow box right) for
the adiabatic ramp with preparation time ⌧ and corresponding mass parameter mPre/ as shown in the inset. (B) Schematic
of the evolution towards thermal equilibrium. For each of two sets of quench parameters (m = 0 and m = �0.8) we choose
two initial states with equal energy density. The resulting steady states in the wake of the quenches starting in these two
initial states are then compared to a canonical thermal ensemble whose temperature is determined from the energy density [22].
Here, all energy densities are plotted with respect to the ground state of the evolution Hamiltonian. (C, D) Relaxation. We
show the thermalization dynamics for the chosen quench parameters and initial states (shown in (B)). Experimental data are
compared to predictions from corresponding gauge theory thermal ensembles (dashed lines) at temperatures kBT = 1 (top)
and kBT = 4.6 (bottom). The insets show the energy density evolution during state preparation, the circles mark the chosen
initial states.

dations for the exploration of more complex higher-
dimensional gauge theories using state-of-the-art quan-
tum technology [38]. An important next step towards
applications for gauge theories such as quantum electro-
dynamics, or maybe even quantum chromodynamics, is
a faithful extension of the discrete quantum-link repre-
sentation towards continuous variables [9, 39, 40]. To
this end, current implementation schemes should be ex-
tended to higher spin representations and scalable higher-
dimensional set-ups [41].
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Figure 1. Quantum simulation of gauge-theory quench

dynamics. (A) Schematic nonequilibrium evolution to the
steady state. Under the constrained (gauge) condition, we
find that di↵erent initial states with the same energy density
evolve towards a common thermal state of the gauge the-
ory. (B) Quantum simulator for the gauge theory. Matter
and gauge fields are represented by occupations of bosonic
atoms in an optical superlattice. Charges are illustrated as
red (positive) and blue (negative) circles and electric flux is
shown as yellow arrows. On matter sites, the presence of
an atom signals a corresponding charge in the gauge theory.
To illustrate Gauss’s law, we indicate locally gauge-invariant
configurations around even (green boxes) and odd matter sites
(blue boxes), see also Fig. S1. (C) Evolution of the matter
density measured by in-situ imaging. Top: Starting from the
initial state with unity-filled matter sites hn̂matteri = 1 (see
inset), we observe a fast decay of the matter density hn̂matteri
for “violent” quenches (m/ = 0) in our 71-site quantum sim-
ulator. Bottom: Evolution of matter density (averaged over
36 matter sites of the superlattice). Error bars denote the
standard deviations.

sites l and l + 1. The interaction ⇠  represents the an-
nihilation (or creation) of a pair of fermionic charges on
neighboring sites with a concomitant change of electric
flux Êl,l+1 = (�1)l+1Ŝz

l,l+1 on the gauge link in-between,
such that gauge invariance is retained. The model is real-

ized within a subspace of our quantum simulator, which is
described by a tilted Bose–Hubbard Hamiltonian with a
staggered potential; see Eq. S5 for details. It is character-
ized by direct tunneling strength J , staggering potential
parameter �, linear potential �, and on-site interaction
U , as indicated in Fig. 1B. We employ a Jordan–Wigner
transformation to replace the fermionic fields in Eq. 1
with bosonic atoms (see [22] for derivational details).
We keep matter and gauge fields as dynamical degrees

of freedom each represented by appropriate site occupa-
tions of atoms in an optical superlattice. Gauge symme-
try is enforced by suitable energy penalties constraining
the system to a gauge-invariant subspace of the quan-
tum simulator [24–26]. For J ⌧ �, U , and a linear po-
tential � = 57Hz we suppress both direct and long-range
tunneling and realize the gauge theory at second-order in
perturbation theory [22]. We identify the gauge-invariant
interaction with a correlated annihilation of two atoms on
neighboring matter sites to form a doublon on the gauge
link in between (and reverse), see Fig. 1B. The mass of
the fermion pair is set by the energy balance of this pro-
cess as 2m = 2��U and the interaction strength is given
by  ⇡ 8

p
2J2/U close to resonance (m ⇠ 0).

