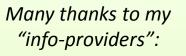


Overview of Computing and Data processing for "Event-Experiments"


Giovanni Lamanna

LAPP - Laboratoire d'Annecy-le-Vieux de Physique des Particules, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux, France

ASPERA-Workshop, Barcelona 30-31 May 2011

- Introduction about data/computing models ...
- Experiments: Auger, Antares, HESS, Fermi, CTA, (XMM)
- Summary and conclusions

R. Dubois, T. Johnson (Fermi) M.De Naurois, P. Espigat (HESS) J.Brunner (ANTARES) JN. Albert (Auger) R. Lemrani (CCIN2P3) A.Ibarra (XMM) C. Arvistet (ESA) N.Komin, J.Ponz (CTA)

Computing and Data Models: an introduction

Data management main sub-systems

- On-site system (close to antennas)
- Data transfer and archive system
- Data processing (close to data and to scientists)
- Data access

Computing model main specifications

- Data stream and scientific products
- Experiments or Observatory (# of users/observers)
- Analysis-system ("Client/server", "Mainframe")
- "Time-line" and/or "formal" constraints (e.g. ESO/NASA/ESA vs ASPERA)

ICT applied to four main sub-components

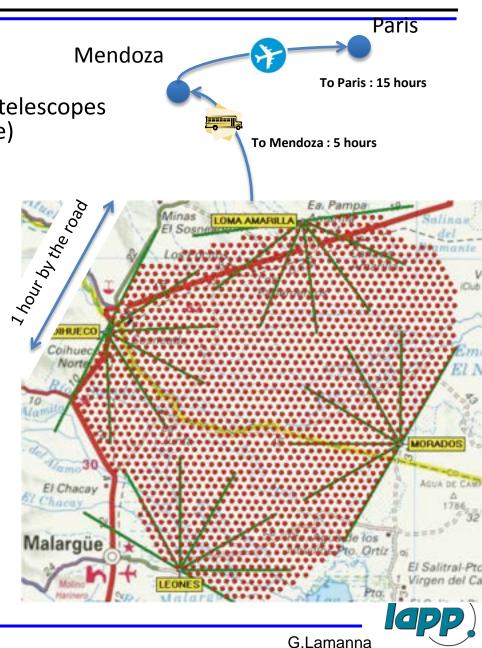
- HW: Computing Elements (CE), Storage Elements (SE)
- Service: Archive, Database and Meta-Database
- SW: Reconstruction/Simulation
- Middleware

Final implementation into a Scientific Analysis System

SAS

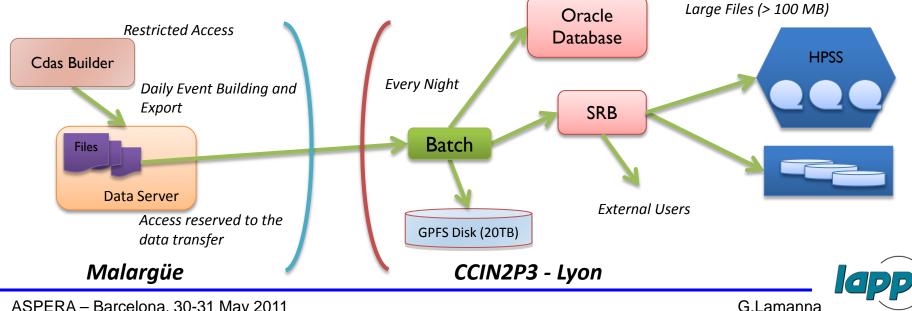
PIERRE AUGER OBSERVATORY

- The largest Cosmic Rays Observatory
 - 3 000 km² in the Argentina Pampa
 - 1 600 Surface Detectors (Cherenkov)
 - 4 Fluorescence Telescopes
 - 6 x 4 Fluorescence Cameras
 - 10 % of the time (night no moon)
 - Hybrid Events : SD + FD
 - Better determination of the energy
- High Energy Cosmic Ray
 - Energy 10²⁰
 - 1 / km² / century
 - Expected : 30 events/year
 - Observed UHECR : 50 (GZK effect)



Data Taking

- Radio transfer from the thanks and telescopes to the Cdas main building (Malargüe)
- Merged in Events
 - Root format
 - Immediate reconstruction of the event parameters
 - Copied to a data server for export
- Daily transfer to Lyon
 - ▶ 1 3.5 GB/day (no calibration)
 - Poor Pampa BW ~ 50KB/s
 - Calibration data sent by disk every 2 months



