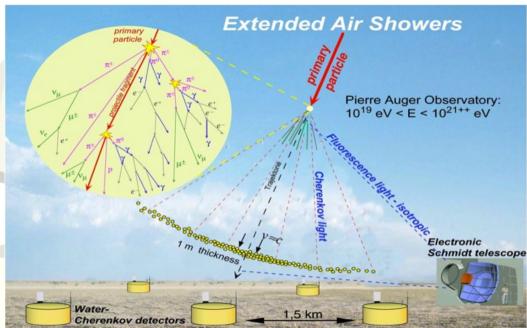
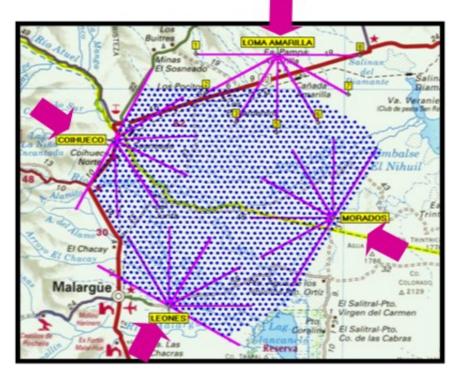


Management of Simulation Productions in Auger using GRID Technology


Jiri Chudoba¹, <u>Julio Lozano²</u>, Ginés Rubio², M.D. Serrano² 1 FZU Prague 2 Universidad de Granada


Pierre Auger Observatory

UHE Cosmic Rays Observatory :

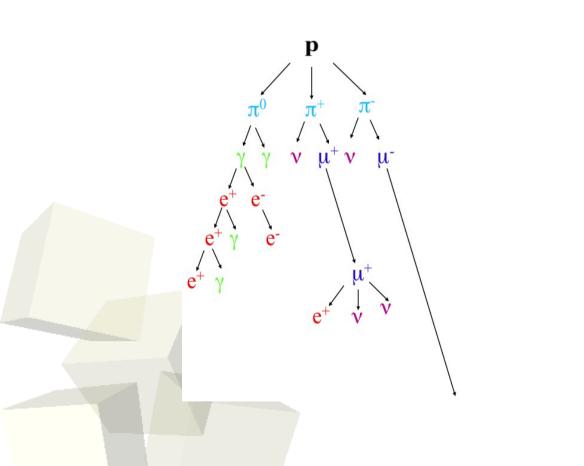
Hybrid detector based on 2 different technologies:

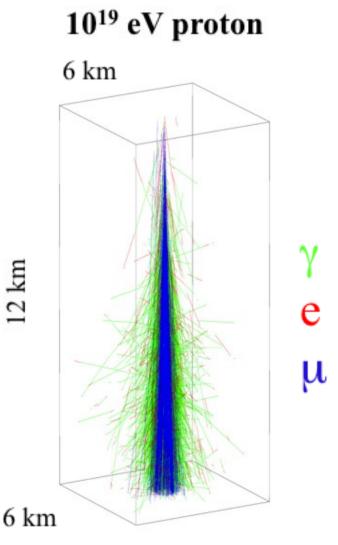
- SD (Surface Detector) : array of ~1600 water tanks placed 1.5 km apart for a total area of ~3000 km²
 - > 3 PMTs transmitting wirelessly FADC traces
- FD (Fluorescence Detector) : 4 stations on terrain overlooking the area where the tanks are located.
 - 6 bays each with a fluorescence telescope covering 30 degrees in azimuth
 - > 22x20 PMT array

Located near Malargüe, south of Mendoza in Argentina

- Blue dots : water tanks
- Pink arrows: location of telescope eyes
 - Pink lines: coverage in azimuth

