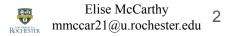
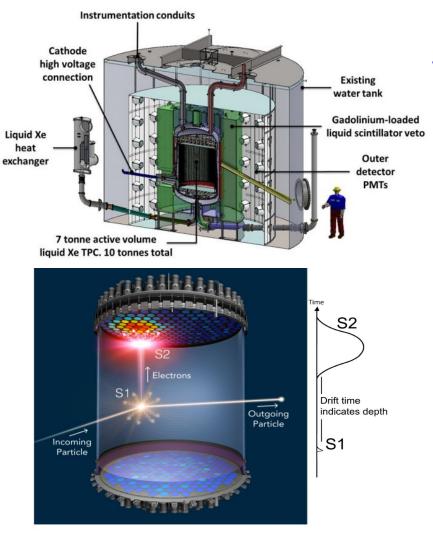


CEvNS-based Supernova Neutrino Detection with LZ



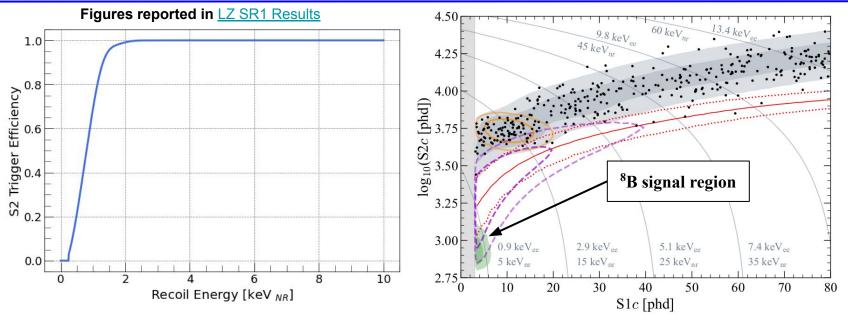

 M. Elise McCarthy, on behalf of the LUX-ZEPLIN Collaboration Magnificent CEνNS 13 June 2024, Valencia, Spain

Overview

- Design and operation of the LUX-ZEPLIN (LZ) experiment
- LZ's sensitivity to astrophysical neutrinos
 - Observing ⁸B neutrinos with CEvNS
 - Characteristics of the neutrino flux from core-collapse supernovae (CCSN)
 - Neutrino interactions in LZ during a galactic CCSN
 - Advantages of CEvNS-sensitive experiments
- Simulating LZ's response to galactic CCSN with γ ESPER
 - Architecture of γ ESPER
 - Relative rate in each neutrino interaction channel
- Detector response modelling with ν ESPER and NEST
 - Sensitivity as a function of progenitor distance
- Role of CEvNS-sensitive detectors in multi-messenger astronomy

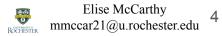
The LUX-ZEPLIN Experiment

The LUX-ZEPLIN (LZ) experiment is a low-threshold low-background dark matter direct detection experiment. LZ is deployed 4850 feet underground at the Sanford Underground Research Facility in Lead, South Dakota, USA.


First results from LZ's dark matter search were published in July 2023. We are in discovery mode.

- LZ's central volume is a time projection chamber (TPC).
 - 7 tonnes of liquid xenon (LXe). 0
- The Skin detector surrounds the TPC, serving as a gamma ray background veto.
 - 2 tonnes of I Xe
- The Outer Detector (OD), a neutron and gamma ray background veto, surrounds the TPC and Skin.
 - 238 tonnes of deionized water and 17 tonnes of 0 gadolinium-loaded liquid scintillator.

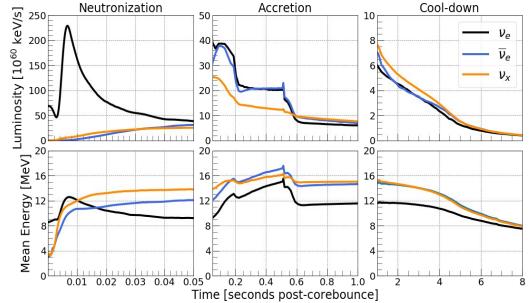
Particle interactions in the TPC produce a prompt scintillation (S1) signal and a delayed electroluminescence (S2) signal.