To describe the nonequilibrium evolution of a gauge
theory, it is essential to also respect the gauge symmetry
in the initial state. In Fig. 1, we show examples of such
initial states, which can be prepared in the present ap-
paratus [8]. We start the experiment with an array of 36
near unity-filling chains of 87Rb atoms in the hyperfine
state |F = 1,mF = �1i. The individual chains extend
over 71 sites of an optical superlattice, which is formed
by the superposition of a short lattice (spacing as = 383.5
nm) and a long lattice (spacing al = 767 nm). Employ-
ing the full tunability of superlattice configurations and
the recently developed spin-dependent addressing tech-
nique [27], we remove all atoms on odd (gauge) sites,
rendering only the even (matter) sites singly occupied in
the initial state. The resulting state corresponds to the
ground state of Eq. 1 for  = 0 and m < 0, and is charac-
terized by empty gauge sites and unity filling on the mat-
ter sites hn̂matteri = 1, where hn̂matteri =

P
j2m

hn̂ji/Lm

is the average number of bosonic atoms over the Lm even
sites.
After the initial-state preparation, the atoms are iso-

lated in deep lattice wells (J, ⇡ 0). To initiate the dy-
namics, we first tune the superlattice configuration such
that potential minima of the two lattices are aligned, cre-
ating the staggered potential. The quench is then ini-
tiated by tuning the laser intensities to realize the de-
sired values of  and m, which can be chosen from a
broad range. Subsequently, the system undergoes co-
herent many-body oscillations. After a certain evolu-
tion time, we rapidly ramp up the lattice depth along
the x-axis to 60Er within 0.1 ms to freeze the dynam-
ics, where Er = h2/(8mRba2s) is the recoil energy with
mRb the atom mass and h Planck’s constant. We then
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ag
2 set for the fitting c0 c1 c2

⌘

s
(ag2 = 0)

{0.5, 0.55, 0.6, 0.65} 0.07(2) 14(12)·10�4 81(12)·10�1 0.07(2)

{0.4, 0.5, 0.55, 0.6, 0.65} 0.068(16) 14(9)·10�4 80(8)·10�1 0.070(16)

{0.4, 0.5, 0.55, 0.6, 0.65, 0.7} 0.118(14) 9(6)·10�5 12(1) 0.118(14)

TABLE II. Obtained parameter values from fitting the ag
2 dependence of ⌘

s
on a 4⇥ 4 lattice with jmax = 1

2 for �0 = 0.2 using
the exponential function in Eq. (44). The last column lists the obtained values in the continuum limit.

column of Tab. II for the three di↵erent fitting ranges of
ag2. The three values are compatible within two-sigma
error bars. However, we observe a change in the contin-
uum limit value, when the data point at ag2 = 0.7 is
included in the fitting. We attribute this to the poten-
tially larger lattice discretization e↵ect at bigger lattice
spacing.

Iterating this procedure for di↵erent “physical” tem-
peratures T0, we obtain the temperature dependence of
⌘

s
in the continuum. We shown in Fig. 12 results from

all the three fitting data sets. The green and orange dots
are slightly shifted horizontally for better visualization.
We do not study temperatures higher than �0 = 0.15
since higher jmax truncation is needed to accurately de-
scribe highly excited states, as discussed in Sec. VB. The
uncertainty grows rapidly at lower temperatures (e.g.
�0 = 0.225), since not many states of the theory are
e↵ectively contributing to the retarded Green’s function
(suppressed by e��0E) and then the density of contribut-
ing states is not large enough to suppress the real time
fluctuation in ⌘̃(tf ) due to our small lattice and local
Hilbert space truncation, as seen in Sec. V C.

Our results of ⌘

s
are consistent with the holographic

result 1
4⇡ within uncertainties, which is shown as the

dashed line in Fig. 12. We also observe a trend of de-
crease in ⌘

s
as temperature increases from the blue dots.

However, this trend is not obvious from the green and or-
ange dots. All these should be further studied on bigger
lattices with higher jmax truncation in the future, to bet-
ter understand the finite volume and local Hilbert space
truncation e↵ects.

