

EXCLUSIVE LEPTONIC B DECAYS: PRISMA⁺ VIRTUAL AND REAL QED CORRECTIONS

Max Ferré (JGU Mainz)

In collab. w/ C. Cornella, M. König and M. Neubert (JGU Mainz)

Motivations

Why leptonic B decays ?

-Direct determination of the CKM element $|V_{ub}|$.

-Chirality-suppressed in the SM \rightarrow powerful probe of (pseudo) scalar new physics.

 $\mathscr{B}(B^- \to \ell^- \bar{\nu}_{\ell}) = \tau_B G_F^2 f_B^2 |V_{ub}|^2 \frac{m_B m_{\ell}^2}{8\pi} \left(1 - \frac{m_{\ell}^2}{m_{h}^2}\right)^2$

- -Testing flavor universality in charged current : Belle II will measure the $\ell = \tau, \mu$ channels with 5 - 7% uncertainties. [Belle II Physics Book]
- Why QED corrections are needed?

-Pure hadronic effects are simple and well understood :

A multi-scale problem

Focusing on $\ell = \mu$ case, QED introduces new scales (both static and dynamic) to which $B^- \rightarrow \mu^- \bar{\nu}_{\mu}$ is sensitive :

GIU

B-meson described as a superposition of Fock-states: $|\bar{u}b\rangle \oplus |\bar{u}bg\rangle \oplus \cdots$ [Beneke et al(2019),JHEP10232]

 \rightarrow virtual corrections can resolve the partonic substructure !

 f_{B_a} is known with $\mathcal{O}(1\%)$ precision:

 $f_{B_a} = 189.4 \pm 1.4$ MeV

- BUT QED corrections are sensitive to the lepton mass and the restriction on additional radiation, yielding large (double) logarithmic corrections !

In the exclusive channel, with strong cuts on additional soft radiation, QED corrections can be **sizable** and compete with QCD uncertainties need a precise estimation

D \rightarrow Scales dictated by the experimental energy cut on the additional final radiation. ...including its first (pseudo) vector excited states as off- \rightarrow FCC and Belle II could in principle achieve a shell intermediate propagator ! resolution with $E_s \sim \mathcal{O}(\Lambda_{OCD}^2)$...

...BUT $E_s \sim \mathcal{O}(\Lambda_{OCD})$ is needed for Belle II to improve the statistics of the measurement !

We need to find the appropriate effective description at each scale including all the relevant scales. The aim is to evaluate each object at its **natural scale**, turning a multi-scale problem to a product of single scale objects. — Factorization theorem

The plan : embark in an EFT journey running down with the scale !

EFT toolbox

Conclusion : factorization formula for the decay rate ...

$$= \Gamma_0 \left(|y_B(\mu)|^2 |K(\mu)|^2 S(E_s, \mu) + |y_B^*|^2 S_{B^*}(E_s) + |y_{B_1'}|^2 S_{B_1'}(E_s) \right)$$

Real corrections Structure-dependent radiative corrections Virtual corrections

Virtual corrections are factorized at the level of the amplitude : appear as an effective Yukawa coupling

 $y_B(\mu) = C_L(\mu) \times H(\mu) \times \mathcal{J}(\mu)$

Real corrections factorize at the decay rate level : convolution of radiative functions

...and estimation of the QED corrections !

 $|y_{b}(\mu)|^{2} S(E_{s},\mu) \sim m_{\mu}^{2} \log \frac{E_{s}}{m_{B}} \log \frac{m_{\mu}}{m_{B}}$ $|y_{B}^{*}|^{2} S_{B^{*}}(E_{s}) \sim E_{s}^{2}$

 $|y_{B'_1}^*|^2 S_{B'_1}(E_s)$: (numerical cancellation)

Structure-dependent radiative corrections enter via additional Yukawa coupling multiplied by a **soft radiative function**. They dominate for looser cuts!

