
Overview of Data Storage, Access and Distribution Technologies

Dirk Duellmann, CERN IT 2nd Aspera Workshop 30-31 May 2011 Barcelona, Spain

OUTLINE

- Components for File storage & distribution in the Grid
- Important Model Parameters
- ☆ Lessons learned at LHC

Monday, 30 May 2011

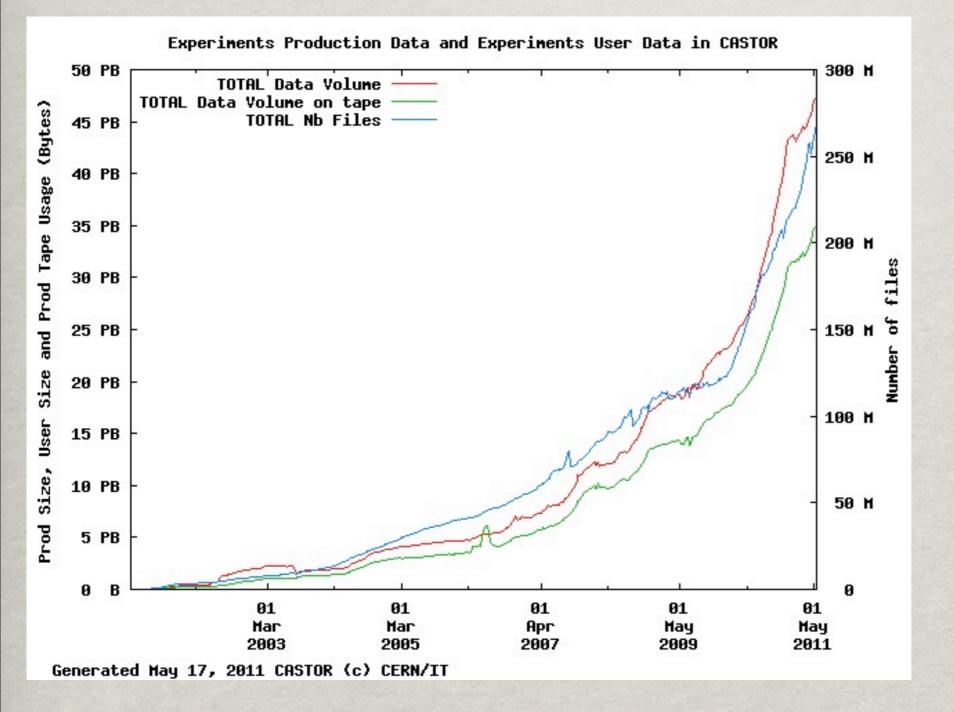
 Which model changes and new technologies are relevant?
 Grid File Transfer Service

