

Module 2 of the COHERENT D20 Detector

Gen Li and Kirsten McMichael

Magnificent CEvNS

June 2024

Neutrino Flux from ORNL SNS

Motivations for D2O Detector

- ν flux is simulated at ~10% uncertainty.
- D2O: $\nu_e + d \rightarrow p + p + e^-$
- Cross section for CC v_e + ¹⁶ O has never been

tested at this energy range \rightarrow Module 2

Motivations for D20 Module 2

- Module 2 has the same design as Module 1, except for containing H2O instead of D2O.
- Measure σ of $v_e + {}^{16} O \rightarrow e^- + {}^{16} O$ without the background from CC $v_e + d$.
- Interesting to large-scale water Cherenkov detectors (Super K and Hyper K) !

Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo

Design of D2O Detector

- Water Cherenkov Detector
- 592kg D2O in acrylic tank
- 12 PMTs for Cherenkov radiation
- Tyvek covers inner wall of steel vessel
- Outside: lead shielding + muon veto panels

2021 JINST 16 P08048

PMT Testing Results for D2O Module 2

• According to the gain of PMT15 at 1900V, we found the optimal voltage for each PMT to get the same gain.

PMT Testing Results for D2O Module 2

PMT Selection

PMT Number	Dark Rate (Hz)	σ/μ	V_{opt} (V)
1107	838	0.27	1820
1108	1188	0.25	1700
1109	1233	0.15	1710
1110	1448	0.21	1760
1111	1068	0.29	1790
1112	906	0.27	1640
1113	898	0.18	1610
1114	1165	0.17	1770
1115	1017	0.26	1900
1117	855	0.26	2200
1118	811	0.3	1730
1119	1483	0.29	1820
1123	806	0.2	1980
1125	1745	0.3	1720

• Ruling out two with the lowest gain and the highest dark rate.

Future Work

- Muon veto panels to be completed.
- Module 2 will be commissioned in summer 2024.
- Next multi-month run with both Module 1 and Module 2 aims to start in Summer 2024.

Acknowledgement

- D2O group members: Manoj Adhikari, Igor Bernardi, Yuri V Efremenko, Karla Tellez-Giron-Flores, Gen Li, Jon Link, Kirsten McMichael, Jason Newby, Diana Parno, Daniell Shi, Joel Sander, Kate Scholberg, Tulasi Subedi, Keegan Walkup, Eli Ward.
- Thanks for listening!

Status of Module 1

- Module 1 is built and operated in summer 2023.
- Collected 982MWh of beam-on data in 2023.
- Data is still 90%+ blinded, we are currently working on analysis and preparation for next SNS run.

CEvNS and COHERENT

- Coherent Elastic Neutrino-Nucleus Scattering
- No internal excitations or ejected particles
- Approximate condition: $QR \ll 1$
 - *Q* is the momentum transfer to the nucleus
 - *R* is the nuclear radius
- Nuclear Recoil is tiny! $E_r \cong \frac{2E_v^2}{M}$ (~keV)

EPL, 143 (2023) 34001

CEvNS and COHERENT

• When $T \ll E_{\nu}$: $\sigma \propto N^2$

• When $E_{\nu} < 100~MeV$, CEvNS channel dominates.

Oak Ridge National Lab Spallation Neutron Source (ORNL SNS)

Neutrino Flux from ORNL SNS

Neutrino Flux from ORNL SNS

- $\pi^+ \rightarrow \nu_\mu + \mu^+$; $\mu^+ \rightarrow \overline{\nu_\mu} + \nu_e + e^+$
- $\sim 4.3 \times 10^7 cm^{-2} s^{-1}$ at Neutrino Alley (20*m* from Hg target).

Design of D2O Module 1

- Water Cherenkov Detector
- 592kg D2O in acrylic tank
- 12 PMTs for Cherenkov radiation
- Tyvek covers inner wall of steel vessel
- Outside: lead shielding + muon veto panels

2021 JINST 16 P08048

Design of D2O Module 1

- ν flux is simulated at ~10% uncertainty.
- 592kg D2O: $\nu_e + d \rightarrow p + p + e^-$
- Cross section for CC v_e + ¹⁶ O has never been

tested at this energy range \rightarrow Module 2

2021 JINST 16 P08048

Design of D2O Module 1

- The observable electron energies are distinguishable, which makes it possible to reconstruct CC *d* events.
- After considering the smearing effect, we can simulate signal and background energy spectra.

2021 JINST 16 P08048

Goals and Predictions

- The statistical uncertainty will decrease significantly from 10% after several years of running.
- Better sensitivity to physics beyond the Standard Model.

Dark box vs. Underwater

Signal

Gain

•

• The Gain is solely dependent on the dark rate test.

• #Photoelectron =
$$\frac{\langle Area_{LED} \rangle}{\langle Area_{dark} \rangle}$$

•
$$#electron = \frac{\langle Area_{LED} \rangle}{eR}$$

•
$$Gain = \frac{\#electron}{\#Photoelectron} \propto < Area_{dark} >$$