Data Transfer / Data process

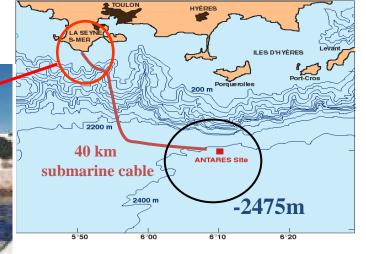
IN2P3 Computer Center is the Main Repository for the Auger Data (Tier 0)

- Data files are copied every nights from the Malargüe server to CCIN2P3 by batches running at Lyon (on a GPFS large disk (20 TB), import manager status on Oracle DB)
- The files are duplicated in SRB (Storage Resource Broker, a data Grid distributed files manager) for external access by the collaboration sites (Read-only access for the Auger user needing a CC account to get the authorization)
- Data size: 8 TB since 2006, 1.2 TB of reconstructed data. In average : Reconstructed data: 850 MB/day; Raw data + Calibration: 4.8 GB/day
- MC production on GRID (showers + telescopes simulations)

ASPERA - Barcelona, 30-31 May 2011

ANTARES

The submarine cosmic neutrino detector

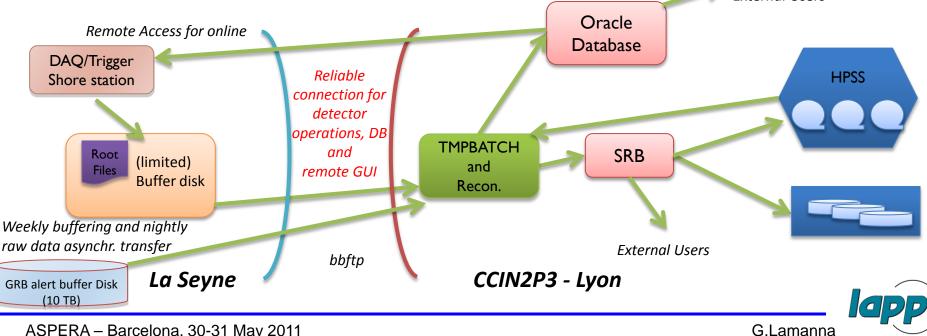

- Cherenkov light from μ induced by ν interaction detected by 3D PMT array (2400 m depth)

- Time & position of hits allow the reconstruction of the μ (~ ν) trajectory

ANTARES produces ~ 10 TB raw data per year.

Institut Michel Pacha

- Data are buffered at the shore station and transferred nightly to CC-Lyon.
- BW of the connection is 1 Gbit/sec.


ANTARES shore station La Seyne/Mer

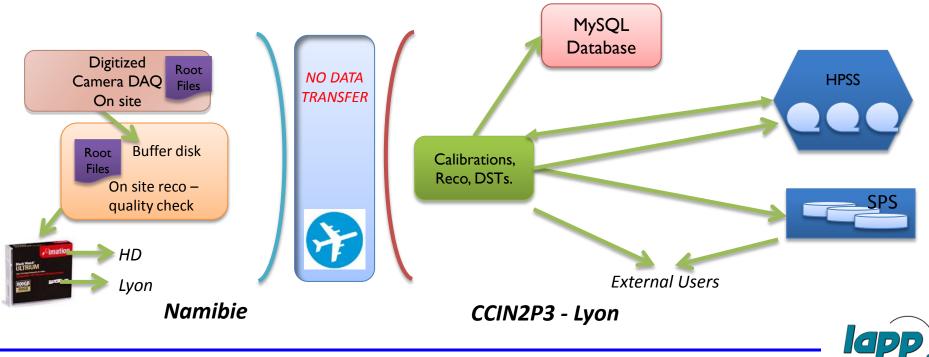
- IN2P3 Computer Center is the Main Repository for the ANTARES data (Tier 0)
- The unfiltered data stream from the detector to the shore is ~1GB/sec. The trigger reduces this to 20 GB/day, i.e. a reduction of a factor ~4000.
- Data stream 50 GB/day (20 GB triggered + 30 GB untriggered data external GRB alerts)
- Mass storage is done on HPSS.
- Main format is Root, read access to data for processing via XRootd.
- Access to external institutes is provided via SRB.
- Complex data (calibration, slow control, settings) are in an Oracle DB. Remote access is allowed. It is used offline as well as online for data taking. External Users

ASPERA – Barcelona, 30-31 May 2011

The first 4-telescope IACT stereoscopic system

HESS is one of the leading observatories studying VHE gamma-ray astrophysics.