BeStMan

ORACLE

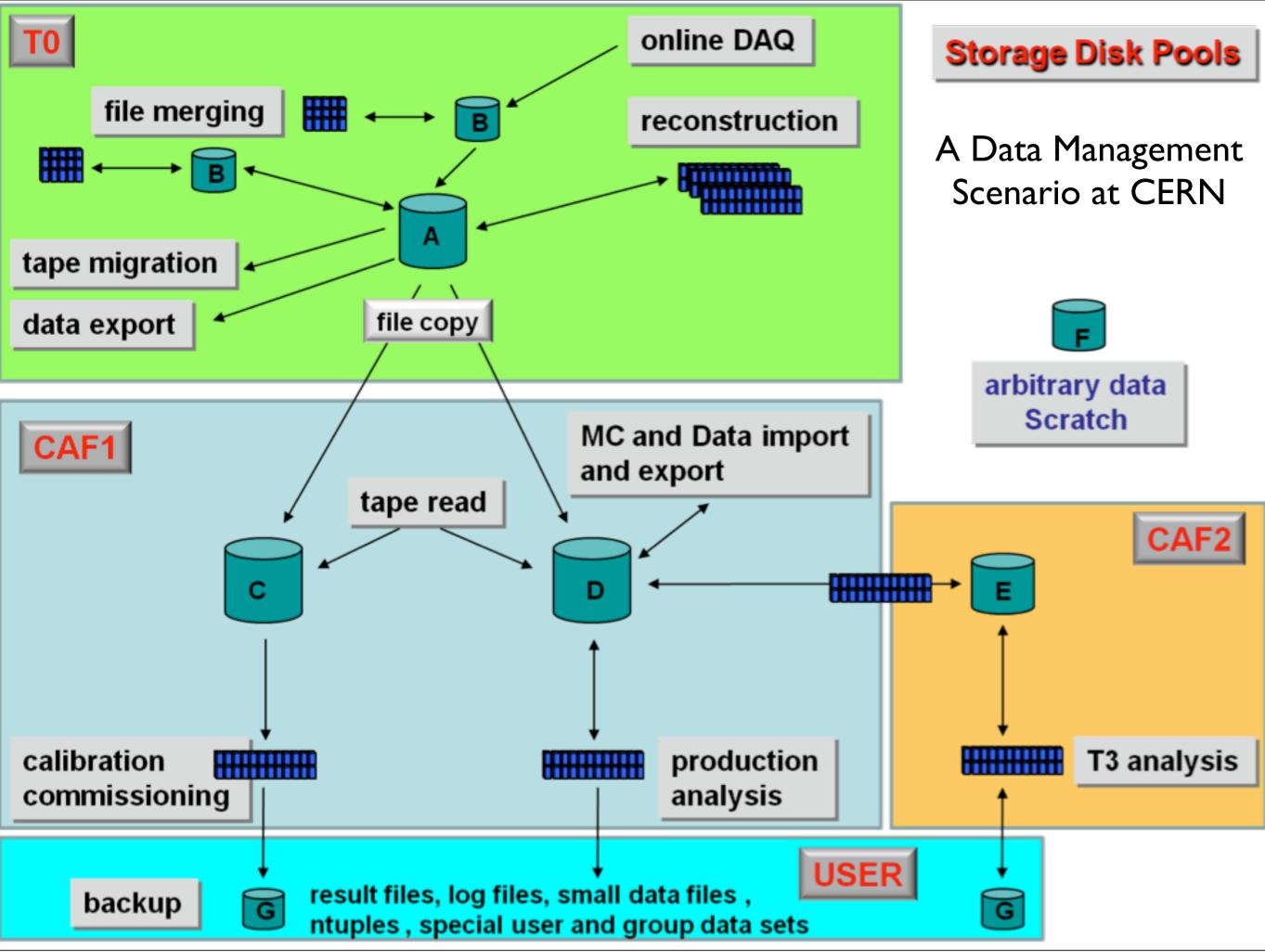
Ľ

B


·lustre.

Storage Resource Manager

CERN - STORAGE EVOLUTION



more than 20 PB stored in 2010

6 GB/s sustained (220 TB/day)

~1500 disk servers

IBM + Oracle tape libraries

Monday, 30 May 2011

TOOLS FOR FILE MANAGEMENT

- many different use cases and environments
- several storage element (SE)
 implementations have been
 produced
 - evolutionary rather than following an upfront design
 - use cases keep evolving and products extending
- Now consolidation is required to keep a healthy balance

TOOLS FOR FILE MANAGEMENT

- many different use cases and environments
- several storage element (SE)
 implementations have been
 produced
 - evolutionary rather than following an upfront design
 - use cases keep evolving and products extending
- Now consolidation is required to keep a healthy balance

TOOLS FOR FILE MANAGEMENT

- many different use cases and environments
- several storage element (SE)
 implementations have been
 produced
 - evolutionary rather than following an upfront design
 - use cases keep evolving and products extending
- Now consolidation is required to keep a healthy balance

FILE MANAGEMENT COMPONENTS

Disk		Таре		Distribution
High Level Storage Admin				
Posix I/O	_	Aggregation & Clustering	Mass Storage System	Transfer Workflow
Authorisation / Authentication	ed Filesystem	Tape Scheduling		Logical Connections
Name Space		Media Migration		Error Handling / Retry
I/O Scheduling / Placement	Clustered	Volume Management		Bandwidth Reservation
Disk Pools	J	Tape Libraries	2	