CEvNS in LZ: ⁸B solar neutrino search

CE_vNS interactions in liquid xenon are O(1) keV nuclear recoil events, a region of the parameter space to which LZ is highly sensitive. LZ utilizes a triggered data acquisition system. The S2 trigger is \sim 50% efficient for 1 keV nuclear recoil (NR) interactions, and 100% at 2 keV NR.

LZ is sensitive to neutrinos from astrophysical sources, including ⁸B solar neutrinos interacting via $CE_{\nu}NS$ in the TPC. The ⁸B signal is modelled as part of the WIMP search background.

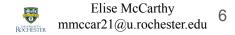

Neutrino emission from core-collapse supernovae

In the first 10 seconds of a CCSN, $O(10^{57})$ neutrinos are emitted.

- Mean energy of emitted neutrinos is ~10 MeV.
- Neutrinos carry away ~99% of the progenitor star's gravitational potential energy.

During a CCSN, neutrino emission is divided into three phases:

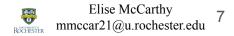
- Neutronization
 - First ~50 ms of event.
 - Primarily electron neutrinos.
- Accretion
 - Follows neutronization, up to ~0.5 s after the onset of collapse.
 - Electron and heavy-lepton neutrino luminosities increase.
- Cool-down
 - Follows explosion and lasts up to 10 s after the onset of collapse.
 - Roughly equal contribution from all neutrino flavors.


27 M_ 1D CCSN model by MPA Garching

Neutrino interactions in LZ during a CCSN

Detector	Mass	Target	$v_{e}^{}$ CC	anti <i>-v_e</i> CC	non-CEvNS NC	CEvNS	<i>v</i> -e⁻ elastic
TPC and Skin	7 t (TPC) and 2 t (Skin)	Xenon	х	х		х	х
OD Water and Scintillator	27 t (water) and 2.1 t (scintillator)	Hydrogen		х			х
OD Water	211 t	Oxygen	х	x	x		x
OD Scintillator	15 t	Carbon	х	x	x		x
OD Scintillator	17.1 kg	Gadolinium	х	х		x	x

During a galactic CCSN, LZ will experience charged-current, CE ν NS, and other neutral-current interactions in all detector volumes.

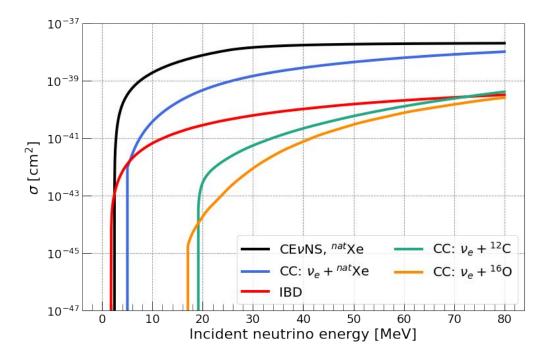


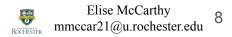
Astrophysical CEvNS observations with LZ

Low-threshold low-background liquid noble element detectors like LZ are promising observatories for the next galactic CCSN.

- Sensitive to all flavors of emitted neutrino via CEvNS
 - Sensitivity to the heavy-lepton component of the CCSN neutrino flux is critical for reconstruction of the total neutrino luminosity
- 7 tonne Xe target mass
- Detector livetime of ~97% during first science campaign

 $CE_{\nu}NS$ -sensitive experiments have many potential contributions to multi-messenger astronomy. Work to prepare these experiments for the next galactic CCSN is active and ongoing.

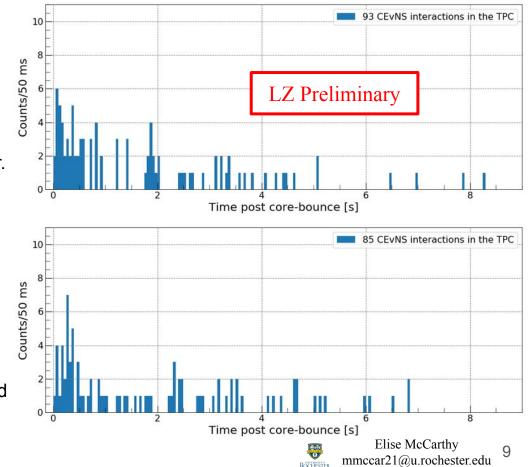



Modelling LZ's CCSN response with vESPER

To simulate LZ's response to a flux of CCSN neutrinos, we have developed vESPER: the Neutrino Engine Simulating the Process of Energetic Recoils. vESPER is a Python 3 simulation package.

vESPER utilizes CCSN neutrino emission models produced by <u>the</u> <u>simulations group at MPA Garching</u>.

