
A data transfer system for MAGIC
based on gLite FTS and multiVAC

Roger Firpo Curcoll, Pau Tallada,
Nadia Tonello, Christian Neissner, Manuel Delfino,
Javier Rico, Ignasi Reichardt, MAGIC collaboration

summary
Introduction: The MAGIC data center (storage)

Current data transfer + storage + access

A new data transfer system

gLite FTS

multiVAC

Conclusions

MAGIC telescopes

Cherenkov telescopes
~30GeV to 10TeV γ-ray

 Observatory in La
Palma: Canary Islands

Observing since 2004,
second telescope on
2009

data production @LP

Data volume as of 2011

raw data: ~125 TB per year

OnSite Analysis: + ~16 TB per year

~30 different kinds of data (data + logs) to be
transferred to the data center @PIC

data center @PIC

Hosted in PIC,
Barcelona since 2007

Storage (150 + 350 TB)

Data access

Data transfer from LP

Computing: official +
users’ analysis

storage & data access

Multiple protocol and
authentication options

Many disk pools, but
single filesystem

Transparent access to
tape library

POSIX*

x509 certificate + VOMS passwd

dccp uberftp srm lcg-utils

PNFS (filesystem)

dCache (disk) dCache dCache

gridFTP

SRM

LFC

httpdoorsdcap

Enstore
(tape)

gLite UI browser

current data transfer

1 agent per data type

Temporal NFS disk
@PIC to collect data,
later moved to Storage

Bottlenecks, multiple
error points, poor
monitoring & admin

Raw data by air mail
data receptor @PIC

agent

agent

agent

agent

agent

agent

agent

agent

agent
agent

agent

agent

agent

agent

agent

disk @LP

Storage Element

agent agent agent agentagent

need for a change
This system is a legacy from the ‘early days’

Many changes since 2004:

Data center completely renewed

2nd telescope in operation: #agents x2!

5 years of experience

It’s time to review it!

a new system
Must deal with 4 key points:

Which data must be transferred to PIC
and where this data is and will be copied

How much data is there

When this data is ready/safe to transfer

How to transfer the data to PIC
(and mark it as transfered afterwards)

which and where?
Common configuration file: simple and
intuitive

how much?

Volume: ~140 TB/year

Mean: ~50 Mbps for all
year data (80%uptime)

Peaks: ~300 Mbps for
winter nights (in 24h)

Line: 600 Mbps,
~10 Gbps before 2012

when?

Data ready conditions depend on data type:

Raw & subsystem data: observation is over

Analysis: ask to OSA manager, webservice

...

how?

DataTransfer app

Common workflow for
all data types

1 agent per step

Direct channel

Proper monitoring and
management

FT
S

ch
an

ne
l

disk @LP

multiVAC

add

adler32

update

submit

register

Storage Element @PIC

FTS
manager

(gLite)

DataTransfer app
Extension of multiVAC classes with methods
to deal with data transfer using FTS

Includes the central db and the agents:

watch & add files, compute adler32, submit
FTS jobs, update status from FTS, register file

Deals with all data types with simple cfg file

Developed at PIC

FTS

FTS = gLite File Transfer Service (by EGEE)

Between SRM endpoints: BeStMan server in LP

Queue of files defined by origin, destination &
checksum

Limited protection against errors (n retries)

Provides information on individual files

multiVAC

multiVAC (Versatile Application Core)

Coded in Python 2.4 (req. by gLite)

PostsgreSQL database

Db access using sqlalchemy

Developed at PIC

multiVAC

Hierarchical collection of elements, with a
defined state and arbitrary tags (metadata)

Workflow: finite-state machine with priorities

Calculated states based on children & priority

Versatile: interesting for applications besides
data transfer, like computing, monitoring, ...

multiVAC element tree

Hierarchical structure

Status changes
propagate upwards,
following priorities

Easy to track problems

Can fix element status
to avoid propagation

date

1

file 2

4

file 1

1

source 2

3

source 1

1

file 3

3

1

2

3

4 DONE

IN PROCESS

PENDING

ERROR

multiVAC element tree

Hierarchical structure

Status changes
propagate upwards,
following priorities

Easy to track problems

Can fix element status
to avoid propagation

date

3

file 2

4

file 1

1

source 2

3

source 1

4

file 3

3

1

2

3

4 DONE

IN PROCESS

PENDING

ERROR

bring it together

DataTransfer app

1 data type = N trees

agents act on trees
looking for specific
status, elements, ...

states defined w.r.t.
application workflow

d

s

file

s

filefile

d

s

file

s

filefile

d

s

file

s

filefile

d

s

file

s

filefile

start:
file on disk

10
ready to
transfer

20

file in PIC

30

done

40

error
adler32

1
error in
transfer

2
error

registering

3

in transfer

25

state

pr

compute
adler32

submit
FTS job

FTS
transfer

register to
LFC catalog

error

error

error error

compute
adler32

workflow

State with its
assigned priority

Process (agent)

DataTransfer status
Currently testing, in production very soon

Missing:

interaction with OSA: this week

automation: next week

optimization: always!

Test results show good performance: OK!

outreach

Already some projects showed interest in
multiVAC and the DataTransfer app in
particular

It may be also interesting for you!

Conclusions

The DataTransfer application has been
developed to deal with the data transfers of a
multi-TB/year experiment

It is based on multiVAC, a PIC development
which can be the base of many applications

It uses gLite FTS as the file transfer method

Interesting for projects with similar needs