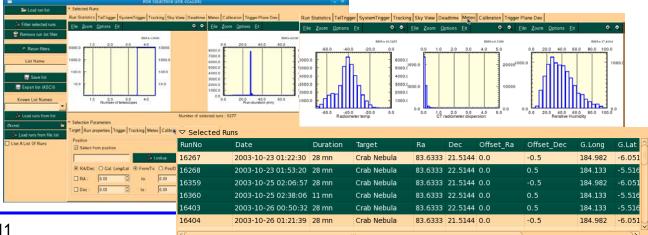
 Four 13m diameter telescopes in the Khomas highlands of Namibia (southern Africa)


- 100 GeV 100 TeV, 15% energy resolution
- 5' angular resolution, 5° field of view
 (each tel. has 107 m² mirror area, 15 m focal)
- 960 photomultiplier tube pixels
- 5° FoV (1.4 m)
- 1 GHz sampling
- Camera front-end digitization
- Total raw data stream ~ 8GB/hour
- Trigger rate 200 Hz
- On site control room (20 PC + some TB SE)
- All files in ROOT format
- Data are buffered and saved on tapes

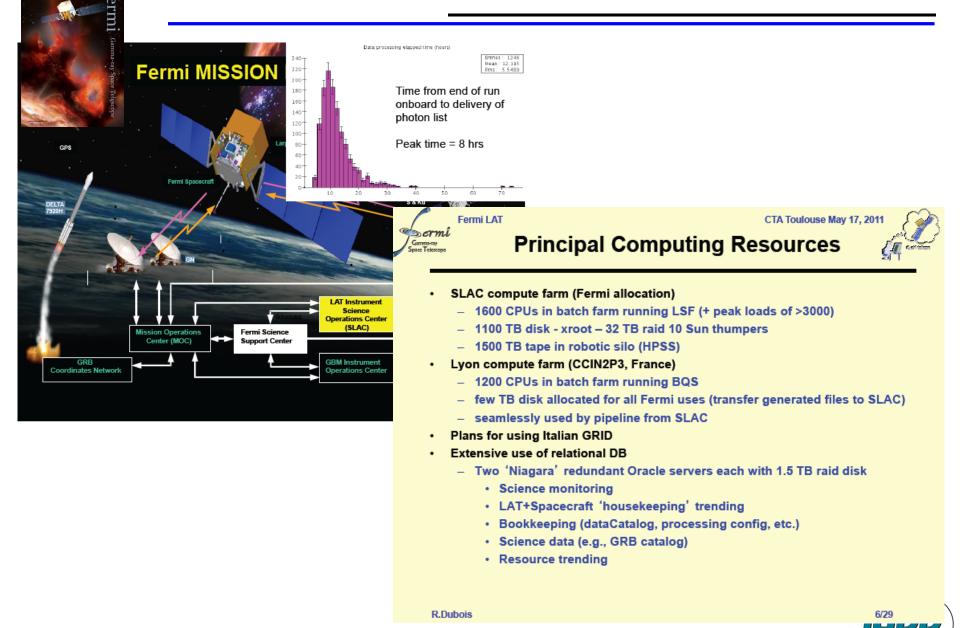
then fly to Europe . Not enough BW for transfer

- IN2P3 Computer Center is the Main Repository for the HESS-FR data (Tier 0)
- 10 TB raw data per year at CCIN2P3 (Today: 291 077 GB + 14 TB scratch disk + ~ 200 TB MC)
- MySQL DB for book keeping, jobs handling, calibration, ...
- DST (10 times smaller than raw data) are Root files (data are Root files at any level),
 Pedestals & Broken pixels are Root files as well.
- CPU: 1 day machine per run (28 min observation time) for calibration,
 1 day machine per run for DST production (~ 6% CCIN2P3 CPU to be doubled with HESS2)
 ==> ~ 5000 day machine per year (Analysis is fast compared to calibration and reconstruction)
- FR-HESS users ~20-30 accessing CC for analysis