2. Structure of Spectral Function

We also study the o↵-diagonal matrix elements of eT xy

in small frequency ! ranges, which are related to the
spectral function that is defined as

⇢xy(!) ⌘
1

A

Z
dt ei!tTr

�
[ eT xy(t), eT xy(0)]⇢T

�

=
1

AZ

X

n

X

m

2⇡�(! + En � Em)|hn| eT xy
|mi|

2

⇥ (e��En � e��Em) . (45)

FIG. 11. Results of the coupling dependence of ⌘

s
for �0 = 0.2

on a 4 ⇥ 4 lattice with jmax = 1
2 . Black points represent the

calculated ⌘

s
at di↵erent couplings, lines indicate the fitting

results and bands describe one sigma uncertainty of each fit-
ting.
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FIG. 12. Obtained ⌘

s
results as a function of �0 on a 4 ⇥ 4

lattice with jmax = 1
2 . We slightly shift the data horizontally

for better visualization of the three fittings using di↵erent
data sets.

When ! is small, |hn| eT xy
|mi|

2 is closely related to ⇢
xy(!)
!

:

⇢xy(!) =
1

AZ

X

n

X

m

2⇡�(! + En � Em)|hn| eT xy
|mi|

2

⇥ e��En [�! + O(!2)] . (46)

Our results of |hn| eT xy
|mi| on a 4 ⇥ 4 lattice with

j = 1
2 are shown in Fig. 13 for two values of ag2:

0.6 and 1.0, where we use eigenstates in the energy
windows 15 < En, Em < 17 and 26 < En, Em < 28
respectively. Previous calculations showed no structure

3

�e1
�e3 �e2

j

i
K = 1K = 2

K = 3

K = 5K = 4

K = 0

FIG. 1. Hexagonal lattice on which the position of each pla-
quette is labeled by (i, j) along the two axes shown. The red
dots represent the positions at which the stress-energy tensors
are evaluated. The K values show the periodic chain used for
the magnetic term at (i = 1, j = 2).

III. LATTICE HAMILTONIAN FORMULATION

A. General Setup

The Kogut-Susskind Hamiltonian [28] of the 2+1D
SU(2) gauge theory can be discretized on a hexagonal
lattice as shown in Fig. 1

H =
3
p

3g2

4

X

links

Ea

i
Ea

i
�

8
p

3

9g2a2

X

plaqs

9

9 ⌘ Tr

✓ Y

(x,̂i)2plaq

U(x, î)

◆
, (9)

where a in the denominator is the side length of the hon-
eycomb and we have shifted the energy reference point.
The honeycomb plaquette operator 9 is defined as the
trace of the product of the six Wilson lines U(x, î) on
the edges of one honeycomb. The two-vector x = (i, j)
labels the position of a honeycomb lattice on the plane
along the directions specified as in Fig. 1. The electric
field

Ea = (Ea

x
, Ea

y
) ⌘

a

g2
(F a

0x, F
a

0y) , (10)

is projected along three unit directions Ea

i
⌘ êi·E

a where
the three unit vectors are defined as in Fig. 1. On each
link, only one type of projected electric field lives, i.e.,
i is 1, 2 or 3. More details can be found in Ref. [29].
Physical states satisfy Gauss’s law

3X

i=1

Ea

i
| phyi = 0 , (11)

at each vertex for every a.
We use the electric basis that labels each link by the

quantum number j. In this basis, the electric energy is
diagonal [30–32]

hJ |Ea

i
Ea

i
|ji = j(j + 1)�Jj . (12)

The matrix element of the plaquette term (magnetic en-
ergy) has been worked out to be [29, 33, 34] (see Refs. [35–
39] for the square plaquette case):

h{J}|9|{j}i = (13)
6Y

V=1

(�1)ja+Jb+jx
p

(2Ja + 1)(2jb + 1)

⇢
jx ja jb
1
2 Jb Ja

�
,

where {j} ({J}) labels the states on the six links of the
honeycomb plaquette before (after) the action of the 9
operator. The product is over all the vertices V of the
honeycomb plaquette, attached to which are two internal
links labeled by the subscripts a and b and an external
link labeled by x.

