CEvNS phenomenology with reactors

Omar Miranda

Cinvestav

June 12, 2024

Omar Miranda (Cinvestav)

CEvNS phenomenology with reactors

June 12, 2024 1 / 37

1 Non-standard interactions

- 2 Testing the Standard Model with $CE\nu NS$
- 3 Neutrino electromagnetic properties
 - 4 Sterile neutrinos

Dresden II	Ge	
CONUS	HPGe	
uGEN	HPGe	
TEXONO	HPGe	
CONNIE	Si	
vIOLETA	Si	

RED-100	Xe	
RELICS	Xe	
SBC	Ar	
NEON	Nal(TI)	
MINER	Si-Ge	
RICOCHET	Si-Ge	
NUCLEUS	$CaWO_4$	

Non-standard interactions (NSI)

Non-standard interactions NSI

Most extensions of the SM predict neutral current non-standard interactions (NSI) of neutrinos which can be either flavor preserving (FD or NU) or flavor-changing (FC).

NSI effective Lagragian form:

$$\mathcal{L}_{\mathsf{eff}}^{\mathsf{NSI}} = -\sum_{lphaeta f \mathsf{P}} arepsilon_{lphaeta}^{\mathsf{fP}} 2\sqrt{2} \mathsf{G}_{\mathsf{F}} (ar{
u}_{lpha} \gamma_{
ho} \mathsf{L}
u_{eta}) (ar{f} \gamma^{
ho} \mathsf{P} f)$$

Here $\alpha, \beta = e, \mu, \tau;$ f = e, u, d; P = L, R; $L = (1 - \gamma_5)/2;$ $R = (1 + \gamma_5)/2$

$$H_{\rm NSI} = \sqrt{2} G_F N_f \left(\begin{array}{cc} 0 & \varepsilon \\ \varepsilon & \varepsilon' \end{array} \right) \,.$$

Mixing angle in matter + NSI

$$\tan 2\theta_m = \frac{\left(\frac{\Delta m^2}{2E}\right)\sin 2\theta + 2\sqrt{2}G_F\varepsilon N_d}{\frac{\Delta m^2}{2E}\cos 2\theta - \sqrt{2}G_F N_e + \sqrt{2}G_F\varepsilon' N_d}.$$

Resonance
$$\frac{\Delta m^2}{2E}\cos 2\theta - \sqrt{2}G_F N_e + \sqrt{2}G_F\varepsilon' N_d = 0.$$
$$\varepsilon' > \frac{N_e}{N_d}$$

OGM, M. Tortola, J. W. F. Valle, JHEP 0610:008 (2006) hep-ph/0406280

.

P. Coloma, T. Schwetz, Phys.Rev. D94 (2016) 055005

Omar Miranda (Cinvestav)

< □ > < 凸

NSI degeneracies

P. Huber, D. V. Forero Phys.Rev.Lett. 117 (2016) no.3, 031801

see OGM, Tortola, Valle PRL 117 061804 for the case of non-unitarity

NSI degeneracies

NOvA coll. arXiv:2403.07266

see also S. S. Chatterjee and A. Palazzo, Phys. Rev. Lett. 126, 051802 (2021), 2008.04161 see also P. B. Denton, J. Gehrlein, and R. Pestes, Phys. Rev. Lett. 126, 051801 (2021), 2008.01110

NSI and ${\rm CE}\nu{\rm NS}$

$$G_{V} = \left[\left(g_{V}^{p} + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV} \right) Z + \left(g_{V}^{n} + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV} \right) N \right] F_{nucl}^{V}(Q^{2})$$
(1)

$$\begin{aligned} \frac{d\sigma}{dT}(E_{\nu},T) &= \frac{G_{F}^{2}M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^{2}}\right) \times \\ &\times \left\{ \left[Z(g_{V}^{P} + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_{V}^{n} + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^{2} + \right. \\ &+ \left. \sum_{\alpha = \mu,\tau} \left[Z(2\varepsilon_{\alpha e}^{uV} + \varepsilon_{\alpha e}^{dV}) + N(\varepsilon_{\alpha e}^{uV} + 2\varepsilon_{\alpha e}^{dV}) \right]^{2} \right\} \end{aligned}$$

- J. Barranco, OGM, T. I. Rashba JHEP 0512 (2005) 021
- K. Scholberg PRD 73 (2007) 033005

Omar Miranda (Cinvestav)

< □ > < 凸

э

$$\begin{split} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 &= \left[Zg_V^p + Ng_V^n \right]^2 \\ \varepsilon_{ee}^{uV}(2Z + N) + \varepsilon_{ee}^{dV}(Z + 2N) = \text{const} \,. \end{split}$$

Solution: take two targets with maximally different k = (A + N)/(A + Z)