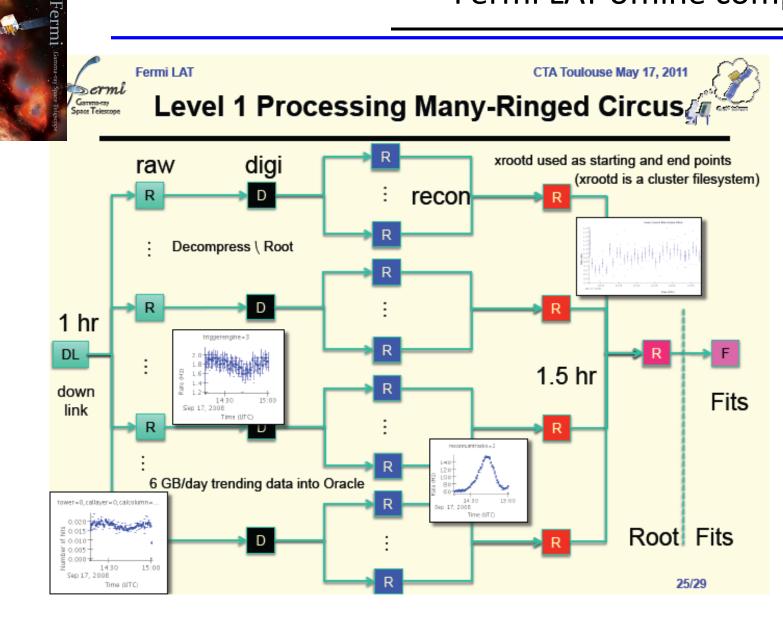
Data access/analysis


HESS-FR computing model for data production, access and analysis at CC-Lyon : Client /server paradigm:

- Web services for remote data processing, calibrations control ...
- Client for data selection (sky, source, run/time, pre-lists, other lambdas, pub. lists)
- Client interface (and VM) for DAQ sys.
- Client DB-DAQ slow-control parameters data selection (trigger, atmos. ,cameras status, telescope pointing...)
- GUI-Client service for job-analysis submission-> interfaced to GridEngine batch system.
- Analysis is not highly process demanding since DSTs have all reconstruction methods and param.


(... periodical re-proces.)

Analysis in Root env.
 ("ParisAnalysis" framework)
 included output high-level files.



Fermi LAT offline computing

Fermi LAT offline computing

ASPERA - Barcelona, 30-31 May 2011

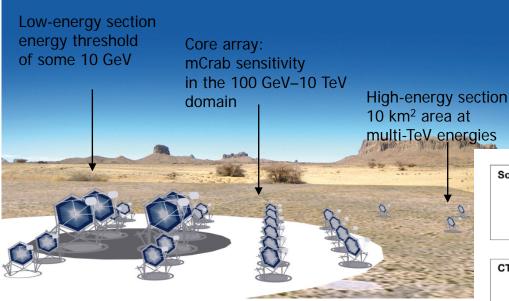
Fermi LAT offline computing

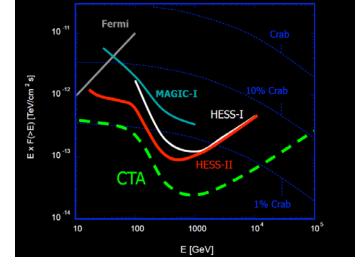
Fermi-approach: "web-service" for quality check of data pipeline workflows (recon. jobs)

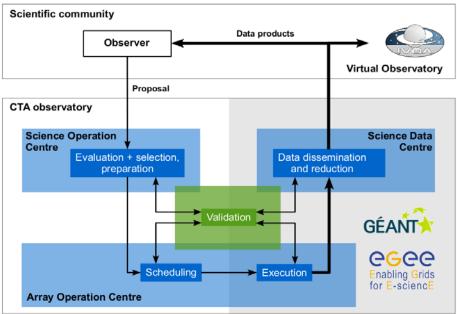
Web interfaces allows:

- Quick overview of data processing
- Flags runs requiring further attention
- Allows "drill-down" to isolate/identify problems

<text><text><text><text><text>


Pipeline web interface allows :


- -Many views of data processing, down to log files of individual hobs
- Jobs submission
- Jobs failing, can be rolled back from the web interface