From Eqs. (2) and (10), we find

T xy = �
g2

a2
Ea

x
Ea

y
. (14)

Using the electric field projection, we find Ea

1 � Ea

3 =
p

3Ea

x
and Ea

2 = �Ea

y
. Combining with Gauss’s law

Ea

1 + Ea

2 + Ea

3 = 0, we can express T xy as

T xy = �
g2

p
3a2

�
(Ea

1 )2 � (Ea

3 )2
�
. (15)

In this expression, we need to specify the position where
T xy is defined, since the two electric fields Ea

1 and Ea

3 are
defined on di↵erent links. We use the convention that
the vertex joining the two electric fields represents the
position of T xy. On a 3⇥4 lattice as shown in Fig. 1, we
should specify 12 positions for di↵erent T xy’s. We choose
the 12 red points in Fig. 1 as our convention, which can
be easily generalized to bigger lattices. Summing over all
red points gives

eT xy =
3
p

3

2
a2T xy

sum ⌘
3
p

3

2
a2

X

red dots

T xy

A =
3
p

3

2
a2Nplaq , (16)

where Nplaq is the total number of honeycomb plaquettes
on the lattice and is equal to the number of red dots, as
shown in Fig. 1. Using Eqs. (4) and (6) leads to

Gxy

r
(t) =

3
p

3a2

2Nplaq
✓(t)Tr

�
[T xy

sum(t), T xy

sum(0)]⇢T
�
. (17)

B. Truncation at jmax = 1
2

For quantum computation discussed later, we need to
decompose the Hamiltonian and T xy in terms of tensor
products of Pauli matrices, for which quantum circuits of
implementation are known. This decomposition has been
done for the case with the local Hilbert space truncation
at jmax = 1

2 .

Shear viscosity in SU(2) LGT in 2+1 D with jmax = 1/2
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Hardware e�cient quantum simulation of non-abelian gauge theories

with qudits on Rydberg platforms
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Non-abelian gauge theories underlie our understanding of fundamental forces in nature, and de-
veloping tailored quantum hardware and algorithms to simulate them is an outstanding challenge
in the rapidly evolving field of quantum simulation. Here we take an approach where gauge fields,
discretized in spacetime, are represented by qudits and are time-evolved in Trotter steps with multi-
qudit quantum gates. This maps naturally and hardware-e�ciently to an architecture based on
Rydberg tweezer arrays, where long-lived internal atomic states represent qudits, and the required
quantum gates are performed as error-tolerant holonomic operations supported by a Rydberg block-
ade mechanism. We illustrate our proposal for a minimal digitization of SU(2) gauge fields.

Introduction.– Quantum field theories form the back-
bone of the Standard Model of particle physics, where
quantized gauge fields mediate the interactions be-
tween fundamental particles [1]. Lattice gauge theories
(LGTs), where fields are discretized on a space-time lat-
tice [2], provide a convenient framework to study non-
perturbative high-energy phenomena, and have been ex-
tensively used to extract numerous experimentally rele-
vant predictions [3]. Despite this success, standard ap-
proaches based on Monte Carlo methods are severely lim-
ited by the sign problem [4], preventing the study of real-
time gauge theory dynamics, among other drawbacks.
The latter are essential to analyze experimental results
in heavy-ion colliders, where open problems in particle
physics are currently being addressed [5, 6], including
the search of new physics beyond the Standard Model.

In the recent years, quantum simulators (QS) [7] have
emerged as a promising pathway to circumvent these
problems [8–13], leading to several experimental demon-
strations where simple LGTs were investigated using dig-
ital, analog and variational methods [14–20]. For dig-
ital QS [21], in particular, di↵erent schemes have been
proposed to address high-dimensional non-abelian gauge
theories using di↵erent platforms, including trapped
ions [22–24], ultracold atoms [25–29], superconducting
circuits [30–32] and cavities [33]. Despite their higher
flexibility to simulate complex many-body Hamiltonians
compared to the analog approach, crucial in particular
for non-abelian theories, a full digital quantum simu-
lation requires access to gate-based quantum comput-
ers, which are currently restricted to Noisy Intermedi-
ate Scale Quantum (NISQ) devices [34], limited in qubit
number and circuit depths. Although an impressive ef-
fort is currently taking place to reduce the computa-
tional complexity using improved quantum software [35–
49], simulating relevant LGTs in the NISQ era must be

⇤ These authors contributed equally.

daniel.gonzalez-cuadra@uibk.ac.at
torsten.zache@uibk.ac.at

complemented by the development of e�cient quantum
hardware tailored to the specific algorithmic demands.