Interactions via charged- and neutral-current channels are simulated in the TPC and OD.


Modelling LZ's CCSN response with vESPER

Each neutrino emission model is handled by a dedicated processing harness.

Simulations are configurable via the top-level driving file. The user may select:

- The CCSN progenitor model.
- Distance from earth to the CCSN progenitor.
- Which neutrino flavors to simulate.
- The detector volume to simulate
- The nuclear form factor for CEvNS interactions.
- Detection threshold the smallest recoil energy which will be observable in the detector.

Each run of vESPER is one explosion of the user-selected CCSN progenitor, returning a time series of neutrino interactions in the user-specified volume.

γ ESPER: CCSN ν interaction rates in the TPC

In the TPC, charged-current interactions may be a significant background to a CE_vNS -based CCSN neutrino detection.

The high-energy CC interaction and cascade of charged particles may cause detector deadtime, reducing our sensitivity to $CE_{\nu}NS$ interactions occurring simultaneously.

To assess the relative rate in each interaction channel, a 27 M_{\odot} 1D CCSN progenitor located 10 kpc from Earth is simulated with ν ESPER. The average interaction rate in each channel is reported in the below table.

As expected, CEvNS interactions are the dominant interaction mechanism. We predict one charged current interaction, $v_{e} + Xe \rightarrow Gd^{*} + e^{-}$, in the TPC.

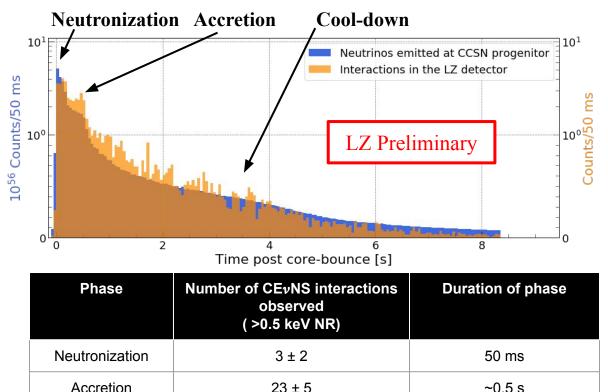
Target	CEvNS	$v_{e}^{}$ CC	anti-v _e CC	v-e⁻ elastic
LZ TPC	84 ± 1	1.2 ± 0.1	0.02 ± 0.01	0.05 ± 0.02
1 tonne of LXe	12.0 ± 0.4	0.17 ± 0.04	0.003 ± 0.005	0.007 ± 0.008

γ ESPER: CCSN v interaction rates in the OD

Detector	Target	Mass	v _e CC	anti-v _e CC	non-CEvNS NC	CEvNS	<i>v</i> -e⁻ elastic
		Scintillator: 2.1 t		4.1 ± 0.2			
Water and Scintillator Hydrogen	Hydrogen	Inner water: 13 t		26.8 ± 0.5	LZ Pre	liminary	
		Outer water: 14 t		28.2 ± 0.5			3.9 ± 0.2
OD Water	Oxygen	211 t	0.20 ± 0.04	0.32 ± 0.06	0.85 ± 0.09		
OD Scintillator	Carbon	15 t	0.07 ± 0.03	0.08 ± 0.03	0.17 ± 0.04		
OD Scintillator	Gadolinium	17.1 kg	0	0		0.23 ± 0.05	

In the OD, the interaction rate from this progenitor is negligible in most channels .

The dominant interaction mechanism in the OD is inverse beta decay (IBD), producing back-to-back 511 keV gamma rays from positron annihilation and possibly delayed MeV-scale gamma rays from neutron capture.