Last Active -	Task Name	Type	∇	***	h		X	0	\bigcirc	0	0	Total
2010-10-18 16:20	L1Proc	Deta	0	Ó	1	454	2	0	. 0	Ó	0	40
2010-10-18 16-19	RspAGR_sec	Data	0	1	3	\$1145	253	Ċ.		0	Ó	1142
2010-10-15 16:16	Levelox oold	Deta	. o	p	0	630	6	0	2.0	0	. 0	
2010-10-18 16:15	SkimmerTaskParallel	SKIM	0	0	.2	561	06	0	2	0	0	95
2010-10-10 15:58	P116-FT1	Data	0	0	210	11625	1	0	a	0	0	1104
2010-10-18 15:14	rapmq7day	DATA	0	. 0	0	21	0	0	0	0	0	2
2010-10-18 14:40	GRB_blind_search	Deta	0	0	0	316	0	0	0	0	0	
2010-10-18 14:40	Citil refinement_launcher	Deta	0	0	Ó	\$83		0	0	0	0	5.0
2010-10-18 14:38	AppinsertIntervals	Data	Q	Ū.	0	273	- 44	0	0	p	0	31
2010-10-18 14:34	AstroServerSkimmerTask	SKIM	0	0	0	957	128	0	0	0	0	108
2010-10-10 12:55	DRP_monitoring	Deta	0	0	0	165	. 0	0	. 0	0	0	161
2010-10-18 13:25	PGWaye	Data	0	0	0	165	0	0	0	0	0	163
2010-10-18 13:20	AspLauncher	Deta	0	0	0	295	3	0	0	0	0	29
2010-10-10 12:55	Hallipe	Dete	Ó	0	0	6724	2	0	0	0	Ó	670
2010-10-18 12:16	nonEventReporting	Data	0	0	0	34844	3315	0		0	0	3816
2010-10-18 09:25	launch@sport	Data	0	0	.0	941	0	ð	0	0	0	94
2010-10-18 04:01	obasim_v9r16p1	MC	0	0	0	86	109	0	0	0	0	19
2010-10-17 20:40	GR8_afterplow	Dete	0	.0	0	37	0	0	0	0	0	3
2010-10-17 20:34	GRB_afterglow_launcher	Dete	0	0	0	91	488	0	¢	0	0	57
2010-10-17 11:12	GRB_refinement	Dela	0	0	0	42	0	0	.0	0	0	
2010-10-15 14:37	SkimmerTask	SKIM	0	0	0	634	97	0	0	0	0	73
2010-10-15 10:56	P105-FT2	Data	0	0	0	5575	. 0	0	0	0	0	\$57
2010-10-15 03:16	intOnlineAnalysis	Deta	0	- 4	0	20		0	0	D	0	3
2010-10-14 14:13	GRBSimulator-GR-v17r35p8	MC	0	0	0	7701	0	0	0	0	0	770
2010-10-13 12-45	Ralipe	Data	0	0	0	13	6	c	0	0	0	51

Cherenkov Telescope Array: the first gamma-ray Observatory for the next decade

Cameras with 2000 pixels Triggers at a rate of 10 kHz (array 3 kHz). Main data stream of 1-10 GB/s. Total data volume : some PBs per year.

CTA model analysis

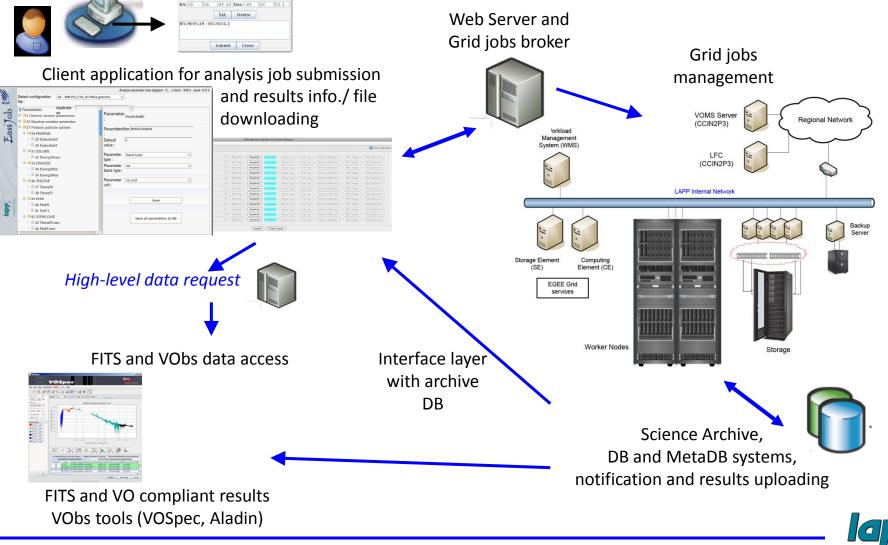
G.Lamanna

Data Processing Cycle: for the distributions of functions and products in Operations Centres

