CEvNS at the **ESS** F. Monrabal for the nuESS project

Magnificent CEvNS 2024 Valencia June 2024

European Research Council

Established by the European Commission

ikerbasque

Basque Foundation for Science

A NEW OPPORTUNITY FOR $\text{CE}\nu\text{NS}$

It will generate the most intense neutron beams for **multi-disciplinary science**

The ESS will combine the world's most powerful superconducting proton linac with an advanced hydrogen moderator

Lund (Sweden)

A new opportunity for CE₂/NS European Spallation Source (ESS)

 $CE\nu NS$: Large cross section + ESS : Large neutrino flux = Small detectors are allowed

- The largest low-energy neutrino flux of the next generation facilities. ~8.5×10^{22} ν / flavour / year.
- ν production @ ESS is x9.2 @ SNS.
- Steady-state background can be subtracted. (Great advantage).
- Diversity of technologies **not statistically limited** guarantees the phenomenological exploitation of the measurements.

ge). the

NuESS Programm

Neutron Camera: Background model validation

A new opportunity for CE_vNS

measurements in preparation)

Perfect timing vis-à-vis ESS start. Possible sites identified and studied via simulation (background

Background at the ESS

- Steady-state background can be subtracted.
- Beam-induced prompt neutrons could be the main source of background.
- Simulations undergoing to find locations within the ESS (two promising locations under study).
- Neutron Camera for on-site measurements.

Background at the ESS

Running MCNP and Geant4 simulations to understand background in 2 different locations at the ESS.

Neutron camera built at DIPC. Will allow for neutron spectra and direction measurement.

Full characterisation and validation of n-flux@ESS

Neutron scatter camera ready for first POT

ANN-based spatial projection

- Optimized for expected ESS neutron bckgs
- True 4π sensitivity (a novelty)
- Plastic scintillator with n/γ discrimination
- Portable (of interest to other ESS users)
- Determine n flux and origin (remedial action)

ESS neutron induced background

MCNP neutron simulation as reference

Utility Room	$\sim 9.9 \cdot 10^6$ events/year	~2
Hall	$\sim 8.5 \cdot 10^4$ events/year	~2

Detector at 20 bar

 $2.2 \cdot 10^5$ events/year

 $\sim 1.5 \cdot 10^5$ events/year

M.Jiménez Master thesis

A new opportunity for CE_vNS: detectors

- •New technology development for detectors at the ESS.
- Precision: removing statistical limitations is possible at the ESS with non-intrusive detectors

•Developing three technologies to meet challenge via two ERC actions. Benefit from their synergies.

A new opportunity for CE ν NS: detectors **Physics exploitation**

Neutrino magnetic moment

Non Standard neutrino-quark interactions

Funded detectors (thus far)

European Research Council

Funded detectors (thus far)

above the horizon...

European Research Council

Cryogenic (87 K) undoped Csl array

Moving from ~100 events/yr...

52 kg cryogenie

~18,0 ~ 1 ke

~47 e-h(Si)

events per year energy threshold energy resolution

• Natural evolution from Csl[Na] at SNS (same advantages of large σ , similar Cs-I mass, low afterglow)

...to ~18k events/yr

c Csl @ ESS	750 kg LAr @ SNS
00	~3,000
Vnr	~20 keVnr
)/keVee	~4.2 PE/keVee

Physics Reports 1023 (2023) 1–84

Cryogenic (87 K) undoped Csl array:

- Combine higher light yield (x2.5-3) and more efficient photosensors (x3 higher QE)
- Large mass increase to ~52 kg (seven 7x7x35 cm crystals)

• LAAPDs with >80% QE provide a measured < 55 eVee threshold in inorganic scintillator (!). Presently limited by charge-trapping noise in NTD silicon. R&D to bypass this in collaboration with industry (FAGOR semiconductors).

0.212

0.211

 $E = 82 eV_{ee}$

 $r.t. = 1.0 \ \mu s$

G = 3,8000.210 0.209 amplitude (V) 0.20 80K Csl 0.20 read out by 1.7 cm² LAAPD $\tau = 1.7 \ \mu s$ 0.8 (notice signal-to-noise at 82 eV) 0.4 0.215 10

20

time (µs)

Cryogenic (87 K) undoped Csl array

• Much improved internal radiopurity w.r.t. SNS, advanced inner active LAr veto.

• Well-studied Quenching Factor down to threshold.

Fig. 3. Background spectra obtained using GEANT4 simulation for the $8 \times 8 \times 30 \text{ cm}^3 \text{ Csl}(\text{T}\ell)$ crystal with $10 \text{ mBq/kg}^{137}\text{Cs}$ contamination, $30 \text{ mBq/kg}^{134}\text{Cs}$ contamination, and $10 \text{ ppb}^{87}\text{Rb}$ contamination: (a) spectrum of $^{137}\text{Ba}^*$: (b) beta-ray spectrum of ^{137}Cs ; (c) ^{134}Cs spectrum: (d) ^{87}Rb spectrum; and (e) total summed spectrum.