FIG. 1. Gauge field dynamics on a qudit quantum sim-
ulator: (a) Our proposal employs Rydberg atoms trapped in
optical tweezers, arranged on the links ` of a hypercubic lat-
tice. Each atom encodes a qudit using d internal levels, where
single-qudit gates are realized holonomically. To implement
the entangling two-qudit gate⇥`|`0 , tweezers are rearranged to
bring pairs of atoms within the Rydberg blockade radius Rb.
(b) First order decomposition of a Trotter step, including the
four-qudit plaquette interaction, into the native atomic gates
U

(E/B)
` and ⇥`|`0 (see main text). (c) Trotterized quench dy-

namics of a non-abelian Q8 LGT on a single plaquette for
�E/�B = 2.88.

In this Letter, we introduce a qudit architecture based
on atoms trapped in optical tweezer arrays and laser ex-
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II. THE KOGUT-SUSSKIND HAMILTONIAN FOR QCD AND MAPPING TO QUBITS

The 1+1D SU(3) KS Hamiltonian [85, 86] with Nf flavors formulated in A
(a)
x = 0 gauge [36, 87] takes the form

H =
X

f

"
1

2

2L�2X

n=0

⇣
�
(f)
n

†
�
(f)
n+1 + h.c.

⌘
+ mf

2L�1X

n=0

(�1)n�(f)
n

†
�
(f)
n

#
+

g
2

2

2L�2X

n=0

8X

a=1

0

@
X

mn

Q
(a)
m

1

A
2

, (1)

where �
(f)
n correspond to annihilation operators for fermions of flavor f . They are color triplets, with their color

indices are suppressed in Eq. (1). The color-charge operators on each lattice site are the sum of contributions from
each flavor. For example, for Nf = 2 (up and down quarks), the color-charge operators are

Q
(a)
m = �

(u)†
m T

a
�
(u)
m + �

(d)†
m T

a
�
(d)
m , (2)

where the generators of SU(3), T a, are given in App. A. With open boundary conditions (OBC) and vanishing fields
at spatial infinity, corresponding to vanishing net color charge on the lattice (enforced by additional terms in the
Hamiltonian [36]), Gauss’s law is sufficient to determine the chromo-electric field at all lattice sites,

E(a)
n =

X

mn

Q
(a)
m . (3)

There are a number of ways that this system, with the Hamiltonian given in Eq. (1), can be mapped onto qubit
registers. In our previous works [36, 38], the KS Hamiltonian for an arbitrary number of colors Nc and flavors Nf was
mapped to qubits using the Jordan-Wigner (JW) transformation [89]. For the Nc = 3 and Nf = 2 case, each staggered
site requires six qubits, with ordering db, dg, dr, ub, ug, ur, and the antiquarks associated with the same spatial site
adjacent with ordering db, dg, dr, ub, ug, ur. This is shown in the left panel of Fig. 1. The resulting JW-mapped

FIG. 1. Mapping QCD with Nf quark flavors onto a lattice of qubits (left) or qu8its (right) describing a spatial site. Kogut-
Susskind (staggered) fermions are used for the quark fields, with (anti)quarks on (odd) even sites. Using qubits, color and
flavor degrees of freedom of each quark and antiquark site are distributed over six qubits with a JW mapping. Using qu8its,
with the quark (and anti-quark) degrees of freedom being mapped to the internal states, only two qu8its are required per each
quark flavor.

Hamiltonian is the sum of three terms [36, 38], neglecting the possible presence of chemical potentials,

H = Hkin + Hm + Hel ,

Hkin = �1

2

2L�2X

n=0

1X

f=0

2X

c=0

"
�
+
6n+3f+c

 
5O

i=1

�
z
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!
�
�
6(n+1)+3f+c + h.c.

