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Low-energy physics using the “Migdal effect”
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What is the Migdal Effect?

A nuclear recoil boosts the nucleus relative to the electrons, which can
excite or ionize the atom, resulting in X-ray/Auger emission




What is the Migdal Effect?

Signal from 2 GeV WIMP in liquid xenon
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Our goal

Measure the Migdal effect in
liquid xenon with nuclear
recoils induced by neutrons.

- Elastic neutron scattering
creates nuclear recoils (NR)

- Search for small fraction of
events with additional
electron recoil (ER)

lonized charge
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A fixed-angle, tagged neutron scattering expt

- Collimated beam of 14.1 MeV neutrons from

DT generator

- Tagged at fixed scattering angle of ~15°
using liquid scintillator detectors

—> Quasi-monoenergetic 7.1 keV recoils
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Why fixed-angle?

Ratio of Migdal/elastic is well-predicted;
avoid possible energy-dependent
systematics in neutron cross sections

Narrow signal region allows
characterization of backgrounds in

sidebands
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Why fixed-angle?

Ratio of Migdal/elastic is well-predicted;

avoid possible energy-dependent
systematics in neutron cross sections

- Narrow signal region allows
characterization of backgrounds in

sidebands

Our analysis looks for Migdal effect with the
M-shell and the L-shell:
~7 keV nuclear recoils

+
~1 or ~5 keV electron recoils

Neutron scattering
cross sections

10

Cross section [bar/Sr]
=
|

10—2_

(a)

Elastic
scattering

20 40 60 80
Angle [deg]

Probability [keV~!]

Migdal signal energy
spectrum

10962716771 o
Energy [keV]

102




The team

B Lawrence Livermore
National Laboratory

Jingke Xu

Teal Pershing
Rachel Mannino
Ethan Bernard
Eli Mizrachi
Vladimir Mozin
Phil Kerr

Adam Bernstein

Berkeley

UNIVERSITY OF CALIFORNIA

Junsong Lin

‘\\\\ Stony Brook University

Duncan Adams
Rouven Essig

UNIVERSITY OF CALIFORNIA
James Kingston
Mani Tripathi

bl ‘ ﬁ NATIONAL

ACCELERATOR

Jl—l‘\\p LABORATORY

Brian Lenardo

10



f
J’I
Water shielding
A
\

Lead shielding
el  around generator

DT neutron
generator

BPE collimator

quU|d scintillator (LS)

detector array
Detailed LXe

detector internals

/







Counts
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Simulation

| Nuclear recoils in simulation

—— Pure single scatters

Xe single scatters w/
scatters in passive materials

—— Xe multiple scatters
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Migdal effect M-shell signals contain ER + NR,
giving peaked signal region in scintillation vs.
ionization phase space.

Backgrounds can be constrained in sidebands

Nuclear recoil peak at 7.0 +/- 1.6 keV

NR backgrounds from scattering in passive
materials and multiple-scattering in Xe

Very low ER backgrounds (not shown) from
inelastic-induced y-rays
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Accidental

Data analysis i g i

Step 1: use LS tagging detectors

- Tag neutrons using pulse shape
discrimination, removing most gamma bkgs

- Use time-of-flight between LXe and LS to
remove accidentals, off-beam neutrons, etc.

Neutron detector PSD

Accidental . Slow Slow neutrons
neutron . neutrons /incorrect S1s

Example single-scatter event
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- Step 2: select good events in LXe TPC
“F &5 - Single-scatter candidates identified as events
C $2 gate echo . . .
" S1 l with a single charge signal (S2)
- l ™ - Further unresolved multi-scatter rejection
N SRR TR TR based on S2 quality (mainly width and shape)
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Data after selection cuts applied
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We end up with 300,000
neutron scattering events
passing our cuts
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2-D PDFs for backgrounds and signals, overlaid on data
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Background model shape validations

Plots of S2 (charge), in bins of S1 (scintillation)
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M-shell analysis (7 keV NR + ~1 keV ER)

Full 2D proﬁle likelihood anal_ysis was Projection of S2 distribution for S1=4-10 phe

performed using the signal/bkg PDFs

Single scatters
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Ionizatoin signal [electrons]

L-shell analysis (7 keV NR + 5 keV ER)
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Higher-energy range

Slight changes to scint. signal cuts:

- Relaxed quality cuts (no longer
near threshold):

- Boosts stats by ~30%

- Tighter time-of-flight cut (better
precision with larger signals)

Simple cut-and-count analysis in the
shaded red region:

Expected bkg 21209
Expected signal 5.6 +£1.2

Observed counts 2
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So, where is the Migdal effect?
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A possible hypothesis:
enhanced recombination?

Range for M-shell Auger electrons is ~10-100 nm
Range for 7 keV nuclear recoil is 1-10 nm
Onsager radius is ~50 nm

Could the electrons from the ER

Charge signal [electrons]

component be recombining with the —pp»

ions from the NR component?

Standard recombination

10 15 20 25 30 35 40
Scintillation signal [PHE]

Would shift Migdal events towards
the region with high NR backgrounds
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Summary

Performed a high-statistics, fixed-angle neutron scattering experiment in an attempt
to characterize the Migdal effect in liquid xenon (arXiv:2307.12952)

Successfully achieved ultra-low backgrounds in the predicted signal region and
sufficient NR statistics for a high expected signal rate

We do not see any signal consistent with the predicted Migdal effect.

e One possibility is enhanced electron-ion recombination for the localized energy deposits;
would not affect below-threshold DM searches, but could hide the signal in
experiments like this one.

Follow-up experiments are underway, with lower-energy nuclear recoils

e Lower recoil energy provides fewer extra ions, minimizing the “enhancement” of
recombination
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https://arxiv.org/abs/2307.12952

Thank you!
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Back up
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Liquid xenon response modeling NEST model space used in it

NEST grid scan
—— NEST default

[0 New LUX
4 LUX DD (180 V/cm)
4 LLNL 220 V/cm

Fit NEST nuclear recoil model to high-stats single-scatter peak

- Explore a range of model parameters which vary charge
+ light yields and distribution width
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Data/MC agreement for M-shell search
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