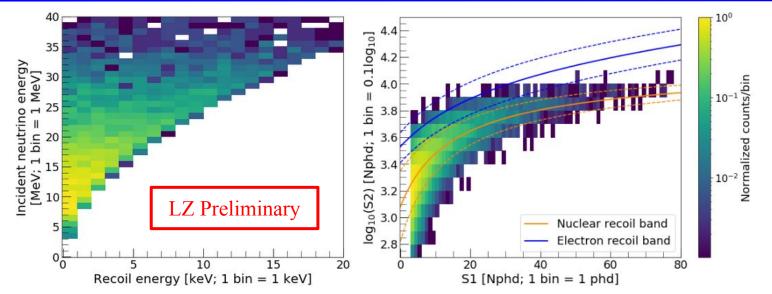

γ ESPER: CEvNS interactions in the TPC

Cool-down

The CE ν NS signal has a maximum during the accretion phase of the CCSN.

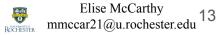
During the ~0.5 s of the accretion phase, 23 ± 5 CEvNS interactions are predicted to occur in the TPC.

Studying detector background over CCSN neutrino flux timescales is ongoing.

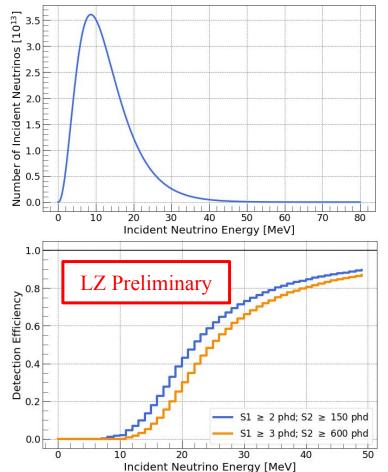

 46 ± 7

Elise McCarthy mmccar21@u.rochester.edu

~10 s

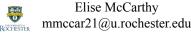

12

Modelling CEvNS response with VESPER and NEST

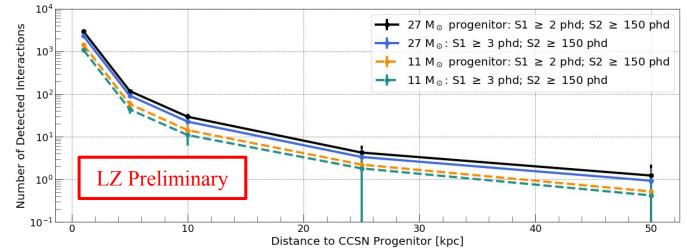


The output of vESPER is passed to the <u>Noble Element Simulation Technique (NEST)</u> <u>software</u> to examine LZ's response to the CEvNS signal in terms of detector observables (S1 and S2 signals). NEST has been tuned to match the <u>LZ SR1 detector response</u>.

Examining a 27 M_{\odot} 1D CCSN progenitor, the smallest S2 from the CE νNS signal is ~600 photons detected (phd).


CCSN data analysis strategies and detection efficiency

Examining the detector response in (S1, S2) space, a range of analysis cuts are applied to the CCSN signal.


For each analysis strategy, LZ's CEvNS detection efficiency is calculated.

The SR1 WIMP search ROI specified a minimum S2 size of 600 phd. Because the CE ν NS detection efficiency is independent of the minimum S2 size, the SR1 analysis threshold and detector response characterization can be applied to the CCSN CE ν NS analysis.

14

CCSN progenitor distance

To study the impact of progenitor distance on LZ's detection capability, an 11 M_{\odot} 1D progenitor and a 27 M_{\odot} 1D progenitor are simulated at a variety of distances.

A 27 M_o progenitor 50 kpc from Earth will produce $4 \pm 2 \text{ CE}\nu\text{NS}$ interactions in the LZ TPC. Requiring an S1 ≥ 3 phd, 1 ± 1 interaction from this progenitor will be detected.

Elise McCarthy

mmccar21@u.rochester.edu

ROCHESTER

15

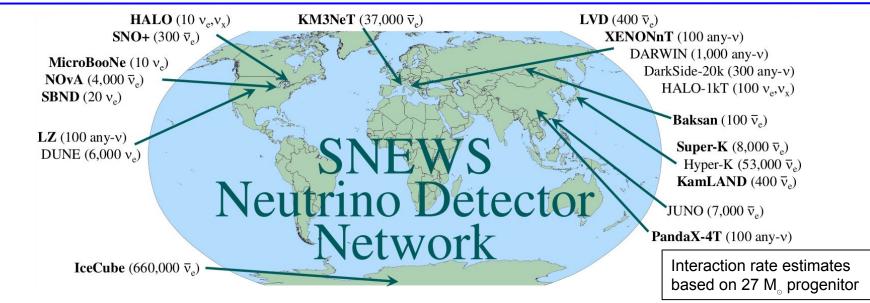
This study places distance limits on LZ's CCSN detection capabilities:

- Smaller CCSN progenitors (up to ~11 M_{\odot}) will be detectable within the Milky Way.
- Larger CCSN progenitors (27 M_o and above) will be detectable within the local galactic cluster.