<u>Fluorescence detector</u> measures longitudinal shower evolution

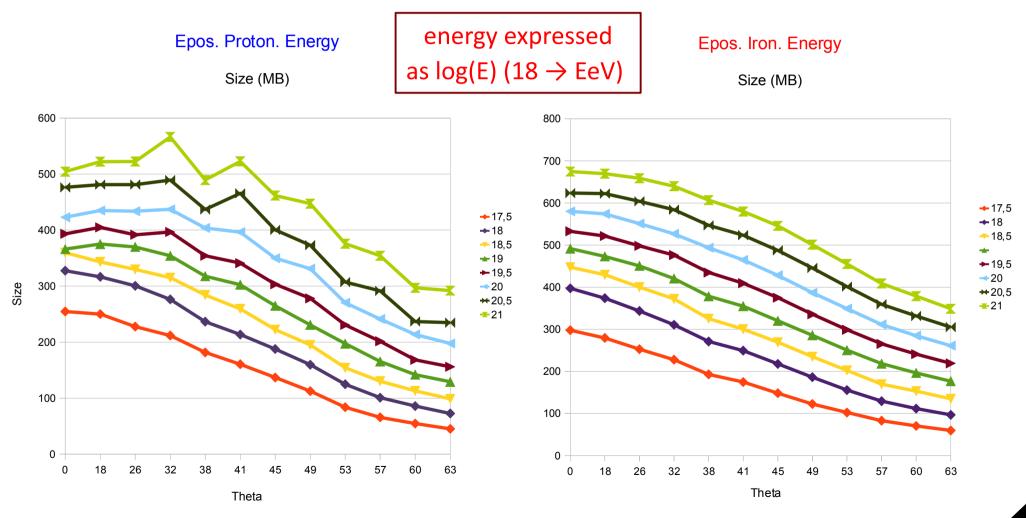

Surface detector obtains signals from particles reaching earth level


Shower generation :

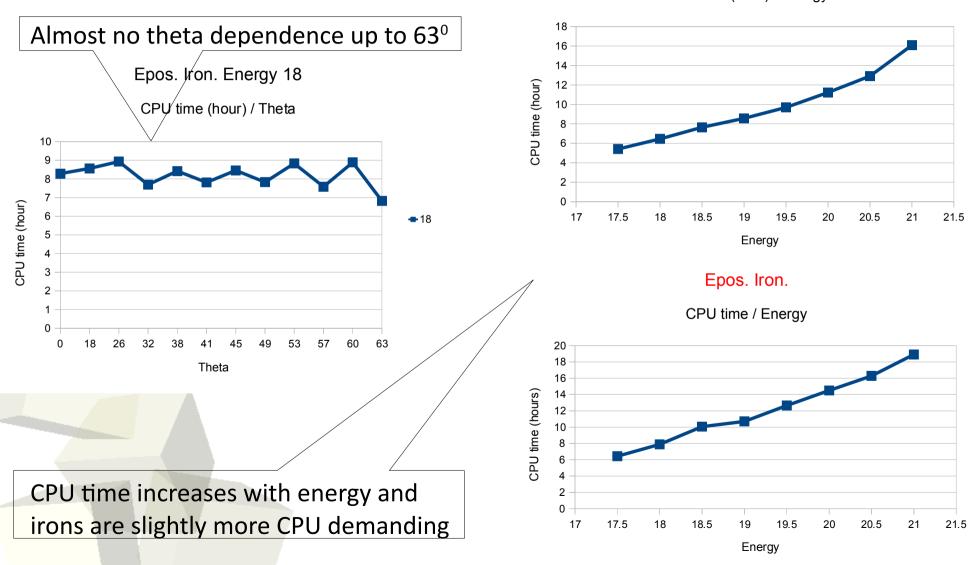
- CORSIKA and AIRES are the software packages that generate those kind of events. In official simulations we have only used CORSIKA
- A compilation tool lets the user decide on low (Fluka, Gheisha) and high (epos, QGSjetI/II) energy interaction models and some other options which do not change for a specific *library*. It requires only an input card (run number, energy, zenith angle, first interaction point, seeds, etc ...) which is specific for each job.
- CORSIKA package can be retrieved from Storage Elements where it is copied, but to increase efficiency on many sites it is available from the Software Area (specific repository where a Grid user having Software Manager Role can place software)
- Billions of particles being treated: *thinning* method is needed ! Shower 'particle' files collect all characteristics of particles at ground level . 'Longitudinal' files contain information on the longitudinal development of the shower and are only few MBs big at most.

Shower example :

Cosmic ray primary interacts creating mostly secondary pions generating an electromagnetic shower and a big amount of muons



Simulation by Clem Prike


File size of ground particle files (epos high-energy model)

Even if we show smooth curves fluctuations are very big, both in file size and CPU time

CPU time (epos productions)

Epos. Proton.

