# Dark Sector Searches with Coherent CAPTAIN Mills

Austin Schneider Magnificent CEvNS 2024 2024-06-14





### Lujan target neutrino production

0.2

0

0

- 800 MeV pulsed proton beam
- 20 Hz | 100 micro-amps | 290 nsec spill
- $\pi$ + decay at rest is a prolific source of neutrinos
- Prompt NuMu neutrinos at 30 MeV
- Delayed NuE and NuMuBar
- Target environment has an intense flux of: charged pions, neutral pions, gamma-rays, muons, neutrinos, and neutrons Flux (Arbitrary Units) 70 00 00 80 80





### **CCM** at Lujan

- CCM is 90° off axis from the beam
- Avoids decay-in-flight backgrounds
- 23m from target







### **Comparing Lujan to SNS**

Lujan target at LANSCE

- Located at Los Alamos National Laboratory
- 800 MeV protons
- 20 Hz | 100 µA | 290 ns spill

### Spallation Neutron Source (SNS)

- Located at Oak Ridge National Laborator
- 1 GeV protons
- 60 Hz | 1 mA | 700 ns spill





LOS Alamos

80

### Coherent CAPTAIN-Mills (CCM)

- 10 ton LAr optical detector
- 200 8" PMTs  $\rightarrow$  50% photo-coverage
- 5 ton fiducial volume
- 3 ton active veto region
- Mid-way through 3yr data taking period
  - $\circ \quad 2.25 \times 10^{22} \, \text{POT}$
- Located at the Los Alamos Neutron Science Center







### Timeline



### Backgrounds

- 90 degrees off axis  $\rightarrow$  no decay-in-flight contamination
- Lots of neutrons produced by spallation source
- Shielding attenuates neutrons, active veto allows us to tag neutrons entering our detector



### Backgrounds

- Precise timing using measured gamma flash allows us to isolate speed of light particles
- Remaining backgrounds are steady-state and measured in-situ



## Coherent CAPTAIN-Mills (CCM)

- Electronics have **2ns** sampling time
- Sensitive between ~10keV and ~200MeV
- 80% of PMTs coated in 1,1,4,4-Tetraphenyl-1,3-butadiene (TPB) to wavelength shift LAr scintillation light
- TPB foils cover detector walls





### **CCM** light collection

- Liquid argon is a prolific UV scintillator, transparent to its own scintillation light
- TPB shifts 128nm scintillation photons into the visible spectrum (increasing light yield)
- Walls of detector are TPB coated
- Mix of coated and uncoated PMTs aid particle identification
- Can isolate broad-spectrum Cherenkov light on uncoated **PMTs**
- Provides a handle for differentiating nuclear-recoil-like and electron-like events

**Early Cherenkov Light** 



### Contaminants $(O_2 / N_2)$ absorb LAr scintillation light

### $\Rightarrow$ Threshold raised to ~100 keV $\Rightarrow$ <del>CEvNS</del>

Sensitive to <u>MeV-scale</u> BSM signatures



### **Dark Sector Coupling to Meson Decay**

Introduce:

- A rare 2-body neutral pion decay to a photon and a bosonic long-lived particle (LLP),
- the production of this LLP from the three-body decay of the charged mesons,

X

Detection

• and subsequent photoconversion of the LLP

### PhysRevD.109.095017



CCM 200 provides complementary sensitivity

Beam Target Production

Possible explanation for MiniBooNE's low-energy-excess

### **Vector portal DM**

- Scalar mediator
- Kinetic mixing with SM photon
- Production through rare  $\pi^0$  decay in the target
- Elastic or inelastic scattering off of Argon nuclei







### See talk by Prof. Bhaskar Dutta

### Leptophobic dark matter search with CCM120



First Leptophobic Dark Matter Search from the Coherent–CAPTAIN-Mills Liquid Argon Detector PhysRevLett.129.021801