Role of CEvNS-sensitive experiments in multi-messenger astronomy

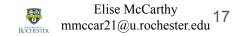
 CE_vNS -sensitive liquid noble element detectors provide exciting new opportunities in multi-messenger astrophysics. A CCSN detection by LZ or our contemporary experiments will be the first observation of astrophysical neutrinos via CE_vNS .

In a joint analysis with other experiments, CE_vNS -sensitive detectors can extract critical information about the heavy-lepton component of the neutrino flux.

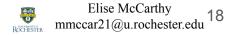

• Heavy-lepton flux component is critical for the reconstruction of the overall neutrino luminosity, and has never been previously observed.

With large-scale CE_vNS -sensitive experiments only recently online, preparing these experiments to contribute to multi-messenger astrophysics is an active field.

- New simulation tools are under development.
- $CE_{\nu}NS$ and $CE_{\nu}NS$ -sensitive experiments are being added to existing simulation packages.
- Experiments are developing analysis pipelines, aiming to rapidly generate an alert to optical astronomers from a CEvNS-based observation.



Role of CEvNS-sensitive experiments in multi-messenger astronomy


 $CE_{v}NS$ -sensitive experiments are already active multi-messenger astrophysics collaborators.

LZ is a member experiment of the Supernova Neutrino Early Warning System 2.0 (SNEWS2.0) collaboration. SNEWS2.0 is a consortium of neutrino-sensitive experiments, aiming to pool information from a CCSN detection and generate a fast alert to optical astronomers.

Conclusions

- LZ is a low-threshold, low-background liquid noble element dark matter detector sensitive to CEvNS interactions.
 - Promising mechanism for the observation of neutrinos from galactic CCSN.
- We have developed vESPER, a Python 3 simulation package, to simulate the response of LZ to neutrinos from CCSN.
 - Utilizes neutrino emission models from the simulations group at MPI Garching.
 - Charged-current, neutral-current, and CEvNS interaction channels available.
 - Simulates the response in all sub-detectors of LZ.
- Using vESPER and NEST, LZ's response to a 27 M $_{\odot}$ 1D CCSN progenitor at 10 kpc from Earth is simulated.
 - Signal from a CCSN is dominated by CE ν NS interactions, with a low rate of IBD interactions in the Outer Detector.
- Via CEvNS, LZ will be sensitive to smaller progenitors within the Milky Way and larger progenitors within the local galactic cluster.
- CEvNS-sensitive liquid noble element detectors are an exciting frontier in multi-messenger astrophysics, and work is ongoing to prepare these experiments for the next CCSN.

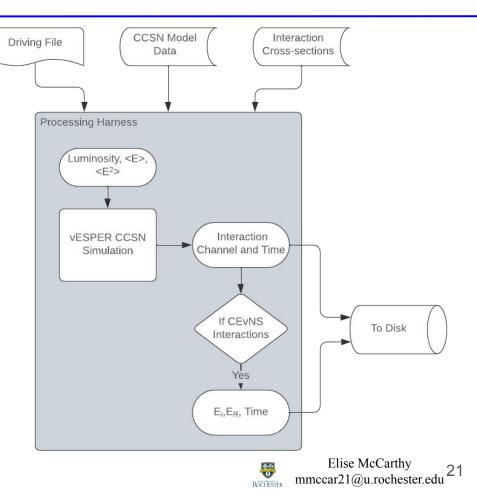
Any questions?

Thanks to our sponsors and 38 participating institutions!