CPU time (hour) / Energy

Auger Simulated Data: Offline event

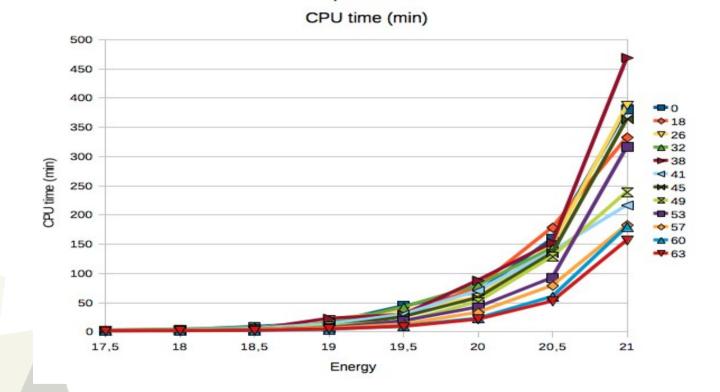
Detector simulation and reconstruction :

- Auger registers :
 - Cerenkov light of particles remaining at ground level as secondaries from the shower created by an UHE cosmic ray primary
 - Fluorescence light emitted while those secondaries are traveling through the atmosphere
- OffLine (DPA) package simulates the response of the SD and FD
- Modular package driven via xml configuration files determining sequence of modules to be used and running parameters
- File sizes are usually of order 10s of MBs
- > Needs previously generated shower files \rightarrow showers have to be kept on Grid
- Software package is heavy and has many dependencies
 software compiled and installed on Software Areas

Auger Simulated Data: Offline event

File size of output data

Files included are one with detector simulation data and another one with a summary of the event reconstruction

