Magnificent CEvNS 2024 Valencia June 2024

European Research Council

CEvNS at the ESS F. Monrabal for the nuESS project

Established by the European Commission

ikerbasque

Basque Foundation for Science

Lund (Sweden)

A NEW OPPORTUNITY FOR CE_VNS

It will generate the most intense neutron beams for **multi-disciplinary science**

The ESS will combine the world's most powerful superconducting proton linac with an advanced hydrogen moderator

CE_UNS : Large cross section $+$ ESS : Large neutrino flux = Small detectors are allowed

- The largest low-energy neutrino flux of the next generation facilities. $~28.5\times10^{22}~\nu$ / flavour / year.
- production @ ESS is x9.2 @ SNS. *ν*
	- Steady-state background can be subtracted. (Great advantage).
	- Diversity of technologies not statistically limited guarantees the phenomenological exploitation of the measurements.

European Spallation Source (ESS) A new opportunity for CE*ν*NS

NuESS Programm

Perfect timing vis-à-vis ESS start. Possible sites identified and studied via simulation (background

measurements in preparation)

A new opportunity for CE*ν*NS

- Steady-state background can be subtracted.
- Beam-induced prompt neutrons could be the main source of background.
- Simulations undergoing to find locations within the ESS (two promising locations under study).
- Neutron Camera for on-site measurements.

Background at the ESS

Background at the ESS

Running MCNP and Geant4 simulations to understand background in 2 different locations at the ESS.

Neutron camera built at DIPC. Will allow for neutron spectra and direction measurement.

Full characterisation and validation of n-flux@ESS

- Optimized for expected ESS neutron bckgs
- True 4π sensitivity (a novelty)
- Plastic scintillator with n/γ discrimination
- Portable (of interest to other ESS users)
- Determine n flux and origin (remedial action)

ANN-based spatial projection

Neutron scatter camera ready for first POT

ESS neutron induced background Detector at 20 bar

MCNP neutron simulation as reference

9 \sim 2.2 \cdot 10⁵ events/year

 $\sim 1.5 \cdot 10^5$ events/year

M.Jiménez Master thesis

- •New technology development for detectors at the ESS.
- •Precision: removing statistical limitations is possible at the ESS with non-intrusive detectors
-

•Developing three technologies to meet challenge via two ERC actions. Benefit from their synergies.

A new opportunity for CE*ν*NS: detectors

Neutrino magnetic moment 11 12 11 Non Standard neutrino-quark interactions

Physics exploitation A new opportunity for CE*ν*NS: detectors

Funded detectors (thus far)

European Research Council

above the horizon…

European Research Council

Funded detectors (thus far)

Cryogenic (87 K) undoped CsI array

• Natural evolution from CsI[Na] at SNS (same advantages of large σ, similar Cs-I mass, low afterglow)

52 kg cryogeni

 $~18,0$ \sim 1 ke

 \sim 47 e-h(Si)

events per year energy threshold energy resolution

Physics Reports 1023 (2023) 1-84

Cryogenic (87 K) undoped CsI array: $\frac{1}{28}$ Term of the poz(2020) 123

- Combine higher light yield (x2.5-3) and more efficient photosensors (x3 higher QE)
- Large mass increase to ~52 kg (seven 7x7x35 cm crystals)
-

• LAAPDs with >80% QE provide a measured $\langle 55 \rangle$ eVee threshold in inorganic scintillator (!). Presently limited by charge-trapping noise in NTD silicon. R&D to bypass this in collaboration with industry (FAGOR semiconductors).

0.212

 $E = 82 eV_{ee}$ 0.211 r.t. $= 1.0 \mu s$ $G = 3,800$ 0.210 0.209 amplitude (V) 0.20 **80K CsI** 0.20 **read out by 1.7 cm**² **LAAPD** τ = 1.7 µs 0.8 **(notice signal-to-noise at 82 eV)** 0.4 0.2 15 $20\,$ 10 time (μs)

Cryogenic (87 K) undoped CsI array

Attention paid to Rb, Cs (low-E emitters)

SICCAS low-background CsI selected:

• Much improved internal radiopurity w.r.t. SNS, advanced inner active LAr veto.

• Well-studied Quenching Factor down to threshold.

Fig. 3. Background spectra obtained using GEANT4 simulation for the $8 \times 8 \times 30$ cm³ CsI(Te) crystal with 10mBq/kg⁻¹³⁷Cs contamination, 30 mBq/kg¹³⁴Cs contamination, and 10 ppb 8^{8} Rb contamination: (a) spectrum of $^{137}Ba^*$: (b) beta-ray spectrum of ^{137}Cs ; (c) ^{134}Cs spectrum: (d) ⁸⁷Rb spectrum; and (e) total summed spectrum.