First Dark Matter Search Results from Coherent–CAPTAIN-Mills PhysRevD.106.012001

### **Phenomenology: ALP Detection in CCM**



15

 $E_{vis}$  [MeV]

### **CCM: Axion-Like Particles**

- High energy EM signals (1-10 MeV)
- Sensitivity at 90% CL
- Can probe "cosmological triangle" with terrestrial measurement







Axion-Like Particles at Coherent CAPTAIN-Mills: <a href="https://www.example.com">PhysRevD.107.095036</a>

### **Heavy Neutral Leptons**

- This is just one particular model → neutrino magnetic-dipole moment
- Current projections only consider production from Primakov-process neutrino-upscattering
  - Limits are bounded in HNL mass by the <u>pi-DAR</u> <u>neutrino energy</u>
- Other HNL models exist, and other production processes are possible in this model
- Take a significant chunk out of the parameter-space with these limited considerations







### Summary





- Access to an intense source of pions allows CCM to probe MeV-scale dark-sector physics
- Lower energy + off-axis PiDAR source + fast timing
  ⇒ very low backgrounds

#### Standard Model measurements

- NuE CC measurements at 10 MeV scale
- Neutron cross section measurements

Broad program of dark sector searches at the MeV-scale

- Search for Axion-Like-Particles and MeV-scale QCD axion
- Search for leptophobic MeV-scale dark matter
- <u>Search for light-dark-matter</u>
- <u>Testing meson portal explanations for the MiniBooNE</u> <u>anomaly</u>
- Search for the X17 ATOMKI particle
- Search for Heavy Neutral Leptons
- Search for dark photons
- ...



## **Bonus Slides**



### **Simulating BSM processes**

Simulation and Injection of Rare EveNts (SIREN)

- A new software tool for BSM event injection
- Rich injection and reweighting capabilities
- Near arbitrary extensibility for models and detectors
- Detailed geometric modeling
- Fast and lightweight

arXiv:2406.01745



github.com/Harvard-Neutrino/SIREN

pypi.org/project/siren

### > pip install siren





### The Lujan sources

- piDAR provides a very clean flux of neutrinos
- Off-axis detection removes most backgrounds
- Primary background is neutrons
- The short 290 ns proton pulse allows us to remove neutrons through arrival time
- Future upgrades will improve performance



### Backgrounds

- 90 degrees off axis  $\rightarrow$  no decay-in-flight contamination
- Primary backgrounds are fast neutrons
- Shielding attenuates neutrons, active veto allows us to tag neutrons entering our detector



### Backgrounds

- Precise timing using measured gamma flash allows us to isolate speed of light particles
- Can measure steady state backgrounds using pre-beam region of data collection



### piDAR sources: The general approach

- 1. Very intense proton beam on a fixed target (100  $\mu$ A)
  - a. Allows you to perform rare process searches
  - b. But, produces a bunch of neutrons
- 2. Go off axis to avoid "Decay In Flight" backgrounds
- 3. Shield your detector to attenuate and delay neutrons
- 4. Use a narrow (290 ns) pulsed beam to concentrate your signal in time
- 5. Use timing cuts to remove neutron backgrounds
- 6. Measure steady state backgrounds in-situ









## Coherent CAPTAIN-Mills (CCM)

- Electronics have **2ns** sampling time
- Sensitive between ~100 keV and ~2 GeV
- 80% of PMTs coated in 1,1,4,4-Tetraphenyl-1,3-butadiene (TPB) to wavelength shift LAr scintillation light
- TPB foils cover detector walls





| Quality    | Scintillation Light                                                   |  |
|------------|-----------------------------------------------------------------------|--|
| Intensity  | ~ 40k photons/MeV                                                     |  |
| Direction  | Isotropic                                                             |  |
| Timing     | Fast component (ns) and slow component (µs)<br>EPJC-s10052-020-7789-x |  |
| Wavelength | Spectrum peaks at 128nm                                               |  |





| Quality    | Scintillation Light                                                   | Cherenkov Light                    |
|------------|-----------------------------------------------------------------------|------------------------------------|
| Intensity  | ~ 40k photons/MeV                                                     | ~700 photons/MeV<br>(above 100 nm) |
| Direction  | Isotropic                                                             | Directional                        |
| Timing     | Fast component (ns) and slow component (µs)<br>EPJC-s10052-020-7789-x | Prompt (ps)                        |
| Wavelength | Spectrum peaks at 128nm                                               | Broad spectrum                     |