DATA MANAGEMENT FOR DATA PRODUCTIONS

- ☆ Focus for many years: Data Production
 - organised access, large files, few heavy sequential accesses
 - ☆ optimising h/w setup for particular work flow pays off
 - eg dedicated disk pools to guarantee predictable storage behaviour
 - Key model parameters: volume & media cost
 - simple relationship between storage volume and I/O operations per second can be established
 - but need comprehensive monitoring and regular reevaluation
 - * hard drive volume to spindle ratio is shifting
 - relative priority / frequency of work flows is changing

ANALYSIS IMPACT ON DATA MANAGEMENT

× Analysis Properties

- many users, many (smaller) disk files, many opens and random reads
- tuning on individual tasks is not feasible (due to larger number of them)
- × Key parameters
 - File meta data access and IO/sec are more important than pure storage volume and can vary significantly for different tasks

Additional Focus on

- Manageability
 - ☆ accounting & quota per user/group
- Performance
 - concurrent low latency access from many users to many files
 - computing model should provide estimates which can be compared agains measured performance - iterative process
- ☆ Usability
 - many inexperienced users with primary interest in physics not computing
 - ☆ preference for simple (mounted) file system view

- ☆ Focus on two areas
 - ☆ remote data access
 - ☆ storage management
- × Key metrics
 - ☆ scalability
 - ☆ use of server resources
 - ☆ round trips / latency
 - ☆ protocol clients
 - ☆ kernel / user space
 - ☆ standards / HEP specific
 - Iong term maintainability
 - do we need control or trust other s/w providers?

- ☆ Focus on two areas
 - ☆ remote data access
 - ☆ storage management
- × Key metrics
 - ☆ scalability
 - ☆ use of server resources
 - ☆ round trips / latency
 - protocol clients
 - ☆ kernel / user space
 - ☆ standards / HEP specific
 - Iong term maintainability
 - do we need control or trust other s/w providers?

- ☆ Focus on two areas
 - ☆ remote data access
 - ☆ storage management
- × Key metrics
 - ☆ scalability
 - ☆ use of server resources
 - ☆ round trips / latency
 - ☆ protocol clients
 - ☆ kernel / user space
 - ☆ standards / HEP specific
 - Iong term maintainability
 - do we need control or trust other s/w providers?

- ☆ Focus on two areas
 - ☆ remote data access
 - ☆ storage management
- × Key metrics
 - ☆ scalability
 - ☆ use of server resources
 - ☆ round trips / latency
 - ☆ protocol clients
 - ☆ kernel / user space
 - ☆ standards / HEP specific
 - Iong term maintainability
 - do we need control or trust other s/w providers?

- ☆ Focus on two areas
 - ☆ remote data access
 - ☆ storage management
- × Key metrics
 - ☆ scalability
 - ☆ use of server resources
 - ☆ round trips / latency
 - ☆ protocol clients
 - ☆ kernel / user space
 - ☆ standards / HEP specific
 - Iong term maintainability
 - do we need control or trust other s/w providers?

LAN ACCESS PROTOCOLS & SERVER IMPLEMENTATIONS

	Server scaling	Fail-over / redirect	Client available	Comments			
	remote access API / user space mount (eg FUSE)						
RFIO	O(10-100) clients	no	even two	GPL/CERN - being phased out			
XROOT	O(1000) clients	yes	via ROOT	BSD/xroot consortium (SLAC, CERN, Duke Univ.)			
	direct mount / kernel module						
Lustre	O(100-1000) clients	yes	End of 2009?	GPL/SUN -> Oracle ->?? file system implementation used by SE			
NFS 4.1	prototype by dCache	yes	with RedHat 6	protocol defined in RFC 3530, one server implementation per storage backend			

