

bmb+f

The KATRIN Analysis Framework

2nd ASPERA Workshop on Computing and Astroparticle Physics Barcelona 2011

Marco Haag - Institute of Experimental Nuclear Physics (IEKP)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Outline

- 1. The KATRIN Experiment
- 2. Data Taking and Experiment Control
- 3. The Analysis Software Framework
- 4. Implementation Details
- 5. Conclusion & Outlook

The Karlsruhe TRItium Neutrino (KATRIN) Experiment

Experimental objective:

- model-independent measurement of the absolute neutrino mass scale
- sensitivity: 0.2 eV/c^2 (90% C.L.)
- source: gaseous tritium (ß-decay)

Collaboration

- 130 scientists
- 5 countries
- 13 institutions

Fachhochschule Fulda

University of Applied Sciences

β-decay and neutrino mass

- Direct kinematic measurement of the effective neutrino mass
- Tritium as β -emitter
- MAC-E filter (electrostatic filter with magnetic adibatic collimation) as spectrometer

region close to ß end point
region close to ß end point

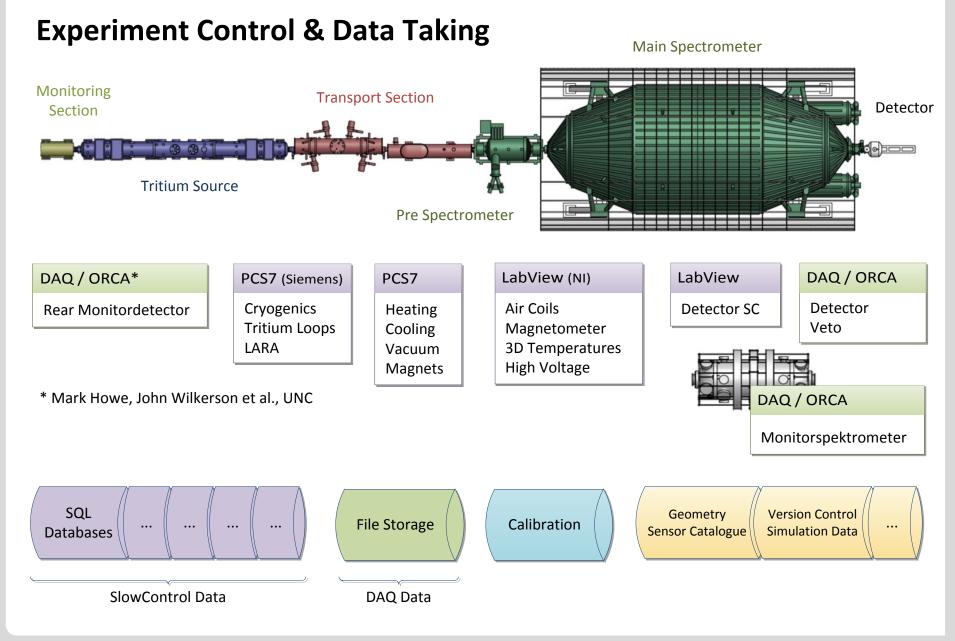
$$m(v_e) = 0 eV$$

 $m(v_e) = 1 eV$
 $m(v_e) = 1 eV$

entire
bectrum
$$(v_e) = 0 eV$$

 $(v_e) = 1 eV$
 $(v_e) = 1 eV$

 $m_{\nu_e} = \sqrt{\sum_{i=1}^{2} |U_{ei}|^2 m_i^2}$


$$0.2 \qquad 0.2 \qquad 0.2$$

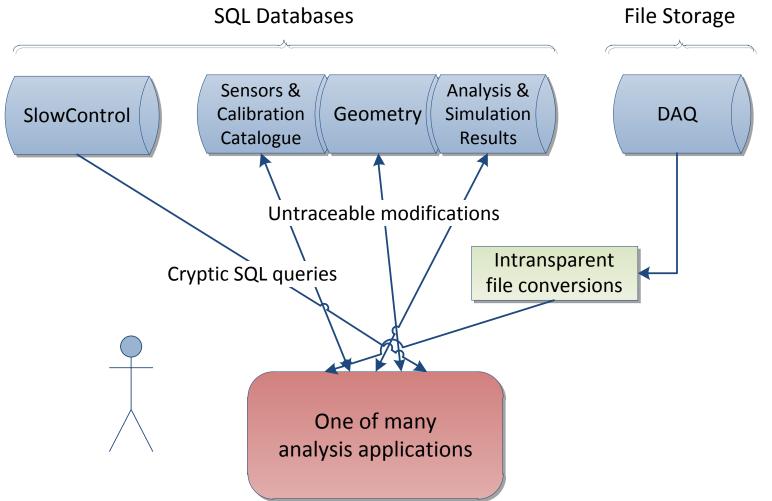
Data rate: mHz - kHz

³He

3H

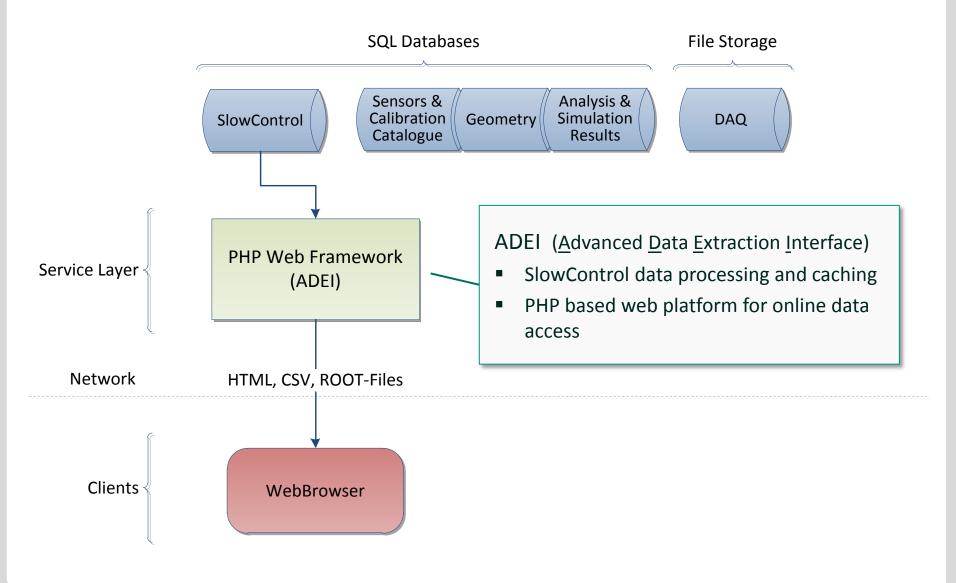
