COLINA: Conical liquid noble gas apparatus for CEvNS detection

A. Simón, L. Larizgoitia, F. Monrabal Donostia International Physics Center, Donostia, Spain

Noble gas detector — Different mediums

Liquid phase electroluminescence

- Only possible with very intense electric fields (>400 kV/cm in Xe)
 - Achievable with thin wires (~10 µm diameter)
- Electroluminiscence only in the close vicinity of wires
 - Low yield.
 - Short scintillation \rightarrow Improved time resolution
- Charge amplification may occur if field gets too high.
- Wire tensioning is a challenge → EL size limited → Target volume limited.
 - New ideas are needed to fully exploit this!

COLINA: Detector concept

COLINA: Detector concept

COLINA: Detector concept

Magnificent CEvNS, Valencia, June 2024

Magnificent CEvNS, Valencia, June 2024

Magnificent CEvNS, Valencia, June 2024

Magnificent CEvNS, Valencia, June 2024

European Spallation Source (ESS)

- The ESS will generate the most intense neutron beams for multi-disciplinary science.
- But also, the largest low-energy neutrino flux!
- ν production @ ESS is x9.2 @ SNS
- Similar s/b to SNS but much higher statistics.

 10^{2}

less control of steady-state

Neutrino production at different facilities

8

0.0

Experimental potential

Magnificent CEvNS, Valencia, June 2024

Experimental potential

Magnificent CEvNS, Valencia, June 2024

Summary

- CEvNS detection opens a new avenues in the search of physics beyond the Standard Model.
- ESS will become the largest low-energy neutrino source. Perfect facility to study this process.
- The COLINA project will develop the first conical time projection chamber to maximally exploit CEvNS at the ESS with extraordinary potential:
 - Liquid noble gases \rightarrow Large statistics
 - Electroluminiscence \rightarrow Low detection threshold (~0.5 keV_{nr})
 - High light collection eff. with few photosensors.
 - Operation with different targets with minimal intervention.