Scintillation light



### **CCM light collection**

- UV scintillation light is "direct" to only coated PMTs
- Cherenkov light is "direct" to coated and uncoated PMTs
- Wavelength shifted light is isotropic and reaches all PMTs after some additional delays
- Fast timing and coated/uncoated tubes allows us to identify Cherenkov light
- Provides a handle for differentiating nuclear-recoil-like and electron-like events



### **Basic signatures in CCM**

|                     | Electron/Photon          | Nuclear Recoil                             |
|---------------------|--------------------------|--------------------------------------------|
| Energy Range        | ~1 - 15 MeV              | ~100 keV                                   |
| Scintillation Light | Yes                      | Yes                                        |
| Cherenkov Light     | Yes                      | Νο                                         |
| Primary background  | Neutron scatters         | Low energy beta decays ( <sup>39</sup> Ar) |
| Background signal   | Scintillation light only | Scintillation and cherenkov light          |



 $\bigcirc$ 

### **Developing Cherenkov light identification**

- Need a well known, bright source of Cherenkov light for refining the procedure
- Michel electrons from stopped cosmic ray muons have a well known spectrum and are up to 53 MeV
- Tag muons entering the detector with "<u>Cosmic Watch</u>" detectors









### **Cherenkov light with Michel electrons**

 $\rho$ 

W-

- Cosmic ray muon is tagged by external plastic scintillator detector
- Muon enters the detector causing bright \_\_\_\_\_\_ scintillation, and coming to a stop (1/10 muons)
- Stopped muon subsequently decays, creating a Michel electron with energy up to 53 MeV
- Michel electron produces Cherenkov and scintillation light
- Uncoated tubes are efficient at picking up the early Cherenkov light





### **Cherenkov light with Michel electrons**

- First demonstration of event-by-event identification of Cherenkov light in liquid Argon
- Working now to incorporate Michel electrons into the calibration
- Will provide an important reference point for developing Cherenkov light based particle discrimination





### Neutrissimos (HNLs) - Oscillation and decay

Introduce an MeV-scale heavy neutral lepton with a transition magnetic moment, or neutrissimo

Upscattering from SM neutrinos to neutrissimos occurs in transit from beam



Subsequent decay of neutrissimo to a photon can produce the MiniBooNE signature





MiniBooNE detector

Signal region

![](_page_32_Picture_8.jpeg)

## 1 Fitting to MiniBooNE data

- Parameters: 3+1 oscillation | dipole coupling | HNL mass
  - Scanning over combined parameter space is prohibitive

tps://doi.org/10.48550/arXiv.2206.07100

- Fits Assume best-fit sterile neutrino from global neutrino data without MiniBooNE
- Reasonable agreement with both energy and angular distributions!
- Allowed regions overlap

![](_page_33_Figure_6.jpeg)

## 1 HNLs in CCM

- This is just one particular model → neutrino magnetic-dipole moment
- Current projections only consider production from Primakov-process neutrino-upscattering
  - Limits are bounded in HNL mass by the <u>**pi-DAR**</u> <u>**neutrino energy**</u>
- Other HNL models exist, and other production processes are possible in this model
- Take a significant chunk out of the parameter-space with these limited considerations

![](_page_34_Picture_6.jpeg)

![](_page_34_Figure_7.jpeg)

![](_page_34_Figure_8.jpeg)

## 2 CCM: Axion-Like Particles

- High energy EM signals (1-10 MeV)
- Sensitivity at 90% CL
- Can probe "cosmological triangle" with terrestrial measurement