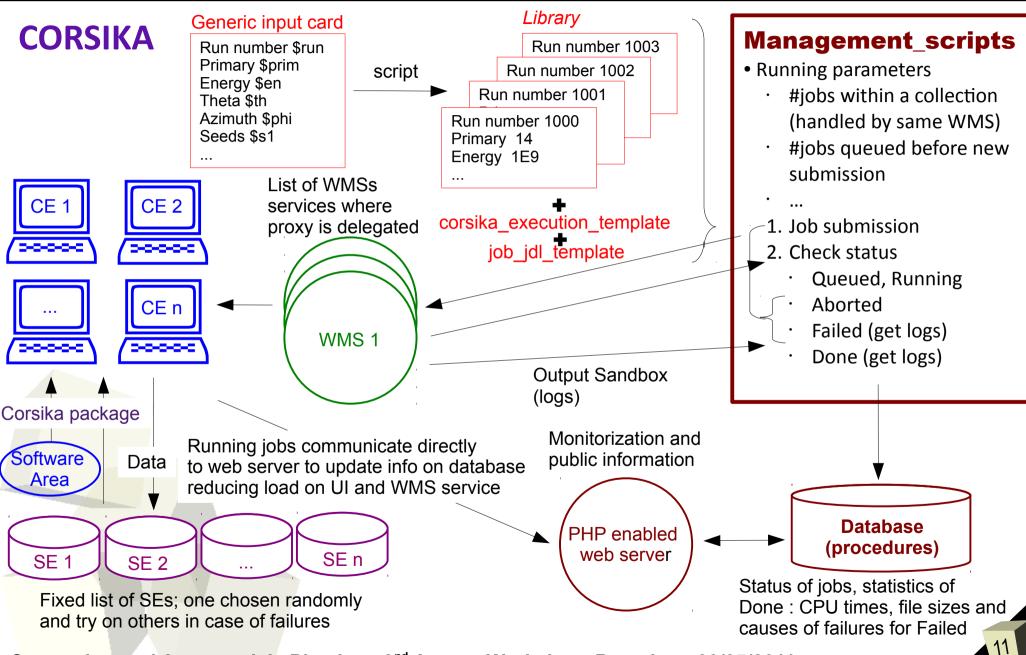


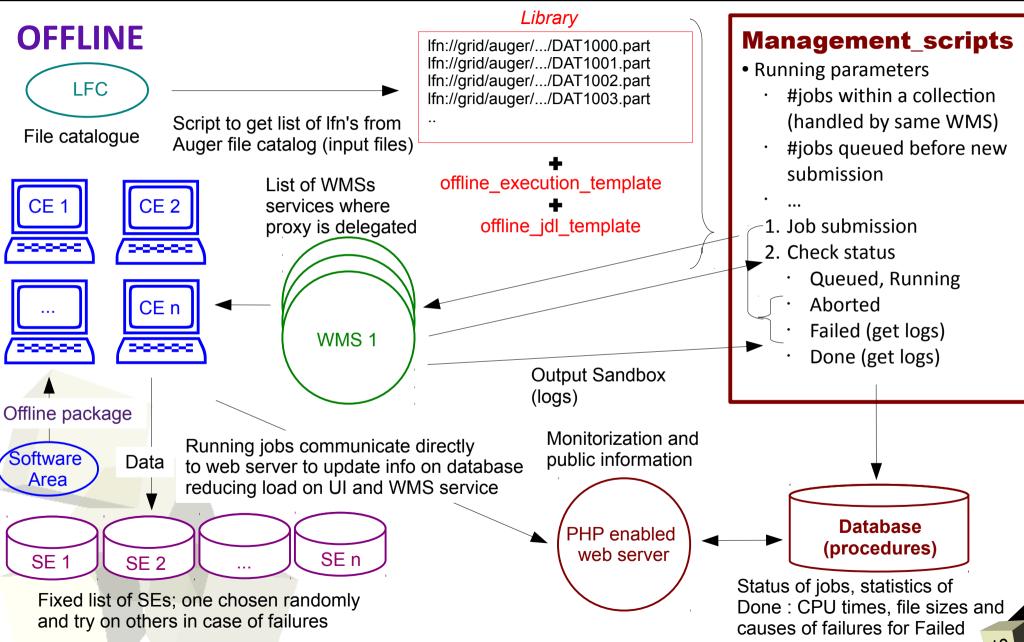
Auger Simulated Data: Offline event

<u>CPU time (Offline job)</u>

Each *Offline* job involves the simulation of 5 times the same input shower (changing seeds)

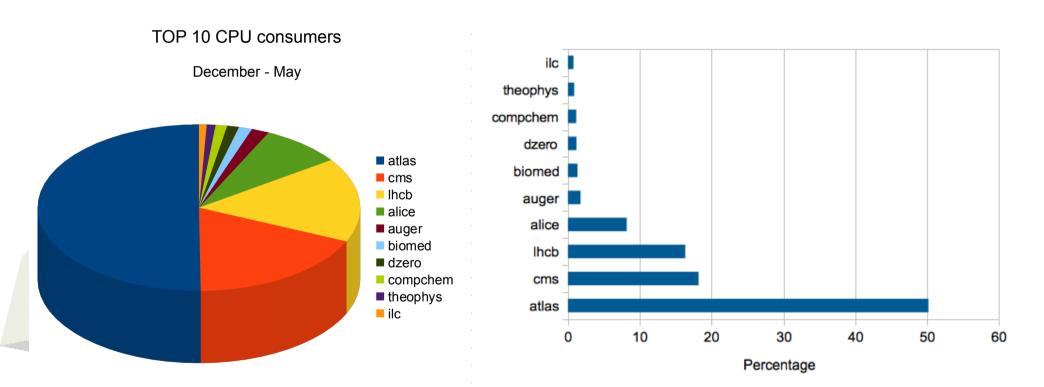
Epos. Iron


CPU time increases with energy and depends on the zenith angle in a non-linear way Small differences between primaries (p, Fe)


