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Abstract
The use of quantum computers could circumvent the complex action problem hampering first-principles studies of gauge theories in real time or at finite density. One
of the main bottlenecks of quantum computers is the limited number of available qubits. One approach to mitigate this bottleneck is the discretization of continuous
gauge groups to their discrete subgroups, which introduces systematic uncertainties. Previously, discrete subgroups and dense subsets of gauge groups had been
investigated, but only with isotropic Euclidean lattices. In this work, we take the first steps in studying the systematics associated with digitization by performing
anisotropic Euclidean simulations and taking the Hamiltonian limit, where the temporal lattice spacing approaches zero while the spatial lattice spacing is kept fixed.

Scaling laws of gauge couplings in the Hamiltonian limit
In the Hamiltonian limit βS → 0 and βT → ∞ from dimensional analysis. How?

The Hamiltonian H is constructed from the transfer matrix T as

Z = TrTNt from which T = 1 − atH+O(a2
t ) .

To have a non-trivial Hamiltonian in the continuous time limit, scaling laws of coupling constants are imposed.
• Temporal coupling: different scaling laws arise in the cases of continuous and discrete gauge groups.

atH∞,kin =
1

βT
∆∞ =⇒ βT ∼ 1

at

atHN,kin = e−cβT ∆N =⇒ βT ∼ log(1/at)

• Spatial coupling: βS ∼ at (regardless).

Complex action problem
The partition function as a path integral reads

Z =

∫
Dϕ e−S[ϕ] =

∫
Dϕ w[ϕ] .

If w[ϕ] /∈ R+, Markov chain Monte Carlo methods
with usual importance sampling are not applicable
to compute expectation values of observables: this
is the complex action problem (CAP).

In principle, CAP can be bypassed with the help of
quantum computing (QC) which are inherently
capable of complex operations [1].

Digitization of gauge groups
In the NISQ era, one of the main bottlenecks of QC
is the limited number of qubits, hence contin-
uous variables cannot be mapped onto them faith-
fully. In a gauge theory the corresponding Hilbert
space for gauge fields is infinite dimensional, i.e., it
shall be made discrete and finite via an appropriate
digitization scheme [2, 3].

Simplest example: U(1) discretized to Z(N)

g∞(φ ∈ R) = eiφ 7→ gN (n ∈ Z+) = e2πin/N
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The Hamiltonian limit
To derive the Kogut-Susskind Hamiltonian one shall
consider the following [4, 5]:

1. Zero-temperature limit due to the choice of
temporal gauge.

2. Anisotropic lattice with action

Sa =
∑
x

[
− βS

∑
k<l

ReTrUkl(x)

− βT

∑
k

ReTr
[
Uk(x+ 0̂)U†

k(x)
]]

.

3. Taking the Hamiltonian limit as{
as = fixed ∼ discrete space
at → 0 ∼ continuous time

Phase transitions in U(1) and Z(N ) lattice gauge theories
Anisotropic scan in (βS , βT ):
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Z(N= 7), |Λ|=N 3
s ×Nt = 43 × 32
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For N ≲ 5 freezing washes away deconfinement:
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Z(N= 3), |Λ|=N 3
s ×Nt = 43 × 32
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Freezing goes away as N → ∞:
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Hamiltonian limit from Euclidean simulations
Do the Hamiltonian limit and the N → ∞ limit com-
mute?

For a fixed spatial extent 2(+1) numerical limits
are to be computed for U(1) or Z(N):

1. Zero-temperature limit, i.e., Nt → ∞,

2. βS → 0 and βT → ∞ (done simultaneously)
based on scaling laws,

3. N → ∞ for Z(N). 3 4 5 6 7 8 9 10
N
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Summary
• Freezing transition due to discrete nature of

the group Z(N), absent in U(1).

• Studying the freezing transition with
anisotropic lattices for the first time.

• Scans in the (βS , βT ) coupling space reveals
rich phase diagram for Z(N) gauge theories.

Plans: further analysis of (non-)commuting limits,
extend analysis to SU(2) and SU(3) gauge theories.

• Deconfinement transition also in Z(≳ 5)
and U(1) theories. Otherwise flushed away by
freezing.

• Partial freezing transitions if βS small
(large) and βT large (small).

• Remaining question: what happens with the
freezing transition in the Hamiltonian limit as
N → ∞, i.e., the discretization is taken to be
finer?
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