electr

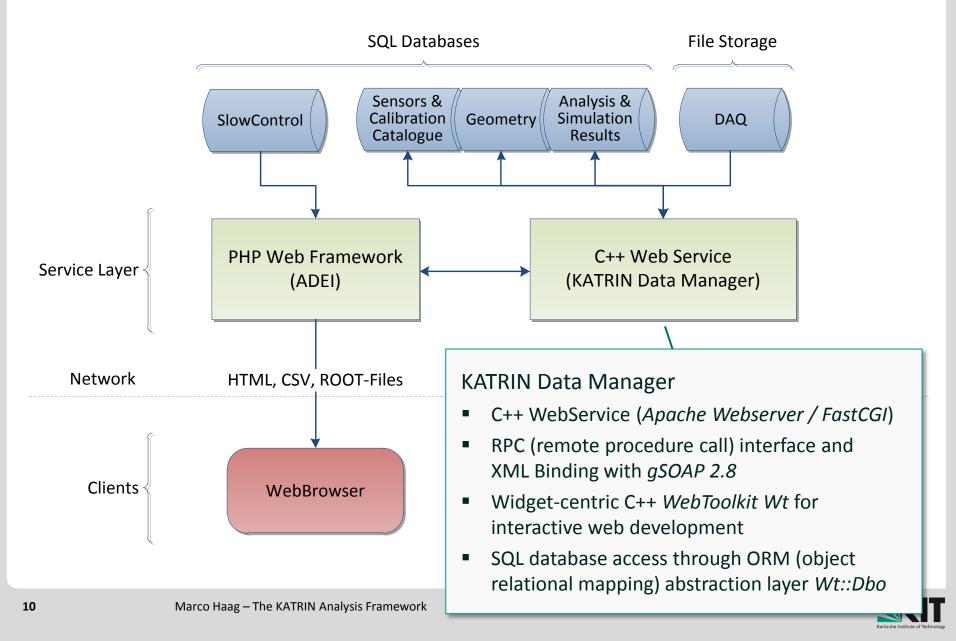
Requirements

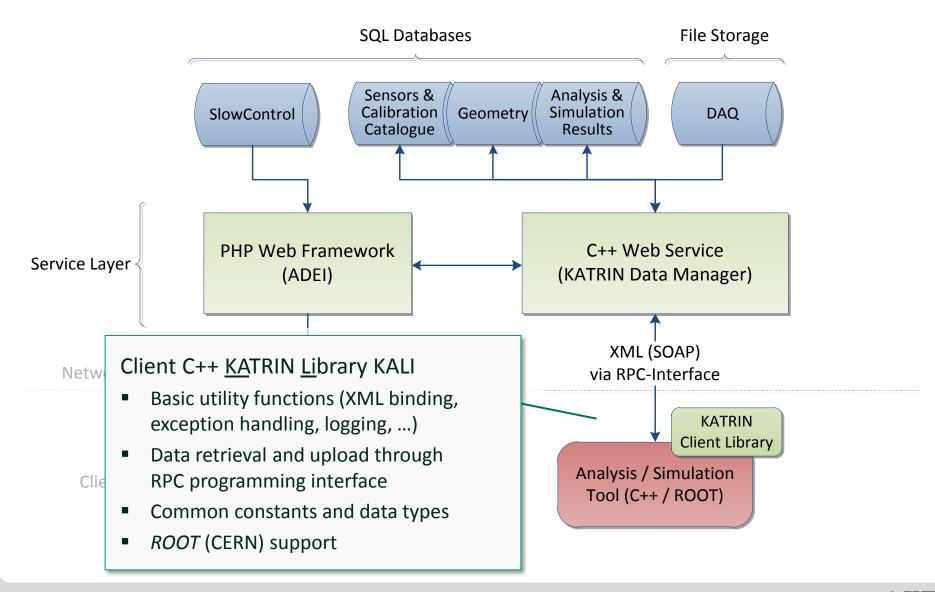


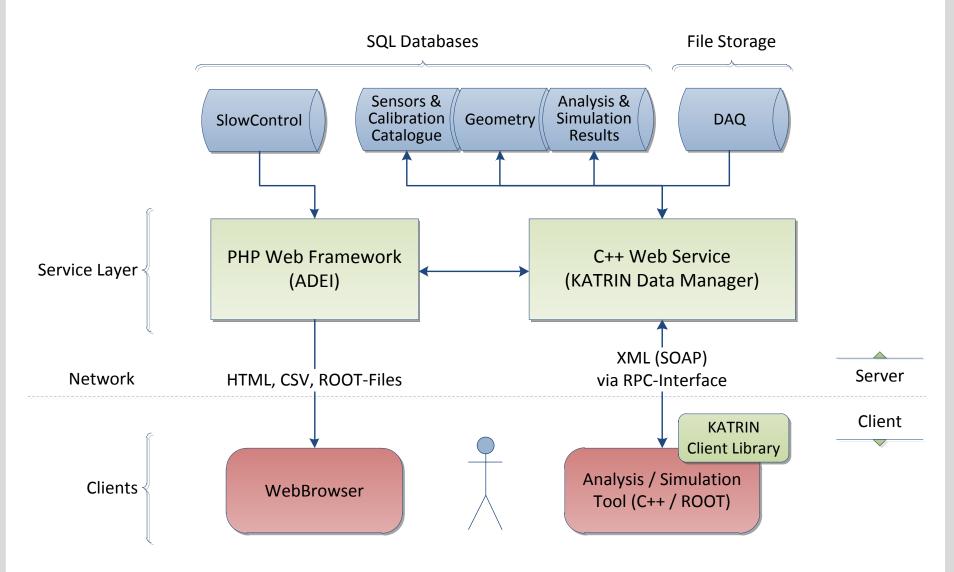
- DAQ: around 1 GB per day
- SlowControl: Large number of heterogenously distributed sensors, ca. 10.000 channels
- Calibration, geometry information, simulation results, ...
- Constant monitoring is necessary to maintain highly stable operating conditions over years.
- The neutrino mass sensitivity goal of 0.2 eV/c² demands many parameters to be reliably known on the ppm (10⁻⁶) level.
- Data has to be restructured, calibrated and merged from many different sources, even for simple analysis tasks.