FILESYSTEMS - TWO FUNCTIONAL ROLES

- 1) the "client protocol" used to access data
 - Should provide
 - support secure authentication (incl. X509, Kerberos)
 - client side data cache, support for vector reads
 - redirect clients in case one access path is (temporary) unavailable
 - Examples: NFS4.1, XROOT/FUSE, AFS, {GPFS}
- 2) the software used to access/manage cluster storage
 - Should provide
 - high performance namespace, quota system
 - scalability in aggregate performance (eg file replication, striping)
 - support for online storage re-organisation
 - storage availability through media redundancy
 - Examples: GPFS, Lustre, AFS, XROOT
- For the moment: no system can claim to implement both functional areas
 - but clustering storage is an attractive starting point for several T1 sites

PROTOCOLS & GRID SECURITY

- ☆ Grid Certificates and CPU
 - The LCG Grid uses decentralised identity system based on X.509 proxy certificates with role annotations
- Naive certificate evaluation for each request is often too CPU intensive
 - ☆ few tens of authentications can saturate a core
 - ☆ applies to file, database, catalogue and SRM requests
- Session concept (as eg in xroot) can help to significantly reduce the security overhead
 - Agreement on use of X509 underway between main stake-holders providing xroot access

SCALABLE FILE NAMESPACES

☆ Frequent operations:

- obtain file meta data (stat), get directory content (ls)
 - ☆ but also: which files are hosted on machine / disk XYZ
- Name space is traditionally kept in a database
 - number of round-trips often limits the name space performance of larger storage systems
 - coalesce requests & cache results close to the client

☆ inside the disk layer or in front of database

- Active name space today fits into main memory
 - New EOS development at CERN is based on in memory namespace with very significant performance gains
 - DB role changes from an efficient access layer for large volume data to a recoverable store

OPTIMISING I/O SYSTEM EFFICIENCY

Send-to-end performance review of the full s/w stack

- Experiments: data model & integration with persistency s/w
- Application Area: ROOT use of storage access protocols (significant gains even after 10y)
- Storage providers: resulting meta data and data rates
- Sites: CPU<->storage connectivity balance
- ☆ This review is not a task for end-users!
 - Need to instrument code and services with appropriate monitoring and build up working groups with user and site involvement to analyse results

STORAGE REQUEST MANAGER

- SRM is a complex standard with many stakeholders
 - Goal: isolate users from implementation details of a particular storage element
 - Only a subset implemented by WLCG SEs
 - Approach seems different from other standards
 - ☆ eg SQL: extend a consistent core provided by all
- Is the implemented subset still consistent/used?
- Is the effort for the SRM abstraction smaller than a direct integration with storage elements?

FILE CATALOGS

- Exists within each storage element (local name space)
 - ☆ and globally at experiment level
 - in some cases on the level of datasets (complete set of files)
- ☆ Issues
 - reliable synchronisation between different name space providers
 - related: temporarily or permanently unavailable files
- Current practice
 - comparing dumps of all files in an SE with experiment catalog
 - ☆ neither scalable nor consistent
- Message based synchronisation scheme under development

FILE SET SUPPORT

- Current storage systems provide a convenient filename space to experiments
- but do not really aid several of their main work-flow primitives
 - change disk/tape state for a complete set of files
 - check if a file set is complete on-disk/on-tape/at-a-site
- from the service perspective
 - file-set knowledge would help in more efficient dataset placement on disk & tape
 - garbage collection on disk
- File set concept would allow for more efficient support of production workflows