Cryogenic (87 K) undoped CsI array

- Developing an internal liquid Argon veto
- Much improved internal radiopurity w.r.t. SNS, advanced inner active LAr veto.

Collaboration with industry (and 1st spin-offs)

p-type point contact (PPC) Ge detector

- Improved internal veto Improved active background rejection
- Upgraded PM contact Energy resolution
- Upgraded readout to Application specific integrated circuit (ASIC) - Noise reduction

p-type point contact Ge

Pre-ESS step I: **Dresden-II**

arXiv:nucl-ex/0701012

Inner plastic scintillator veto is highly effective

against beam-related neutron backgrounds

P-type Point Contact (PPC) germanium detectors

Entirely mature:

Ready for installation

The GanESS detector GanESS project

- Simpler, **no** need of a cryogenic system.
- Low energy threshold $1-2$ e^- (<1keVee) via EL amplification. *e*−
- Allow to operate with different nuclei (Kr, Ar, Xe).
- Technology developed by the **NEXT collaboration**.
	- Most low-background solutions already developed.
	- R&D needed for high pressures and very low energy regime.
- Lower density than other techniques \rightarrow Bypassed by large ESS neutrino flux

Events after 3 years running a 20 kg Xe detector at 20 m from ESS target

GanESS detection

Expected CE*ν*NS events in a year

GanESS detection

events / bin-year

Can we improve the GAr QF measurement?

What is the quenching factor for GXe at low recoil energies?

WE CANNOTGO BLIND TO THE ESS

What is the lowest recoil we can see?

How high can we go in pressure?

GanESS project: GaP

The Gaseous Prototype (GaP) system

- Opportunity to evaluate the technique in different conditions
	- Multiple noble gases: Xe, Ar, Kr.
	- Pressure up to 50bar.
- Characterization of low-energies **response to nuclear recoils**
	- Quenching factor measurements.
	- Detection threshold.

Differences in the expected distributions given different quenching factor models (solid/dashed) 26

The Gaseous Prototype (GaP) Assembly

GaP design changes

(10cm) Lead **SALE** blocks source-252Cf source induced *γ* bckg 28

First phase design Field Cage design Enlarge the active volume

Enlarging the Drift gap

GaP design

- Small vertical TPC:
	- − 10 cm drift length.
	- − 1.1 cm EL gap.
- 7 Hamamatsu R7378 PMTs on top.
	- − TPB directly on PMTs.
	- − Pressure resistant window or SiPMs for second phase.

C

Gate

Anode

Inside GaP

GaP first run results

- Operation with Ar at different pressures (<10 bar)
- Operation with Fe55 source.
	- − Fe source clearly visible, energy threshold at the level of 1-2 keV.
	- − Kr provides response of the detector in all volume.

GaP first run results

- Operation with Rb/Kr source
	- − Kr provides response of the detector in all volume.
	- − Allows for understanding of the EL and light collection

GaP next steps

- Operation with Ar-Xe (0.1%) and Xe at different pressures (>10 bar)
- Replace PMTs by SiPM to stand pressure

GaP with SiPMs

16x4 SiPM blocks, each 15x15mm²

Dark counts per 3*μ*s

We might need to cool down the SiPMs

Counts per e^- in EL region

Timeframe

NuESS project

Get to know the detectors Operation @ESS

 \mathbf{m}

Validation of the technology

Nuclear Reactor

2025

NuESS Support

- •NuESS has obtained 2 ERC grants (GanESS, StG; ESSCEnuNS, AdG)
- •Neutrino physics is strongly supported at the **Basque Country**
- •Neutrino physics, together with neutron physics (Neutrionics) is one of the flagship research lines in the BC.
- •In particular, a dedicated **funding program to develop neutrino detectors** for the ESS has been allocated in the Basque Country during the last four years.
- •**DIPC** is creating a new space for neutrino laboratory.
- Neutrino physics at the BC includes:
	- •Neutrino physics at the ESS.
	- •NEXT, HK
	- Applications to medical physics.

European **Research** Council

100 MEUR/ 10 yr IKERBASQUE program. "Neutrionics" one of four poles.

NuESS Summary Science CEνNS

- CELNS detection opens a new avenue in the search of **physics beyond the Standard Model**.
- **ESS** will become the largest low-energy neutrino source. It is the perfect facility to study this process.
- The **NuESS project**, will combine technologies to observe the CEvNS process at the ESS with a variety of nuclei.
- The **NuESS project**, is strongly supported financially and has guaranteed funds for the next 10 years.
- **NuESS** offers an opportunity to **lead a world-class neutrino program** in the coming years with a **large discovery potential**.

COMPANY

 \bigoplus

 \mathbf{m}_{c}

进

THANK YOU

MED