Nucleus	N/Z
Si	1.0
Ar	1.22
Ge	1.25
Ι	1.40
CS	1.42
Xe	1.44

NSI vs R_n

OGM, Papoulias, Sanchez Garcia, Sanders, Tortola, Valle, JHEP 05(2020)130 2003.12050

Canas, Garces, OGM, Parada, Sanchez Garcia Phys. Rev. D 101 (2020) 035012

< ⊒ >

Rossi, Sanchez Garcia, Tortola Phys.Rev.D 109 (2024) 9, 095044

<u>June</u> 12, 2024 14 / 37

Using isotopes of the same element

Galindo-Uribarri, OGM, Sanchez Garcia Phys Rev D 105 033001 (2022) ArXiv:2011.10230

Using three germanium isotopes

Galindo-Uribarri, OGM, Sanchez Garcia Phys Rev D 105 033001 (2022) ArXiv:2011.10230

Using two silicon isotopes

Laura Duque, work in progress

Testing Standard Model with $Ce\nu ns$.

OGM, Papoulias, Sanchez Garcia, Sanders, Tortola, Valle, JHEP 05(2020)130 2003.12050

Future sensitivity for $\sin^2 \theta_{\rm W}$

RELICS Coll. arXiv:2405.05554

SBC Coll. Flores et. al. Phys. Rev. D103 (2021) L091301

$$\mathcal{H}_{em}^{f}(x) = j_{\mu}^{f}(x)A^{\mu}(x) = \mathfrak{q}_{f}\bar{f}(x)\gamma_{\mu}f(x)A^{\mu}(x),$$

- * For neutrinos: $q_{\nu} = 0 \rightarrow$ there are no electromagnetic interactions at tree level.
- However, such interactions can arise from loop diagrams at higher order in the perturbative expansion.

 $\mathcal{H}_{eff}(x) = j_{\mu}^{eff}(x)A^{\mu}(x) =$ $\sum_{k,j=1}^{3} \overline{\nu_{k}}(x)\Lambda_{\mu}^{kj}\nu_{j}(x)A^{\mu}(x)$

C. Giunti, A. Studenikin RMP 87 (2015) 531

Limits on the effective NMM from reactor and accelerator data

Experiment	Bounds	
CONUS	$\mu_{ar{ u}_e} \leq 7.5 imes 10^{-11} \mu_B$	CONUS Eur. Phys. J. 82 (2022) 813
Dresden II	$\mu_{ar{ u}_e} \leq 2.13 imes 10^{-10} \mu_B$	Atzori Corona et al JHEP09(2022) 164
COHERENT	$\mu_{ u_e} \leq 3.8 imes 10^{-9} \mu_B$	de Romeri et al JHEP 04(2023) 035
COHERENT	$\mu_{ u_{\mu}} \leq 2.6 imes 10^{-9} \mu_B$	de Romeri et al JHEP 04(2023) 035
GEMMA	$\mu_{ar{ u}_e} \leq 2.9 imes 10^{-11} \mu_B$	GEMMA Adv.High Energy Phys. 2012 (2012) 350150
MUNU	$\mu_{ar{ u}_e} \leq 9 imes 10^{-11} \mu_B$	MUNU Phys.Lett.B 615 (2005) 153
TEXONO	$\mu_{ar{ u}_e} \leq 2.2 imes 10^{-10} \mu_B$	TEXONO Phys.Rev.D 81 (2010) 072001
TEXONO	$\mu_{ar{ u}_e} \leq 7.4 imes 10^{-11} \mu_B$	TEXONO Phys Rev. D75 012001 (2007)
LUX-ZEPLIN	$\mu_{ar{ u}_{\odot}} \leq 1.1 imes 10^{-11} \mu_B$	Atzori Corona et al Phys Rev. D107 (2023) 053001

The effective neutrino magnetic moment

The effective neutrino magnetic moment can be described with more detail in a phenomenological approach in which the NMM is described by a complex matrix $\lambda = \mu - id$ ($\tilde{\lambda}$) in the flavor (mass) basis, that for the Majorana case takes the form

$$\lambda = \begin{pmatrix} 0 & \Lambda_{\tau} & -\Lambda_{\mu} \\ -\Lambda_{\tau} & 0 & \Lambda_{e} \\ \Lambda_{\mu} & -\Lambda_{e} & 0 \end{pmatrix}, \qquad \tilde{\lambda} = \begin{pmatrix} 0 & \Lambda_{3} & -\Lambda_{2} \\ -\Lambda_{3} & 0 & \Lambda_{1} \\ \Lambda_{2} & -\Lambda_{1} & 0 \end{pmatrix},$$

where $\lambda_{\alpha\beta} = \varepsilon_{\alpha\beta\gamma} \Lambda_{\gamma}$.