Data Path to be optimized: by examining the complete processing, with reference to the Data Levels

DATA PROCESSING CYCLE Northern / Southern Northern / Southern DL1 Data Files DL2 Data Files Science Data Centre Array Operations Centre **Data Processing Centre** Report P0 Reports P0+P1 (SDC) (DPC) (AOC) DL3 DL1 DL1 DL0 DL2 DL2 DL4 Processes Process P0 Process P1 P2 & P3 A2 Archive A0 Archive A1 Archive DL2+DL3 DL0 + DL1 DL1 + DL2 +DL4 DATA PATH Calibration Raw Event Data Tel-1 Shower Imag Tel-1 Param Tel-1 Image Shower Electr. Pedestal Parameterization Reconstructed Geometry & & Prefiltering Raw Event Data Tel-2 NSB Noise Sub. Shower Imag Tel-2 Param Tel-1 Energy Shower Events Flat-fielding Reconstruction Hillas method Gain correct Raw Event Data Tel-n Shower Imag Tel-r Param Tel-1 Pointing correct. DL0 DL1a DL1b DL2a ON-source Spectra Post-Filter Spectral Background γ-like Analysis Separation events Reconstructed y / Hadron Reconstructed Light-Curves y-like events Shower Events separation OFF-source In regions of Background & and Energy y-like physical space Exposure model Images Cuts. events DL2a DL2b DL3

Preliminary (work in progress)


Preliminary (work in progress)

User Web Client and/or VM for data searching

Then a model: e.g. Grid - SAS

Example: a possible Grid-SAS model based on the MC CTACG model and ..

G.Lamanna

ASPERA - Barcelona, 30-31 May 2011

... although aimed for

CTA-MC is conceived

workflow: MC, data

reduction, calibration,

to configure any

reconstruction,

G.Lamanna

analysis.

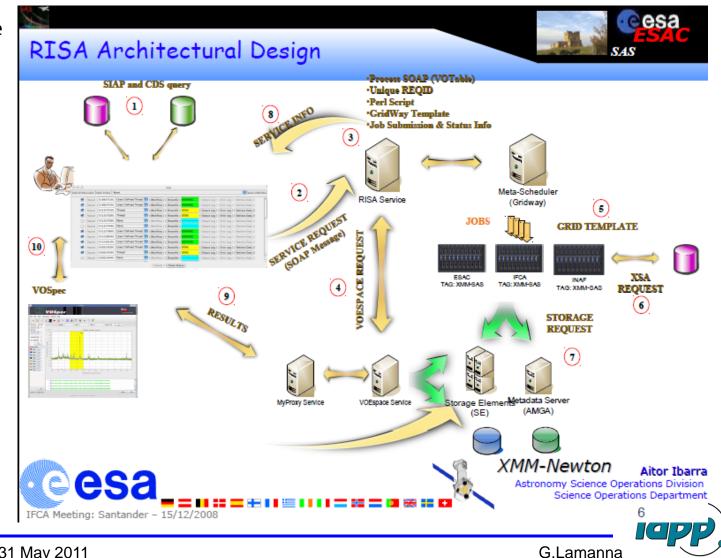
Easy Integrated Job Submission (developed at LAPP and based on ATLAS-Ganga) (DIRAC is also explored more recently)

- description of parameters of a software
 - · set of parameters, with default values, define if browsable
 - representation in data base
- create task based on configuration for this software
 - change parameters
 - define number of jobs
- web interface:

EasiJob

- Quality check of data pipelines Grid jobs
- Monitor workflow through Grid Worker nodes