#
,
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1

2

2L�1X
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1X

f=0

2X
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⇥
(�1)n�z
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⇤
,

Hel =
g
2

2

2L�2X

n=0

(2L� 1� n)

0

@
1X

f=0

Q
(a)
n,f Q

(a)
n,f + 2Q(a)

n,0 Q
(a)
n,1

1

A+ g
2
2L�3X

n=0

2L�2X

m=n+1

(2L� 1�m)
1X

f=0

1X

f 0=0

Q
(a)
n,f Q

(a)
m,f 0 ,(4)

where repeated adjoint color indices, (a), are summed over, the flavor indices, f = {0, 1}, correspond to u- and d-quark

8

FIG. 3. A connectivity map among the eight qu8it states that is required by the Hamiltonian in Eq. (16). Colored connections
are for the kinetic term, while black ones are for the color charge-charge interactions (different line styles correspond to different
charge combinations).

A. QCD with Nf = 1 on L = 1 Spatial Site with OBCs

It is helpful to explore examples of mappings to qu8its. Consider L = 1, with lattice sites n = 0, 1, with one flavor
Nf = 1, which maps to two qu8its (one for the quarks and one for the anti-quarks), a system that we have studied
previously [36]. The matrix representation of the Hamiltonian, as given in Eq. (16), reduces to

H1 =
1

2

⇣
ecr† eP ⌦ ecr† + ecg† eP ⌦ ecg† + ecb† eP ⌦ ecb† � ecr eP ⌦ ecr � ecg eP ⌦ ecg � ecb eP ⌦ ecb

⌘

+ 3m
⇣
eB ⌦ eI + eI ⌦ eB

⌘
+

g
2

2

X

a

⇣
eQ(a) ⌦ eI

⌘2
+

h
2

2

X

a

✓
eQ(a) ⌦ eI + eI ⌦ ē

Q

(a)
◆2

,

= H1kin + H1m + H1el + H1h , (18)

where eI is the identity operator. The term with coefficient h has been included to enforce color-neutrality across the
lattice as h ! 1, as we implemented in previous work [36]. This generates a significant penalty for chromo-electric-
energy density beyond the end of the spatial lattice, and without this term color-edge states appear as low-lying states
in the spectrum due to OBCs [36]. In the large-h limit, only color-singlet states remain at low energies.

This system is sufficiently simple and of small dimensionality, involving a 64⇥ 64 Hamiltonian matrix, that it can
be exactly diagonalized with classical computers. Projecting to states with good baryon number further reduces the
size of the matrix. For example, in the B = 0 sector, the contributing configurations correspond to i) both qu8its
in the vacuum (a 1); ii) the qu8its are in the one-quark one-anti-quark sector (3 ⌦ 3 = 8 � 1); iii) the qu8its are in
the two-quark two-anti-quark sector, (3 ⌦ 3 = 8 � 1); and, iv) both qu8its are in the completely occupied state, a
baryon-anti-baryon pair (a 1). Consequently, the total number of B = 0 basis states is nB=0 = 1 + 9 + 9 + 1 = 20.
However, a large value of h propels the 8’s high in the spectrum, leaving only four color-singlet states in the low-lying
spectrum. These are formed from linear combinations of the eight pairings of states in the qu8its.7

As this is a system we have analyzed previously using the JW mapping to qubits [36], the low-lying spectra and
time-evolution from arbitrary initial states are known. The (exact) time evolution found from matrix exponentiation
of the Hamiltonian in Eq. (18), is found to furnish results that agree with our previous analyses.

As shown in Eq. (21) below, the chromo-electric term Ĥ1el is diagonal in the qu8it computational basis for L = 1.
Thus, in the case of an ideal quantum computer, with an initial state that is a color-singlet, exact time evolution will
leave the system in a color-singlet state at all subsequent times, even without the “h-term” in Eq. (18). As such, that
term can be omitted in the time-evolution operator in the case of L = 1. For systems with L > 1, however, color-
charge is violated by Trotterized time evolution (in particular, due to Trotterization of the eight contributions to the
color sum in the chromo-electric field term, when the color-charge operators act on different sites), and consequently,
including the “h-term” is a means to mitigate this violation.