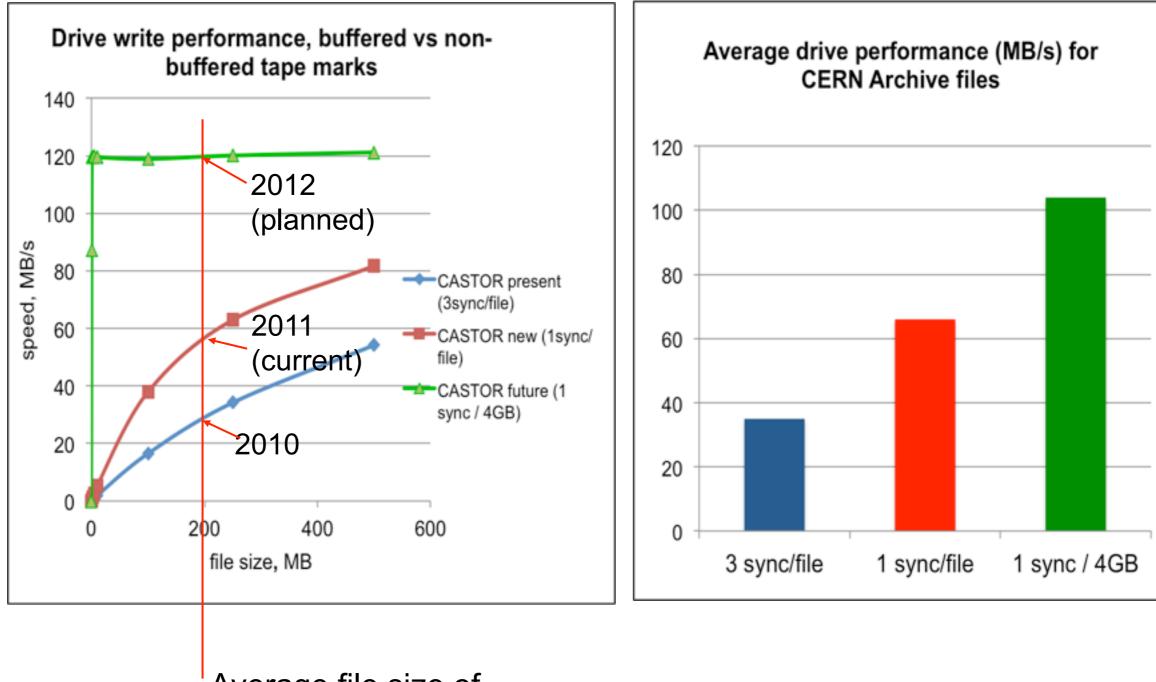
HIERARCHICAL STORAGE MANAGEMENT

- Hierarchical Storage Management (HSM) systems promise to hide the storage hierarchy from users.
 - simple file level (posix) interface
 - system manages/optimises movement between tape and disk.
- Is the HSM model still used / useful?
 - Production
 - Experiment work-flow system have to insure (pre-stage) dataset on disk
 - Disk-only pools play an ever increasing role
 - Analysis also here HSM seems of limited utility
 - input data must be on-disk, volume is managed by physics WGs
 - most users don't have access to tape
- Over the last years we have largely given up on using HSM
 - we just use automatic archiving of new data
- A direct access to disk cache and a decoupled archive with transfers managed by an experiment work-flow system re-gained transparency.

TAPE MEDIA REPACK

- CERN: every 2-3 years tapes are copied to new format, drives or media
 - economy: recycle existing media at higher density
 - ☆ spot potential media or s/w problems
- Significant effort
 - h/w investment (dedicated drives)
 - s/w development & deployment
- Review gain/effort with statistics from current repack round

TAPE MEDIA REPACK


- CERN: every 2-3 years tapes are copied to new format, drives or media
 - economy: recycle existing media at higher density
 - spot potential media or s/w problems
- Significant effort
 - h/w investment (dedicated drives)
 - s/w development & deployment
- Review gain/effort with statistics from current repack round

EFFICIENT TAPE USE

- Write aggregation (eg Castor)
 - Independence of I/O unit from user file size
 - ☆ Write at tape speed, independent from file sizes
 - Main challenge: risk management as underlying tape format will change
- Read clustering
 - Data set is granule of experiment data management
 - ☆ Can we exploit the data set concept?
 - * insure file clustering on minimal number of volumes
 - ☆ by predictive caching on disk

Tape Writing - Impact of Tape Marks

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

21

Average file size of Currently written files 200 MB

CERN

Department

- Distributed data management components for LHC have been successfully tested in data production use cases
 - ☆ They work well for LHC production!
 - ☆ But the deployment effort is high.
 - Development driven by consolidation and stability
- ☆ Focus has moved to analysis use case main changes
 - ☆ low latency performant protocol and file meta data
 - decoupled disk only pools managed by experiments
- ☆ Medium term: prepare to integrate new technologies
 - Large in-memory "DB"s and clustered file systems are beginning to change the storage landscape