Nukri Komin


ASPERA - Barcelona, 30-31 May 2011

Requirements defined in DB Analyze parameter tree diagr Select a requirement 1 - No_requirements Select configuration 20 - INPUTS CTA ULTRA3 gamma qo 0 file : MUST Selected 1SE requirements duplicate Parameters East Job Parameter B 🔤 1 Generic shower parameters ParticleId0 General requirement : 🖲 🗀 10 Random number generator Max/Min CPU Max/Min RAM Site name (Mo) (Mo) 27 Primary particle options Paramidentifier #ParticleId0# IN2P3-LAPP (1 E 28 PRMPAR IN2P3-CC (2) undefined CRIE-IRELL (3) > 0 - 29 ParticleId0 Default GRIE-LAL (4) undefined > 0 > 0 30 ParticleId1 value GRIF-APC (5 🕆 😂 31 ESLOPE Parameter basic type 32 EnergySlope Tasks defined in DB for vo.cta.in2p3.fr type : 🖻 🔤 33 ERANGE Parameter qo int 10 jobs 🗆 🗋 34 EnergyMin astTe basic type CORSIKA - CORSIKA Configuration : 35 EnergyMax LAPP only Define new task ion : INPUTS_CTA_ULTRA3_pro Parameter no unit 🖻 😑 36 THETAP H apply ganga co Update grid sites status unit - 37 ThetaP0 test_cecile detailed status 38 ThetaP1 Configuration CORSIKA - v_03_18feb10 No requi B- B 39 PHIP Save apply ganga commands 99 - 🗋 40 PhiP0 Manage job requirements – 🗅 41 PhiP1 57 jobs detailed status configuration files CORSIKA - v Leeds 🕆 😂 42 VIEWCONE Configuration Save all parameters Grid CTAProd BAM 2GE Grid sites monitoring 43 ThetaPCone none 44 PhiPCone proton tes 1 jobs Configuration : CORSIKA - CORSIKA

Grid – SAS (XMM RISA)

RISA (Remote Interface for Science Analysis) within the XMM-Newton Science Operations Centre at ESAC / ESA = A Scientific Analysis System (SAS) through web services.

A SAS Remote Interface that allows users to reduce and analyze XMM Newton data, using a Client/Server application which runs the processes in a GRID architecture.

Summary

Exper.	Data rate (GB/day)	Data rec. (GB/day)	MC	Data transfer	Recon.	Access	Model
AUGER	5	1	Grid	50 kB/s + tapes	Tier 0 (CCIN2P3)	Member users	Centralized-T0 MAINFRAME : Standalone server +
ANTARES	80000 to shore unfi	20 filt. +30 unf.	Central/ (Grid)	1GB/s to sh. 1 Gb/s to CC	Tier 0 (CCIN2P3)	Member users	Domain controller. Database-centric architecture
FERMI	15	750 (L1)	Central	8x2 GB/day download	Distributed (SLAC+CC)	Users + Observers	Pseudo-P2P (2T0 ?); C/S jobs execution (logical multi-tier); DB-centric + high-lvl data c/s Obs. Access
HESS	<100	<10 (DST)	Central	Tapes	Two // (CC+HD)	Member users	Centralized-T0 MAINFRAME + c/s Obslike services
СТА	3-30 10 ³	<3-30 10 ³	Grid	?	?	Users + Observers	Client/server multi- tier architecture (e.g. CTACG-MC- GRID and XMM) ?

Astroparticle "event-experiments":

- Recon./Analysis : Not specific "complicated' algorithms (not really computing demanding)
- Relatively low rate, fast reco., calibrations more critical (Grid-MC and re-processing), database-centric.
- Computing architecture is more affected by data acquisition and data transfer issues. (services applied and available at CC: XRootd, SRB, HPSS, Oracle DB, dCache, and Grid middleware)
- Data access issue becomes critical for the Observatories (data type, services, users/observers).
- ESA and NASA constrain (and support) the need for rapid processing and open access....
- HESS model is already "observatory-oriented" but still centrally manageable.
- ESA (e.g. XMM) applies GRID-paradigm for SAS. (GRID as a secure and mature distributed batch system moving to cloud = Grid + simplified porting non-batch applications)
- CTA Observatory..... will implement the first "ASPERA-Observatory" computing model for <u>Astroparticle</u> <u>Observatory Data Center</u> ?
- -> A **multi-tier architecture /client-server architecture** "in which the presentation, the application processing, and the data management are logically separate processes" and modern ICT solutions

Thank you !

ASPERA - Barcelona, 30-31 May 2011