Grid Technology

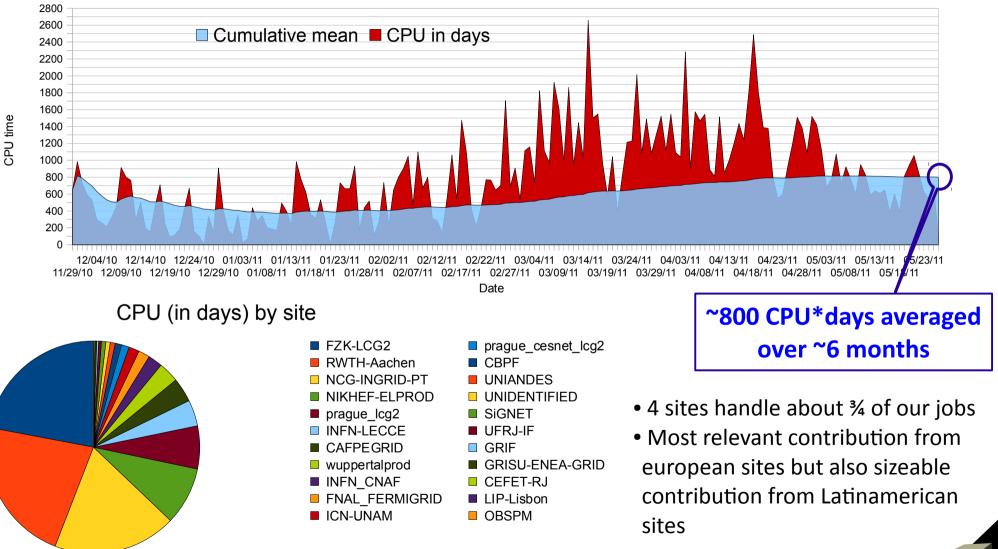
- Grid Technology allows us to perform massive productions on limited time scales:
 - Computing infrastructure with tens of thousands of CPUs to execute jobs
 - Storage sites with tens of TBs to place output files
- Glite (Grid middleware) provides user commands to handle job management, output retrieval, etc ...
- To avoid too much manual intervention we have developed a set of scripts (bash and python) wrapping up previous scripts written by collaborators at Prague to automate all job production aspects
 - Corsika and Offline productions have each theirs set of scripts

Grid Technology: implementation



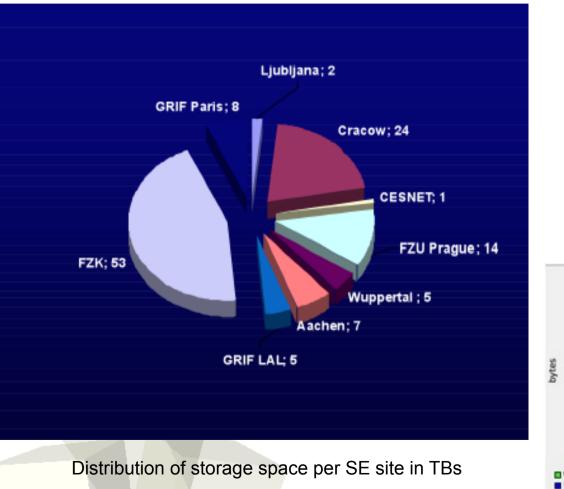
Grid Technology: implementation

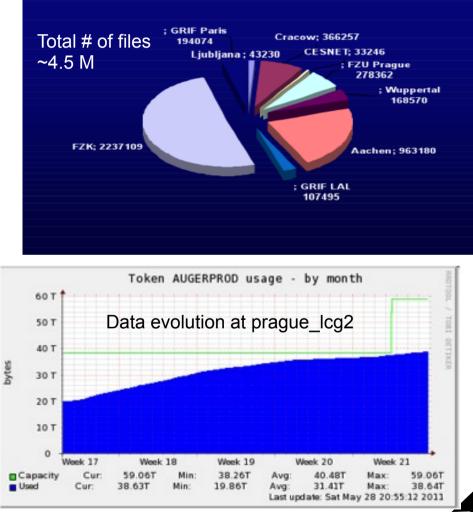
Grid usage


Auger VO among top ten CPU consumers (EGEE only)

Auger consumed ~2% of total CPU time (relatively small set of accessible sites)

Grid usage: CPU time


Cumulative and daily CPU time (walltime)



Grid usage: storage space

Disk space on Storage Elements

The total amount of disk space consumed is **139 TB** (**<u>92 TB</u>** just in the last 6 months !)

User data access

- Space on disk at SEs could become a poblem but
 - > Data will remain on SEs only until Offline processing finished
 - SRB (Storage Resource Broker) used to migrate data to our reference center (CC-Lyon)
 while additional tools fill a database with metadata information (event indexation).