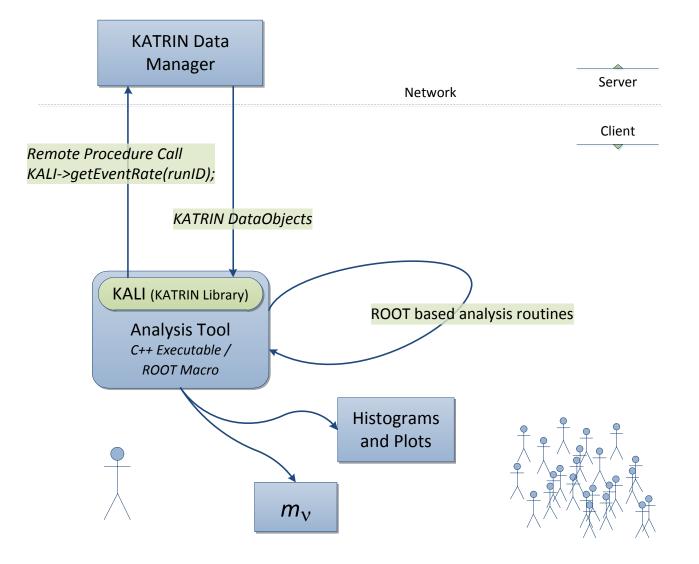
Conventional file-based data access is not feasable:



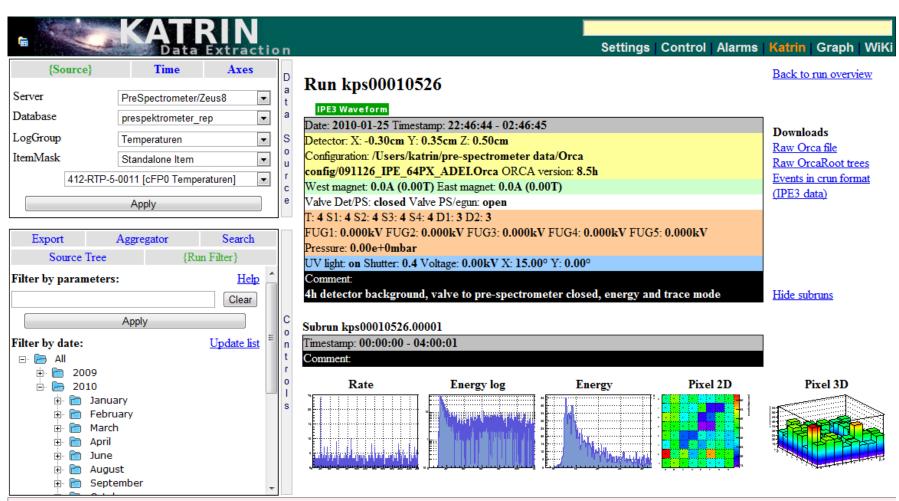



Institute of Experimental Nuclear Physics (IEKP)

