

Plans and Preparation Status of the Sanmen Reactor Neutrino Laboratory

YANG Litao (杨丽桃) Tsinghua University

Magnificent CEvNS 2024 Jun 12 - 14, 2024 @ Valencia, Spain

OUTLINE

- 1、Sanmen Reactor Neutrino Laboratory
- 2、RECODE Program (Ge)
- 3、RELICS Program (Xe)
- 4、 Prospects and summary

Sanmen Reactor Neutrino Laboratory

Sanmen Nuclear Power Plant (AP1000) @ Taizhou, Zhejiang, China

■Thermal power 3.4 GWth, ~22m /11m /7m from the core

Neutrino flux > 1.4 \times 10¹³ cm⁻²s⁻¹

Sanmen Reactor Neutrino Laboratory

Sanmen Nuclear Power Plant (AP1000) @ Taizhou, Zhejiang, China

■Thermal power 3.4 GWth, ~22m /11m /7m from the core

Neutrino flux > 1.4 \times 10¹³ cm⁻²s⁻¹

Project Location

copper, lead, polyethylene, etc. 5

Two layouts (Far, Near) with three sites (FS, NS + VNS):

- **Far Site (22m distance to reactor core, outside of Containment, no overburden)**
- Near Site (11m, overburden>15m.w.e, Maintainable during reactor operation)
- Very Near Site (7m, overburden>20m.w.e., Not maintainable during operation)
- **Far-Near Joint analysis: reduce systematic uncertainty, improve the sensitivity**

Shielding for FS/NS, according to the overburden:

- > Far Site: 400 tons of pure Water shielding, 10m(L) X 6.5m(W) X 6m(H)
- > Near Site: composite shielding with Lead, Copper, and Polyethylene...

Two technologies (Ge, Xe):

- > RECODE (PPCGe): Liquid nitrogen cooling (FS), Electric cooling (NS/VNS)
- **RELICS (Liquid xenon TPC) : FS**

Key parameters comparison

Sanmen Nuclear Power Plant (AP1000) @ Taizhou, Zhejiang, China

■Thermal power 3.4 GWth, ~22m /11m /7m from the core

Neutrino flux > 1.4 \times 10¹³ cm⁻²s⁻¹

Experiment	Target	Mass	Threshold	Reactor	Distance to	Thermal	Neutrino Flux	Location
					reactor core	power		
CONNIE	Si CCDs	50 g	~ 40 eVee	Angra 2 reactor	30 m	3.8 GWth	7.8*10 ¹² v/cm ² /s	Brazil
MINER	Ge/Si	4 kg	~ 100 eVnr	TRIGA reactor	2~10m	1 MWth	~10 ¹² v/cm ² /s	USA
RICOCHET	Ge & Zinc	32 g (Ge)	55 eVee	ILL reactor	8 m	58 MWth	1.6*10 ¹² v/cm ² /s	France
CONUS	HPGe	3.74 kg	~ 210 eVee	Kernkraftwerk Brokdorf	17 m	3.9 GWth	2*10 ¹³ v/cm ² /s	Germany
COUNS+	HPGe	3.74 kg	~150 eVee	Leibstadt NPP	20.7m	3.6 GWth	1.45*10 ¹³ v/cm ² /s	Switzerland Russia
Nu-Gen	HPGe	1.6 kg	350 eVee	Kalinin NPP	10 m (adjust)	3.2 GWth	5.4*10 ¹³ v/cm ² /s	
TEXONO	HPGe	1 kg	~200 eVee	Kuo-Sheng NPP	28m	2.9 GWth	6.4*10 ¹² v/cm ² /s	Taiwan, China
	HPGe	1-2kg	~160 eVee		NS ~ 11m	3.4GWth	5.6*10 ¹³ v/cm ² /s	China
RECODE	HPGe	10kg	~160 eVee	Sanmen NPP	FS ~ 22m	3.4GWth	1.4*10 ¹³ v/cm ² /s	China
RELICS	LXe	50kg	~1 keVnr	Sanmen NPP	22m	3.4GWth	1.4*10 ¹³ v/cm ² /s	China

Environmental background measurement @Sanmen

- A series of environmental background measurement technologies have been dev eloped in CJPL, which can be directly applied to the **environmental background measurement near the reactor**, providing key inputs for the shield design;
- Cosmic ray muon measurement system
- Bonner Sphere detectors

Neutron measurement: Bonner Sphere detectors

Layout of Bonner Sphere detectors

- MNS IL100 Bonner Sphere detectors
- ZJ230-3 He-3 pipe
- Polyethylene ball radius (mm): R0, R50, R60, R80, R100, R120, and R150
- Key parameters:
 - Dead time: approximately 10 µs
 - Effective cross-section: radius 15 mm
 - Polyethylene density: 0.92~0.95 g/cm³

- Preliminary results [Neutron spectrum analysis is in progress]:
- Neutron flux @10MeV:
- Neutron flux for thermal neutron-20MeV:
- Surrounding dose equivalent rate magnitude
- **10⁻⁴-10⁻³ [1/cm²/s]** 4.92×**10⁻³ [1/cm²/s]**

[nSv/h]

Muon flux measurement: ThuMuse system

Layout of ThuMuse system

- ThuMuse system consists of **4 layers of plastic scintillator strips modules**, which has XY twodimensional positioning capability
- Layer spacing is fixed at 320mm, the geometric acceptance [Quadruple] is about 3.41%

Schematic diagram of screening tracks for Muon events

Muon flux measurement: ThuMuse system

 Measured zenith angle-azimuth distribution is consistent with the experimental site conditions: low muon flux near the Reactor Concrete Containment side, ~1/3 of muons can be shielded

Cosmic ray simulation

- The cosmic rays that travel through the atmosphere can produce a variety of radiati on particles, such as neutrons, protons, gammas, and pions...
- In addition to the muon, we should also consider the high-energy cosmic-ray neutr ons, which can easily pass through the shield and deposit energy in the detector;
- Cosmic-ray Shower Library (CRY) to calculate their flux;

and muons at Sanmen sea level

Water shield simulation design

- 5 m water shield on top can suppress the cosmic-ray neutron-induced backgroun d to a controlled level;
- Water tank (inner): 10m(L)*6.5m(W)*6m(H); The detector is placed in the water t ank on the side close to the reactor concrete containment.