- Members of our collaboration not having Grid certificates access the data using:
 - SimDB/AugerDB; provide command line tools (SRB client tools) and dynamically generated pages for data selection and Retrieval

More information on this can be found in last year's presentation by Jean-Noel Albert (LAL)

Owner Name		Description			
augeringr coind	p3 Epos Iron SRB	Epse, Iron, Corsika showers, SRB			
augeringe					
augenugr Si	imDb Library				
andaunda	and the second second				
andaunda.	<- Return	Histogens			
augempt		Name Epos_Iron_SRB			
ansama		Description Epos, Iron, Corsiles showers, SRB			
augemen					
augeringe	Primary Particle(s): Iron				
anfaunta	Thinning 1.0E-6				
augeringe	Program(s): Cornita 6.617				
bleve cca	Hadronic Model(s): Epos 1.61				
bleve coin	Log Energy Ben(s): 17.5, 18.0, 18.5, 19.0, 19.5, 20.0, 20.5, 21.0				
garrido co	Theta Bin(s): 0, 18, 26, 38, 45, 53, 60				
sciutto co	Primary / Log	E / Theta Bins 56			
sciutto.cc	Number	of simulations: 4428			
zha cein2	Numb	er of showers: 4428			
		Bin Average 80 (simulation per Primary / LogE / Theta bin)			
		Creation Date: 24-Feb-2010			
	Las	it Update Date: 15-Mar-2010 10:21:24			
		Statur COMPLETED			
		Root Path /Simulations/libraries/augeringr.ccin/lp3/Epos_liron_SRB			
		cess Protocal SRB			
		Sensulation Size 454. 1MB			
	N	humber of files 28392			
	35	Library Size 1.9TB			
	Ma	ster Index(es) (sugerdb/cache/Epos Iron SRB/SHOWERS Epos Iron SRB tab (sugerdb/cache/Epos Iron SRB/SHOWERS Epos Iron SRB cer			

Using Grid: experience

Positive aspects (outweight negative aspects in any case):

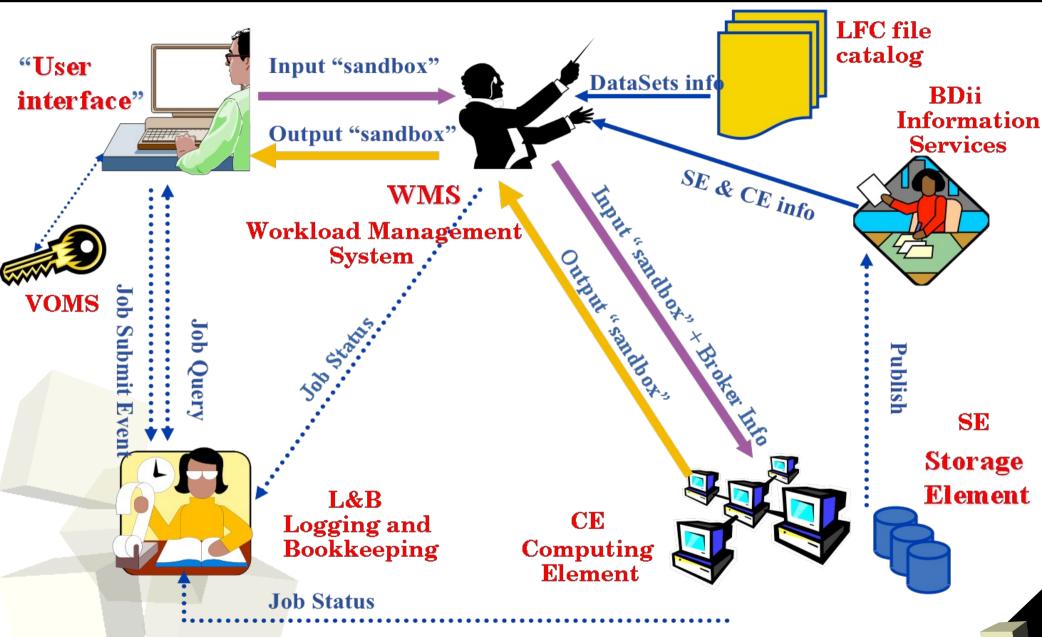
- Well stablished and accepted technology which is 'worldwide' available: fair amount of resources at one's disposal (computing power and storage space)
- User software provides adequate means for job handling in an easy way
- Diverse tools to help users in case of troubles; ticketing system, messaging system to make site downtimes public, etc ...