	Amcrys Csl[Na] @ SNS	SICCAS Csl @ ESS
Th-232	<0.5 mBq/kg	0.03 mBq/kg
U-238	2.4 mBq/kg	0.09 mBq/kg
K-40	16.7 mBq/kg	<4.1 mBq/kg
Cs-137	27.9 mBq/kg	1.3 mBq/kg
Cs-134	25.9 mBq/kg	33 mBq/kg
Rb-85	101 ppb	15.5 ppb
Rb-87	38 ppb	1.8 ppb

Attention paid to Rb, Cs (low-E emitters) SICCAS low-background Csl selected:

Cryogenic (87 K) undoped Csl array

- Developing an internal liquid Argon veto
- Much improved internal radiopurity w.r.t. SNS, advanced inner active LAr veto.

Collaboration with industry (and 1st spin-offs)

p-type point contact (PPC) Ge detector

p-type point contact Ge

Pre-ESS step I: Dresden-II

- Improved internal veto —— Improved active background rejection
- Upgraded PM contact —— Energy resolution
- Upgraded readout to Application specific
 integrated circuit (ASIC) Noise reduction

P-type Point Contact (PPC) germanium detectors

arXiv:nucl-ex/0701012

Inner plastic scintillator veto is highly effective

against beam-related
 neutron backgrounds

Entirely mature:

Ready for installation

GanESS project The GanESS detector

- Simpler, **no** need of a **cryogenic system**.
- Low energy threshold 1-2 e^{-} (<1keVee) via EL amplification.
- Allow to operate with different nuclei (Kr, Ar, Xe).
- Technology developed by the **NEXT collaboration**.
 - Most low-background solutions already developed.
 - R&D needed for high pressures and very low energy regime.
- Lower density than other techniques \rightarrow Bypassed by large ESS neutrino flux

Events after 3 years running a 20 kg Xe detector at 20 m from ESS target

GanESS detection

Expected CE_{\nu}**NS events in a year**

- <u>Assumptions</u> - Threshold = 0.9keV_{ee}
 - $\frac{--}{E} = 40\%$ % at E_{th}

GanESS detection

Expected CE_v**NS events in a year**

What is the quenching factor for GXe at low recoil energies?

WE CANNOT GO BLIND TO THE ESS

What is the lowest recoil we can see?

How high can we go in pressure?

Can we improve the GAr QF measurement?

GanESS project: GaP

The Gaseous Prototype (GaP) system

- Opportunity to evaluate the technique in different conditions
 - Multiple noble gases: Xe, Ar, Kr.
 - Pressure up to 50bar. •
- Characterization of low-energies response to nuclear recoils
 - Quenching factor measurements.
 - Detection threshold.

Differences in the expected distributions given different quenching factor models (solid/dashed)

The Gaseous Prototype (GaP) Assembly

GaP design changes

Enlarge the active volume First phase design

Enlarging the Drift gap

Field Cage design

GaP design

- Small vertical TPC:
 - 10 cm drift length.
 - 1.1 cm EL gap.
- 7 Hamamatsu R7378 PMTs on top.
 - TPB directly on PMTs.
 - Pressure resistant window or SiPMs for second phase.

Anode

Gate

Inside GaP

GaP first run results

- Operation with Ar at different pressures (<10 bar)
- Operation with Fe55 source.
 - Fe source clearly visible, energy threshold at the level of 1-2 keV.
 - Kr provides response of the detector in all volume.

31

GaP first run results

- Operation with Rb/Kr source
 - Kr provides response of the detector in all volume.
 - Allows for understanding of the EL and light collection

n all volume. d liaht collectior

GaP next steps

- Operation with Ar-Xe (0.1%) and Xe at different pressures (>10 bar)
- Replace PMTs by SiPM to stand pressure

GaP with SiPMs

16x4 SiPM blocks, each 15x15mm²

Counts per e^- in EL region

Dark counts per 3µs

We might need to cool down the SiPMs

NuESS project

Timeframe

Get to know the detectors

4

Nuclear Reactor

Validation of the technology

NuESS Support

- NuESS has obtained 2 ERC grants (GanESS, StG; ESSCEnuNS, AdG)
- Neutrino physics is strongly supported at the **Basque Country**
- Neutrino physics, together with neutron physics (Neutrionics) is one of the flagship research lines in the BC.
- In particular, a dedicated funding program to develop neutrino detectors for the ESS has been allocated in the Basque Country during the last four years.
- •**DIPC** is creating a new space for neutrino laboratory.
- •Neutrino physics at the BC includes:
 - •Neutrino physics at the ESS.
 - •NEXT, HK
 - Applications to medical physics.

European Research Council

100 MEUR/ 10 yr IKERBASQUE program. "Neutrionics" one of four poles.

NuESS Summary

- $CE\nu NS$ detection opens a new avenue in the search of physics beyond the Standard Model.
- **ESS** will become the largest low-energy neutrino source. It is the perfect facility to study this process.
- The NuESS project, will combine technologies to observe the CE ν NS process at the ESS with a variety of nuclei.
- The **NuESS project**, is strongly supported financially and has guaranteed funds for the next 10 years.
- NuESS offers an opportunity to lead a world-class neutrino program in the coming years with a large discovery potential.

and the second

-

1

THANK YOU

100