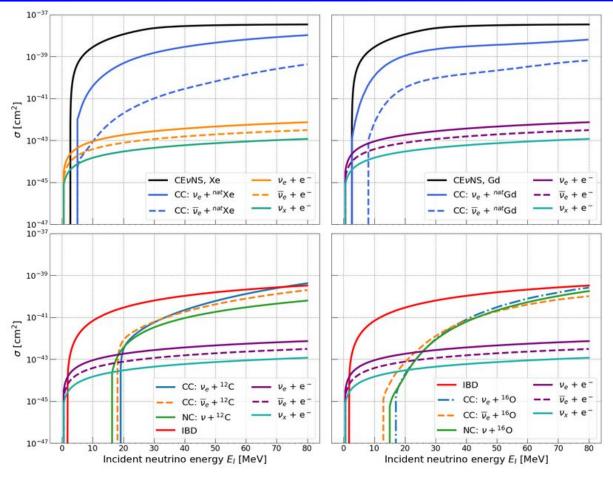
Sanford Underground Research Facility South Dakota Science and Technology Authority

U.S. Department of Energy Office of Science FCT Fundação par a Ciência e a Tecnologia

Supplemental slides


VESPER: Architecture

Each neutrino emission model is handled by a dedicated processing harness.

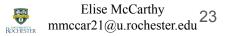

Simulations are configurable via the top-level driving file. The user may select:

- The CCSN progenitor model.
- Distance from earth to the CCSN progenitor.
- Which neutrino flavors to simulate.
- The detector volume to simulate
- The nuclear form factor for CEvNS interactions.
- Detection threshold the smallest recoil energy which will be observable in the detector.

Each run of γ ESPER is one explosion of the user-selected CCSN progenitor, returning a time series of neutrino interactions in the user-specified volume.

vESPER: Interaction channels

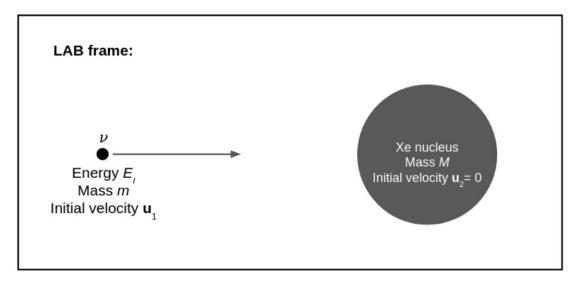
Top left: TPC Top right: Gadolinium component of OD Scintillator


Bottom left: Linear Alkylbenzene component of OD Scintillator

Bottom right: OD Water

MPA Garching: CCSN data archive link

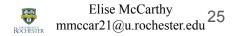
https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/

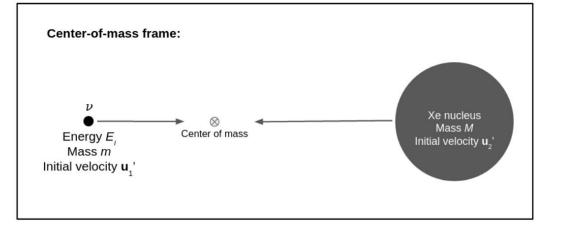


Neutrino observations from SN1987A

Detector	Interaction mechanism/ flavor sensitivity	Target mass [tonnes]	# of neutrinos observed during SN1987A	# of neutrinos observed per tonne of detector material
IMB	IBD/electron antineutrinos	~9400	8	~9E-4
Kamiokande II	IBD/electron antineutrinos	3000	11	~4E-3
Baksan	IBD/electron antineutrinos	330	5	~0.02
LZ	CEvNS/all flavors	7	4*	~0.6*

*Projected using vESPER



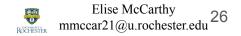


A neutrino of energy E_I is incident on an Xe nucleus of mass M. The Xe nucleus is initially at rest in the LAB frame.

The neutrino and Xe nucleus scatter elastically (as in a CEvNS interaction), causing the Xe nucleus to recoil with some energy E_R .

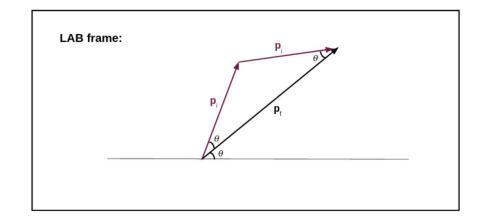
The recoil energy may take any value in the range $0 < E_R \leq \frac{2\mu^2 \mathbf{u}_1^2}{M}$ where $\mu = \frac{mM}{m+M}$ is the reduced mass of the neutrino-nucleus system.