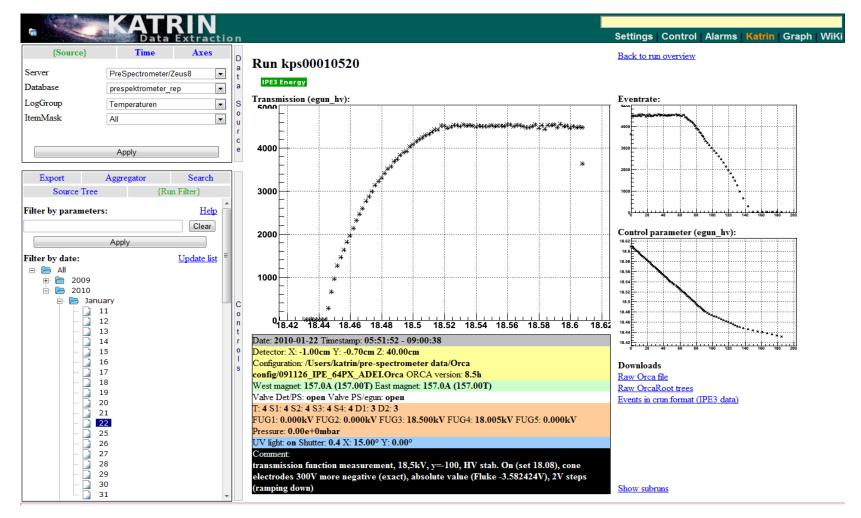

	SQL Databases		File Storage		
(X				
SlowControl	Sensors & Analysis & Calibration Geometry Catalogue		DAQ		


The Benefits of a Service Oriented Approach

- Well defined data flow and server-side processing (unnecessary data transfer is minimized)
- Automated data quality and integrity checks
- Central version and user access control
- Reliable transaction handling
- Data access through intuitive and consistent programming interfaces
- Standardized code, common constants and data formats
- Server-side data processing is performed by only few maintainable services
- Consistent set of client applications (analysis and simulation) speaking a "similar language"


Offline Analysis

Institute of Experimental Nuclear Physics (IEKP)


Online Analysis (Browser Screenshot)

External PHP application (ADEI) accessing KATRIN DAQ data through PHP-SOAP. (Plugin developed by Sebastian Vöcking, University of Münster)

Online Analysis (Browser Screenshot)

Combined SlowControl and DAQ data: Pixel detector hit rate over electron gun voltage.

Summary & Conclusion

- C++ web service with SOAP interfaces for client applications implemented and tested
- Standardized RPC interfaces (remote function calls) now allow intuitive access to heterogeneously distributed and structured data
- Automated data processing and caching established
- First stability and performance test look very promising
- Preliminary online analysis tools available
- Deployable C++ client library for offline analyses of main spectrometer commissioning measurements by the end of 2011

Thank you for your attention.

Marco Haag – The KATRIN Analysis Framework

References and URLs

- The KATRIN Experiment: <u>http://www-ik.fzk.de/tritium</u>
- ADEI: <u>http://dside.dyndns.org/adei</u>
- Orca:

http://orca.physics.unc.edu/~markhowe/Orca_Help

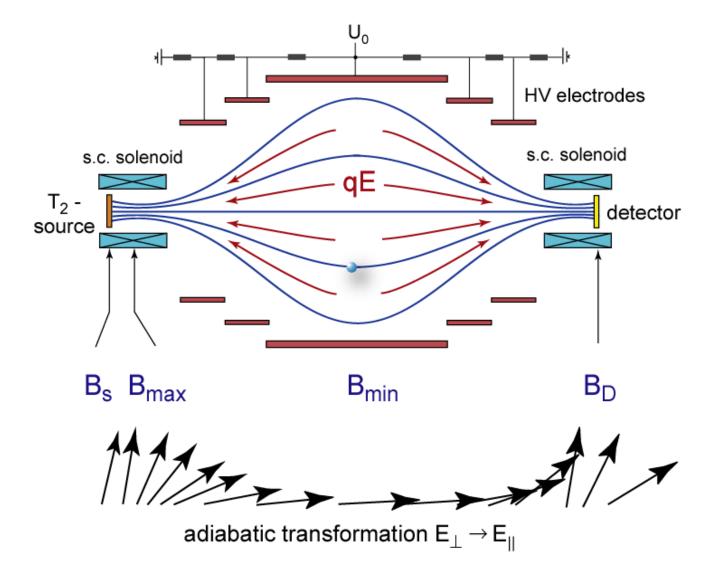
gSoap:

http://www.cs.fsu.edu/~engelen/soap.html

• Wt:

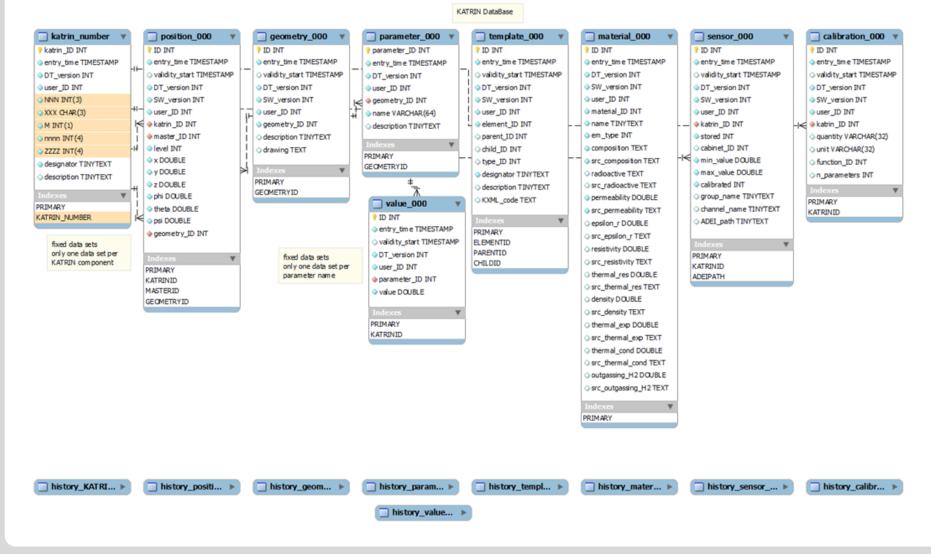
http://www.webtoolkit.eu

Implementation


- KATRIN Data Manager
 - C++ WebService (Apache Webserver / FastCGI)
 - RPC (remote procedure call) interface and XML Binding with gSOAP 2.8
 - Widget-centric C++ WebToolkit Wt for interactive web development
 - SQL database access through ORM (object relational mapping) abstraction layer Wt::Dbo

Institute of Experimental Nuclear Physics (IEKP)

- Client C++ <u>KA</u>TRIN <u>Li</u>brary KALI
 - Basic utility functions (XML binding, exception handling, logging, ...)
 - Data retrieval and upload through RPC programming interface
 - Common constants and data types
 - ROOT (CERN) support
- ADEI (<u>Advanced Data Extraction Interface</u>)
 - SlowControl data processing and caching
 - PHP based web platform for online data access


Magnetic Adiabatic Collimation with Electrostatic Filter (MAC-E)

Institute of Experimental Nuclear Physics (IEKP)