Water shield simulation design

- The size of the water tank has been optimized based on the MC simulation, espe cially the cosmic-ray neutrons, to satisfy the requirement of CEvNS detection;
- 5 m water shield on top can suppress the cosmic-ray neutron-induced backgroun d to a controlled level.

RECODE

- RECODE (REactor neutrino COherent scattering Detection Experiment)
- Low threshold PPCGe detectors, and related technology come from CDEX experiment

Project goals:

- Two Ge arrays (Far Site + Near Site /Very Near Site, ~10kg in total)
- Energy threshold ~1 keVnr (~160eVee)
- Joint measurement and analysis to reduce the systematical uncertainty

Reactor Neutrino flux ~10¹³/cm²/s

東空腔 高圧信号 に108-Ge3 に108-Ge2

RECODE Far Site (based on CDEX-1/10)

CDEX-10 measured spectrum@CJPL, ~2 cpkkd@2keV, threshold 160 eVee

CDEX-1B (1kg PPCGe), cooled with the cooling finger and LN2 Dewar

RECODE Near Site/Very Near Site

From HT Wong

Electric cooled HPGe

Mass (g)	Pulsar FWHM (eV _{ee})	Threshold (eV _{ee})
500	70	200
900	70	~230
1430	~60	~160
1430	70	200

Advantages of electrical cooled HPGe:

- ✓ No need to regularly replenish liquid nitrogen
- ✓ Controllable crystal temperature
- ✓ Real-time monitoring of Refrigerator performance
- ✓ Good long-term stability

Preliminary Design of the shielding (Near Site)

- Shielding design and optimization (Near Site)
- Anti coincidence efficiency of Cosmic ray:>99%
- Gamma current strength: reduced by 5 orders of magnitude
- > Neutron current intensity: reduced by 3 orders of magnitude

From outer to inner (Preliminary):

- \checkmark Muon veto detector
- ✓ Boron doped polyethylene (BPE)
- ✓ Lead (Pb)
- ✓ Coper (Cu)
- ✓ Polyethylene (PE)
- ✓ Coper (Cu)

Schedule

	2023	2024		2025		2026	
✓ ✓	On site environmental background measurement/estimation Design, production, and processing of various subsystems	 ✓ Subsystem independent testing ✓ Joint testing work 		 ✓ Transport to NPP, installation, testing ✓ First physics run 		✓ Second physics run✓ Data analysis	
	Subsystems testing @CJPL a Sanmen Laboratory prep		Physics Run (FS, NS, VNS) @Sanmen NPP				

Measurement of quenching factor

Measurement of Ge QF @ 1-10keV

- \checkmark 10g ultra-low threshold HPGe
- \checkmark High Voltage Multiplier at CIAE
- ✓ EJ-301/BC-501A liquid Scintillator
- ✓ QF measurement results @1.2keV-20keV

Future plans

- ✓ Use californium fission chambers or tandem accelerators to conduct more accurate measurements
 - more accurate measurement @ 1-20keV
 - Conduct measurement and research below 1keV

RELICS

REactor neutrino Liquid xenon Coherent elastic Scattering

RELICS (REactor neutrino Llquid xenon Coherent elastic Scattering)

- 7m passive water shield
- Plastic scintillator muon veto
- 32kg fiducial volume TPC
- 4π skin for gamma/beta veto
- Two 64 one-inch PMT array
- High E-field for high efficiency
- Low-background materials

Details in arXiv: 2405.05554

Summary

- Reactor neutrino CEvNS detection has great scientific significance for the verification of SM at low energy scale and the accurate measurement of weak mixing angle;
- The Sanmen Reactor Neutrino Laboratory is currently being under construction as the CEvNS experimental platform, which is located at the Sanmen NPP in Zhejiang, China;
- Two different detector technologies: HPGe (RECODE) and LXe TPC (RELICS), will be used to jointly measure the reactor neutrino CEvNS at multiple experimental sites;
- By joint measurements and analysis, the experimental systematic uncertainty can be significantly reduced and then improve the sensitivity.

Summary

- Reactor neutrino CEvNS detection has great scientific significance for the verification of SM at low energy scale and the accurate measurement of weak mixing angle;
- The Sanmen Reactor Neutrino Laboratory is currently being under construction as the CEvNS experimental platform, which is located at the Sanmen NPP in Zhejiang, China;
- Two different detector technologies: HPGe (RECODE) and LXe TPC (RELICS), will be used to jointly measure the reactor neutrino CEvNS at multiple experimental sites;
- By joint measurements and analysis, the experimental systematic uncertainty can be significantly reduced and then improve the sensitivity.

Thank you!

Litao YANG (杨丽桃), yanglt@mail.tsinghua.edu.cn