Transforming to the center-of-mass frame, the Xe nucleus is moving towards the center of mass with initial velocity


$$\mathbf{u}_2' = \frac{m\mathbf{u}_1}{m+M}$$

and momentum

$$\mathbf{p}_i = M\mathbf{u}_2'$$
$$= \frac{Mm}{m+M}\mathbf{u}_1$$
$$= \mu\mathbf{u}_1.$$


After the collision, the Xe nucleus recoils at some angle θ .

Because $m \ll M$, θ is approximately the same angle in the LAB and center-of-mass frames.

Returning to the LAB frame, we decompose the final momentum vector of the Xe nucleus into two components, each with a magnitude p_i and oriented w.r.t. p_f at an angle θ . We use the law of cosines to obtain p_f in terms of p_i and θ :

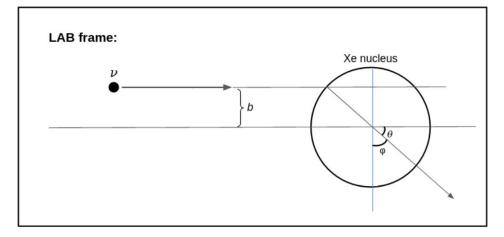
$$p_f = \sqrt{p_i^2 + p_i^2 + 2p_i p_i \cos(\pi - 2\theta)}$$
$$= \sqrt{2p_i^2 + 2p_i^2 \cos(\pi - 2\theta)}$$
$$= p_i \sqrt{2(1 + \cos(\pi - 2\theta))}$$
$$= p_i \sqrt{2(1 - \cos(2\theta))}$$
$$= p_i \sqrt{4\cos^2(\theta)}$$
$$\mathbf{p}_f = 2p_i \cos\theta \ \hat{\theta}.$$

The energy of the recoiling Xe nucleus is thus given by $E_R = \frac{\mathbf{P}_f^2}{2M} \\ = \frac{(2p_i \cos \theta)^2}{2M} \\ = \frac{2\mu^2 \mathbf{u}_1^2}{M} \cos^2 \theta. \quad \bigstar$

ROCHESTER

Elise McCarthy

mmccar21@u.rochester.edu


27

The recoil angle θ is related to the impact parameter *b* between the neutrino and Xe nucleus. Assigning the neutrino a radius *R1* and the Xe nucleus a radius *R2*,

 $b = (R1 + R2) \sin \theta$.

To link θ and E_R , we differentiate E_R (\bigstar) and *b* w.r.t θ :

$$dE_R = \frac{-4\mu^2 \mathbf{u}_1^2}{M} \sin \theta \cos \theta d\theta$$
$$db = (R_1 + R_2) \cos \theta d\theta.$$

Dividing our range of allowed Xe recoil energies into bins of width dE_R , a recoil energy between E_R and E_R+dE_R corresponds to an impact parameter between *b* and *b*+*db*.

We solve the equation for dE_p for $cos\theta d\theta$ and substitute the result into the equation for db:

$$dE_R = \frac{-4\mu^2 \mathbf{u}_1^2}{M} \sin \theta \cos \theta d\theta$$
$$\rightarrow \cos \theta d\theta = \frac{-M}{4\mu^2 \mathbf{u}_1^2} \frac{dE_R}{\sin \theta}$$
$$db = \frac{-M(R_1 + R_2)}{4\mu^2 \mathbf{u}_1^2} \frac{dE_R}{\sin \theta}.$$

 $\sin \theta$

The yield in a bin of width db is $2\pi bdb$, which is given in terms of E_p by:

$$yield = 2\pi bdb$$
$$= 2\pi (R_1 + R_2)\sin(\theta) \times \frac{-M(R_1 + R_2)}{4\mu^2 \mathbf{u}_1^2} \frac{dE_R}{\sin\theta}$$
$$yield = \frac{\pi M(R_1 + R_2)^2}{2\mu^2 \mathbf{u}_1^2} dE_R$$

This yield is INDEPENDENT of θ . Any interaction, regardless of b, could produce a recoil energy between E_p and dE_p .

The probability of observing a recoil energy E_R is uniform over the range $0 < E_R \le \frac{2\mu^2 \mathbf{u}_1^2}{M}$.