KATRIN number / sensor / geometry catalogue

KATRIN DataBase Administrator

and Navigation 《	KATRIN Numbers	🔁 Sensors 🛛 🖄 Units & Axis				
KATRIN DataTables	Add 😳	Delete				
KATRIN Numbers	KATRIN Number	ADEI Path	ADEI Axis	Description	#C	
Sensors	435-RTP-5-0044-0000	to an una user production in the representation	Temperature (N)	1 1 You + Yrac for monitoring + 200mm from yeared well	0	
June Calibration	435-RTP-5-0063-0000	katrin / hauptspektrometer / 2 / 3	Temperature [K]	PT 100 4 wire for monitoring - 200mm from vessel wall	0	
ADEI Settings	435-RTP-5-0063-0000	tc / testcylinder / 2 / 4	Temperature [K]	PT 100 4 wire for monitoring - 100mm from vessel wall	0	
		mydetector / detector / 2 / 4	Temperature [K]	PT 100 4 wire for monitoring - 100mm from vessel wall	0	
🖄 Units & Axes	435-RTP-5-0063-0000	detector / katrin_rep / 2 / 4		Temperature [K] PT 100 4 wire for monitoring - 100mm from vessel wall		
Synchronization	435-RTP-5-0063-0000	opcreader / KatrinOPCTest / 2 / 4	Temperature [K] PT 100 4 wire for monitoring - 100mm from vessel wall		0	
ADEI Channels	435-RTP-5-0063-0000	opcreader / dbMagnet-archive_rep / 2 / 4	Temperature [K]	PT 100 4 wire for monitoring - 100mm from vessel wall		
3 🛞 Links	435-RTP-5-0063-0000	opcreader / dbMagnet-archive / 2 / 4	Temperature [K]	PT 100 4 wire for monitoring - 100mm from vessel wall	0	
	435-RTP-5-0063-0000	msz / aircoils_rep / 2 / 4	Temperature [K]	PT 100 4 wire for monitoring - 100mm from vessel wall	0	
ADEI	435-RTP-5-0063-0000	toskanadb / prespektrometer_rep / 2 / 4	Temperature [K]	PT 100 4 wire for monitoring - 100mm from vessel wall	0	
	435-RTP-5-0063-0000	katrin / hauptspektrometer / 2 / 4	Temperature [C]	PT 100 4 wire for monitoring - 100mm from vessel wall	0	
	435-RTP-5-0064-0000	tc / testcylinder / 2 / 5	Voltage [V] Current [A]	PT 100 4 wire for monitoring - 200mm from vessel wall	0	
	435-RTP-5-0064-0000	mydetector / detector / 2 / 5	Pressure [p]	PT 100 4 wire for monitoring - 200mm from vessel wall	0	
	435-RTP-5-0064-0000	detector / katrin_rep / 2 / 5		PT 100 4 wire for monitoring - 200mm from vessel wall	0	
	435-RTP-5-0064-0000	opcreader / KatrinOPCTest / 2 / 5	Temperature [K]	PT 100 4 wire for monitoring - 200mm from vessel wall	0	
	435-RTP-5-0064-0000	opcreader / dbMagnet-archive_rep / 2 / 5	Temperature [K]	PT 100 4 wire for monitoring - 200mm from vessel wall	0	
	435-RTP-5-0064-0000	opcreader / dbMagnet-archive / 2 / 5	Temperature [K]	PT 100 4 wire for monitoring - 200mm from vessel wall	0	
	435-RTP-5-0064-0000	msz / aircoils_rep / 2 / 5	Temperature [K]	PT 100 4 wire for monitoring - 200mm from vessel wall	0	
	435-RTP-5-0064-0000	toskanadb / prespektrometer_rep / 2 / 5	Temperature [K]	PT 100 4 wire for monitoring - 200mm from vessel wall	0	
	435-RTP-5-0064-0000	katrin / hauptspektrometer / 2 / 5	Temperature [K]	PT 100 4 wire for monitoring - 200mm from vessel wall	0	
	435-RTP-5-0083-0000	tc / testcylinder / 2 / 6	Temperature [K]	PT 100 4 wire for monitoring - 100mm from vessel wall	0	
	435-RTP-5-0083-0000	mydetector / detector / 2 / 6	Temperature [K]	PT 100 4 wire for monitoring - 100mm from vessel wall	0	
	435-RTP-5-0083-0000	detector / katrin_rep / 2 / 6	Temperature [K]	PT 100 4 wire for monitoring - 100mm from vessel wall	0	
	435-RTP-5-0083-0000	opcreader / KatrinOPCTest / 2 / 6	Temperature [K]	PT 100 4 wire for monitoring - 100mm from vessel wall	0	
	435-RTP-5-0083-0000	opcreader / dbMagnet-archive_rep / 2 / 6	Temperature [K]	PT 100 4 wire for monitoring - 100mm from vessel wall	0	
	435-RTP-5-0083-0000	opcreader / dbMagnet-archive / 2 / 6	Temperature [K]	PT 100 4 wire for monitoring - 100mm from vessel wall	0	
	435-RTP-5-0083-0000	msz / aircoils_rep / 2 / 6	Temperature [K]	PT 100 4 wire for monitoring - 100mm from vessel wall	0	
	435-RTP-5-0083-0000	toskanadb / prespektrometer_rep / 2 / 6	Temperature [K]	PT 100 4 wire for monitoring - 100mm from vessel wall	0	
	435-RTP-5-0083-0000	katrin / hauptspektrometer / 2 / 6	Temperature [K]	PT 100 4 wire for monitoring - 100mm from vessel wall	0	

Institute of Experimental Nuclear Physics (IEKP)

Pre