7 If we were working in U(1) lattice gauge theory describing quantum electrodynamics, the situation would be somewhat less complex
because each (tensor-product) basis state is an eigenstates of the electric-charge operator. This is not the situation for non-Abelian
theories, where the color-charge operator generally mixes basis states.
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FIG. 2. Refining the gauge field discretization a, We consider pure gauge QED in two spatial dimensions with periodic
boundary conditions, i.e. on a lattice on the surface of a torus. As before, the gauge field resides on the links of the lattice,
while here the vertices remain empty. b, We consider the smallest instance of such a torus, containing four empty sites and
eight gauge field links. The ground state of this particular system can be described via three separate circulation-paths of the
gauge field, called rotators as discussed in App. C 2. Each rotator fulfills an eigenvalue equation equivalent to a single link gauge
field and can thus be subject to the same truncation rules as discussed in the main text by employing a d-level qudit. Here,
we demonstrate the di↵erence between a realization employing qutrits and ququints. c, The variational circuit in the electric
representation (see main text) for the qutrit (solid lines) and the ququint (all, except shaded box marked with qutrit symbol)
truncation. The explicit form of the gates employed is given in App. D 1. d, Experimentally measured expectation values of the
plaquette operator ⇤̂ in the VQE-optimized ground states using qutrits (light shaded data), compared to ququints (dark shaded
data). The error bars indicate one sigma statistical uncertainty. The black line represents numerical results obtained for d = 21,
using the electric (magnetic) representation for small (large) values of g�2. e, The duality between the electric (all orange bars)
and magnetic (all blue bars) representations is clearly seen in the experimentally measured populations of the eigenvectors of
the yellow rotator from panel b for the qutrit VQE experiment and ququint experiment. The grey bars are results obtained via
exact diagonalization. In the regime dominated by the electric Hamiltonian (small g�2) a qutrit (light orange) representation
is enough to approximate the correct ground state, while for larger g�2 truncation errors become more relevant and a ququint
representation (dark orange) becomes advantageous. A complementary argument applies to the magnetic qutrit (light blue)
and ququint (dark blue) representation.

So far, we truncated the gauge field directly in the
electric field eigenbasis, i.e. in our first experiment we
included eigenstates |Ei of the electric field operator Ê
with Ê|Ei = E|Ei and E = 0,±1. However, to deter-
mine the plaquette expectation value resource-e�ciently
across all values of the coupling, we now employ a
more suitable truncation scheme that we introduced in
Ref. [38]. Our method is based on a Fourier transforma-
tion: for large couplings (where g�2

⌧ 1), the Hamilto-
nian is dominated by the electric field contribution ĤE ,
and a gauge field truncation in the electric (E-) field basis
is suitable, which we refer to as the electric representa-
tion. For small couplings (where g�2

� 1), the magnetic
field term dominates, and accordingly, a magnetic (B-)
field basis (using B-field eigenstates) is more e�cient.
The VQE circuits for the E- and B- representations are

shown in App. F and in Fig. 2c respectively. As explained
in more detail in the Appendix, their construction is in-
spired by the form of the Hamiltonian.

Figure 2d shows the resulting ground-state plaquette
expectation values versus g�2, along with our theoreti-
cal predictions that include a simple noise model, as de-
scribed in App. H. For qutrits and ququints, we perform
the full VQE as in Fig. 1. Note that we show the results
for both representations across all values of the coupling
g�2, even though the validity of the electric (magnetic)
representation is restricted to the large (small) coupling
regime, where g�2

⌧ 1 (g�2
� 1). The gap between the

curves in the intermediate region g�2
⇡ 1, where the elec-

tric and magnetic representations perform equally, stems
from the truncation of the gauge fields, see Ref. [38]. As
the truncation is increased, the two curves rapidly ap-
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Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information

2/23

We’ve got a long way to fully and reliably simulate the Standard Model but we know what to 
do! Theory/algorithm/experiment collaborations will be the key. It is even more important in 
the quantum-computing era since our computers are themselves physical systems! This is an 
active field with lots to work on and develop! It is time to get involved if you are interested!
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