![](_page_35_Figure_4.jpeg)

![](_page_35_Figure_5.jpeg)

![](_page_35_Picture_6.jpeg)

Axion-Like Particles at Coherent CAPTAIN-Mills: <a href="https://www.example.com">PhysRevD.107.095036</a>

### **Coherent Cesium Iodide (CCI)**

- 1 ton compact segmented Csl detector
- Fast CsI(pure) scintillation light time of ~30 nsec
- High coherent cross section of Cs: 3.5 times larger than Ar

- Low intrinsic radioactive background from Csl
- Large light output of 3000 photons/MeV
- Very low background

Recently made it to the second stage of LDRD ER proposal review

![](_page_36_Figure_8.jpeg)

![](_page_36_Picture_9.jpeg)

### **CCI** projections

- Improved sensitivity to vector-portal dark matter scenario
- Coverage of BEST parameter space at 90% CL

![](_page_37_Figure_3.jpeg)

![](_page_37_Figure_4.jpeg)

![](_page_37_Picture_5.jpeg)

### Lujan Liquid Argon Measurement Apparatus (LLAMA)

- Reuse MicroBooNE cryostat and cryogenics
- 10m long and 3m diameter
- 100 ton fiducial volume
- <u>Remove Time Projection Chamber (TPC)</u>
- Instrument it like CCM: 1.5k 8in PMTs
- Orient it towards the beam
- Detector can be constructed for under \$30M

![](_page_38_Picture_8.jpeg)

![](_page_38_Picture_9.jpeg)

![](_page_38_Picture_10.jpeg)

![](_page_38_Picture_11.jpeg)

### Lujan Liquid Argon Measurement Apparatus (LLAMA)

- Reuse MicroBooNE cryostat and cryogenics
- 10m long and 3m diameter
- 100 ton fiducial volume
- <u>Remove Time Projection Chamber (TPC)</u>
- Instrument it like CCM: 1.5k 8in PMTs
- Orient it towards the beam
- Detector can be constructed for under \$30M
- Partially instrumenting with **SiPMs** could greatly improve performance
- Sub-ns timing would allow us to perform precise vertex reconstruction even for low-energy nuclear recoils (like CEvNS)

![](_page_39_Picture_10.jpeg)

![](_page_39_Picture_11.jpeg)

### LLAMA

Key improvements over CCM

- 14x active mass gives us 14x more events in any physics search
- Filtration of the Argon can lower the energy threshold to 5 keV
  - $\circ \qquad {\sf Gives \, us \, access \, to \, CEvNS}$
  - Many BSM models have a coherent channel
  - Allows us to test the BEST oscillation scenario
  - Precision cross section measurement

![](_page_40_Picture_8.jpeg)

![](_page_40_Picture_9.jpeg)

### LLAMA

Key improvements over CCM

- 14x active mass gives us 14x more events in any physics search
- Filtration of the Argon can lower the energy threshold to 5 keV
  - Gives us access to CEvNS 0
  - Many BSM models have a coherent channel 0
  - Allows us to test the BEST oscillation scenario 0
  - Precision cross section measurement 0
- Sterile neutrino oscillations can be probed over the length of the detector
  - EvNS gives a very interactions Timing can be used to distinguish between flavors relemented with CC measurements CEvNS gives a very large sample of neutrino 0
  - 0

10<sup>4</sup>

 $10^{3}$ 

Energy (MeV)

- 0
- Has sensitivity to the BEST allowed regions Ο L/E ≅ 1

![](_page_41_Picture_13.jpeg)

![](_page_41_Picture_14.jpeg)

### LLAMA

Key improvements over CCM

- Shielding the detector is much easier. Most shielding can be concentrated at the front
- Fast neutrons are attenuated by 1/10 across 2m of LAr
  - Neutron background very low at the back of the detector
  - Neutron background has a distinct exponential fall-off that is not present for signal events

![](_page_42_Picture_6.jpeg)

![](_page_42_Picture_7.jpeg)