The transition magnetic moments Λ_{α} and Λ_{i} are complex parameters:

$$\Lambda_{\alpha} = |\Lambda_{\alpha}|e^{i\zeta_{\alpha}}, \qquad \Lambda_{i} = |\Lambda_{i}|e^{i\zeta_{i}}.$$

W. Grimus, T. Schwetz, NPB 587 45 (2000)

$$\lambda \lambda^{\dagger} = \begin{pmatrix} |\Lambda_{\mu}|^2 + |\Lambda_{\tau}|^2 & -\Lambda_{\mu}\Lambda_e^* & -\Lambda_{\tau}\Lambda_3^* \\ -\Lambda_e \Lambda_{\mu}^* & |\Lambda_e|^2 + |\Lambda_{\tau}|^2 & -\Lambda_{\tau}\Lambda_{\mu}^* \\ -\Lambda_e \Lambda_{\tau}^* & -\Lambda_{\mu}\Lambda_{\tau}^* & |\Lambda_e|^2 + |\Lambda_{\mu}|^2 \end{pmatrix}$$

W. Grimus, T. Schwetz, NPB 587 45 (2000)

In the mass basis

$$(\mu_{\nu}^{M})^{2} = \tilde{a}_{-}^{\dagger} \tilde{\lambda}^{\dagger} \tilde{\lambda} \tilde{a}_{-} + \tilde{a}_{+}^{\dagger} \tilde{\lambda} \tilde{\lambda}^{\dagger} \tilde{a}_{+},$$

where $\tilde{a}_{-} = U^{\dagger}a_{-} \rightarrow \tilde{a}_{-}^{\dagger} = a_{-}^{\dagger}U, \qquad \tilde{a}_{+} = U^{T}a_{+} \rightarrow \tilde{a}_{+}^{\dagger} = a_{+}^{\dagger}U^{*}.$

$$\begin{aligned} (\mu_R^M)^2 &= |\Lambda|^2 - s_{12}^2 c_{13}^2 |\Lambda_2|^2 - c_{12}^2 c_{13}^2 |\Lambda_1|^2 - s_{13}^2 |\Lambda_3|^2 \\ &- 2s_{12} c_{12} c_{13}^2 |\Lambda_1| |\Lambda_2| \cos \delta_{12} - 2c_{12} c_{13} s_{13} |\Lambda_1| |\Lambda_3| \cos \delta_{13} \\ &- 2s_{12} c_{13} s_{13} |\Lambda_2| |\Lambda_3| \cos \delta_{23}, \quad \theta_{13} \neq 0 \end{aligned}$$

 $\delta_{12} = \xi_3, \ \delta_{23} = \xi_2 - \delta$, and $\delta_{13} = \delta_{12} - \delta_{23}$. Canas, OGM, Parada, Tortola, Valle PLB **753** 191 (2016).

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

[OGM, Papoulias, Tórtola, Valle, JHEP 1907 (2019) 103]

Effective NMM at reactor experiments.

Aristizabal Sierra, O. G. Miranda, D. K. Papoulias, G. Sanchez Garcia Phys.Rev.D 105 (2022) 3, 035027

A transition into a massive neutrino state

Sterile neutrino transition magnetic moment

Aristizabal Sierra, De Romeri, Papoulias JHEP 09(2022) 076 arXiv:2203.02414

OGM, Papoulias, Sanders, Tórtola, Valle, JHEP 12(2021) 191 arXiv:2109.09545

P D Bolton, F F Deppisch, K Fridell, et al Phys.Rev.D 106 (2022) 035036 arXiv:2110.02233

Sterile neutrino and ${\sf CE}\nu{\sf NS}$

Canas, Garces, OGM, Parada, Phys. Lett. B **776** 451 (2018)

E. Alfonso-Pita, L. J. Flores, E. Peinado,E. Vázquez-Jáuregui Phys.Rev.D 105 (2022)113005 arXiv:2203.05982

Sterile neutrino

Canas, Garces, OGM, Parada, Phys. Lett. B 776 451 (2018)

- ✓ COHERENT measurements inaugurated a new period where different experiments will measure CE ν NS reaction with good accuracy.
- Different experiments will complement each other to have better a better knowledge on different aspects on neutrino physics, particle physics, and nuclear physics.
- ✓ Reactor measurements will be of great interest as they are complementary to those comming from π -DAR neutrino sources

Thanks

Work supported by CONAHCYT grant 23238

Future sensitivity for $\sin^2 \theta_{\rm W}$

Aristizabal Sierra, De Romeri, Papoulias JHEP 09(2022) 076 arXiv:2203.02414 Canas, Garces, OGM, Parada Phys. Lett. B784 (2018) 159 arXiv:1806.01310

CONNIE arXiv:2403.15976

Sterile neutrino transition magnetic moment

OGM, Papoulias, Sanders, Tórtola, Valle, JHEP 12(2021) 191 arXiv:2109.09545

See also P D Bolton, F F Deppisch, K Fridell, et al Phys.Rev.D 106 (2022) 035036 arXiv:2110.02233