Shortcomings :

- High competition for resources; difficult to understand how to do it in a fair but efficient way
- Information Systems on sites don't provide enough and reliable information
- Uncertainty on amount of resources 'dedicated' to our VO (prioritized CPU usage by tweaking 'fairshare' queue parameters and allocated storage space on SEs)
 - → 'Assigned' disk space surpassed: painful file migrations from one to another SE
- Frequent technical problems with diverse services; WMS in particular which is key in the submission process, but also VOMS and site configuration changes affect authorizations for job submission
- Loss of files; fortunately does not happen frequently
- In spite of valid ticketing system, direct contact with administrators is sometimes missed
- Downtimes are often reported once is too late to take any actions
- Grid infrastructure is like a living being and it's almost impossible to estimate times for producing given amounts of data due to big daily fluctuations (Global Grid usage, site troubles, ...)
- Amount of sites which can be accessed depends on how big a collaboration you are. Right to access resources has to be negotiated.

Summary

- Auger is a big collaboration in need of high processing power due to the characteristics of the events we have to simulate involving billions of particles
 - Complex software which needs site installation
 - Shower files of 100s of MB; *Offline* outputs are smaller
 - Jobs may require up to several days of computation
- GRID technology is mature enough to be profitted from, even by small teams ... but it seems to need polishing
- We present a fairly simple solution for the automation of production tasks which has helped us to increase much our job production rate
- Anyway, Grid is a complex and evolving system; 'stability' is not guaranteed (see daily CPU time consumption ...)



Computing and Astroparticle Physics - 2nd Aspera Workshop, Barcelona 30/05/2011

19

Grid overview

20

Resources

Computing Element CPUs

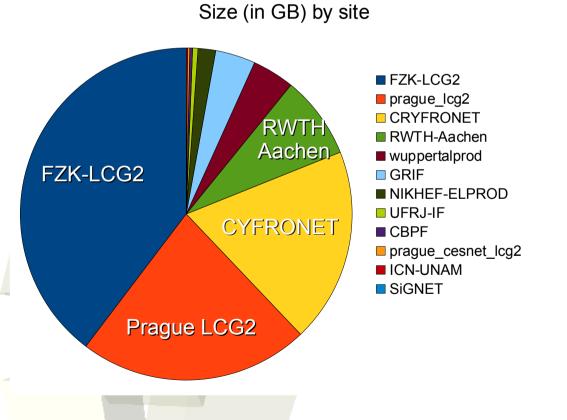
Total	33008	Nactly charad	
FZK	13616	Mostly shared	
GRIF	4335	with, e.g., LHC	
Prague lcg2	2903	Collaborations	
Nikhef	2440	Number of 'dedicated' CPUs appears in slide 7	
Aachen	2488		
Signet IJS	1162		
NCG-Pt	1064		
Wuppertal	928		
Lecce	176		
UniAndes	216		
CBPF	344		
UNAM	58		
UFRJ	912		
LIP	532		
Prague Cesnet	80		
Grisu-Enea	95		
CNAF	1659		

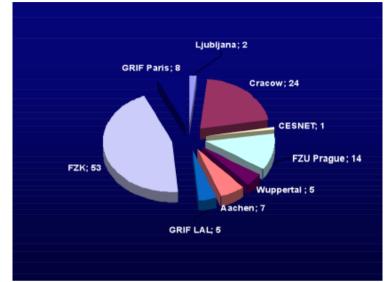
Resources

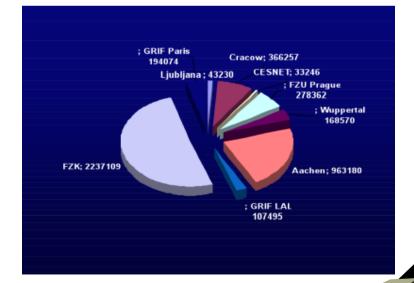
22

Dedicated resources:

Gathered	2
by Jiri:	


Site name	CPUs (jobslots)	SE Disk Space [TB]	Note
FZK	100	50	
Aachen	85	15	
Wuppertal	90	25	update from 07.2010
Lyon			resources are used locally, storage via SRB
GRIF APC (Paris)	5		
GRIF LAL (Paris)	15		
Prague FZU	25	8	local usage is included in the CPU capacity
Prague CESNET	16	1	actual CPU use is often maximum 72 jobslots
Lisabon LIP	2	0	
NIKHEF	20	0	
IJS	10	0	
UNAM	4	0	


372 CPUs 99 TBs


Grid usage: storage space

Disk space on Storage Elements since end 11/2010

The total amount of disk space consumed by the last productions is <u>92 TB</u> (all output files combined)

